PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
Document Types
1.  Hip Fractures and Bone Mineral Density in the Elderly—Importance of Serum 25-Hydroxyvitamin D 
PLoS ONE  2014;9(3):e91122.
Background
The significance of serum 25-hydroxyvitamin D [25(OH)D] concentrations for hip fracture risk of the elderly is still uncertain. Difficulties reaching both frail and healthy elderly people in randomized controlled trials or large cohort studies may in part explain discordant findings. We determined hazard ratios for hip fractures of elderly men and women related to serum 25(OH)D, including both the frail and the healthy segment of the elderly population.
Methods
The AGES-Reykjavik Study is a prospective study of 5764 men and women, age 66–96 years, based on a representative sample of the population of Reykjavik, Iceland. Participation was 71.8%. Hazard ratios of incident hip fractures and baseline bone mineral density were determined according to serum concentrations of 25(OH)D at baseline.
Results
Mean follow-up was 5.4 years. Compared with referent values (50–75 nmol/L), hazard ratios for hip fractures were 2.24 (95% CI 1.63, 3.09) for serum 25(OH)D <30 nmol/L, adjusting for age, sex, body mass index, height, smoking, alcohol intake and season, and 2.08 (95% CI 1.51, 2.87), adjusting additionally for physical activity. No difference in risk was associated with 30–50 nmol/L or ≥75 nmol/L in either model compared with referent. Analyzing the sexes separately, hazard ratios were 2.61 (95% CI 1.47, 4.64) in men and 1.93 (95% CI 1.31, 2.84) in women. Values <30 nmol/L were associated with significantly lower bone mineral density of femoral neck compared with referent, z-scores -0.14 (95% CI −0.27, −0.00) in men and −0.11 (95% CI −0.22, −0.01) in women.
Conclusions
Our results lend support to the overarching importance of maintaining serum 25(OH)D above 30 nmol/L for bone health of elderly people while potential benefits of having much higher levels could not be detected.
doi:10.1371/journal.pone.0091122
PMCID: PMC3951316  PMID: 24621578
2.  Parental origin of sequence variants associated with complex diseases 
Nature  2009;462(7275):868-874.
Effects of susceptibility variants may depend on from which parent they are inherited. While many associations between sequence variants and human traits have been discovered through genome-wide associations, the impact of parental origin has largely been ignored. Combining genealogy with long range phasing, we demonstrate that for 38,167 Icelanders genotyped using SNP chips, the parental origin of most alleles can be determined. We then focused on SNPs that associate with diseases and are within 500kb of known imprinted genes. Seven independent SNP associations were examined. Five, one each with breast cancer and basal cell carcinoma, and three with type 2 diabetes (T2D), exhibit parental-origin specific associations. These variants are located in two genomic regions, 11p15 and 7q32, each harbouring a cluster of imprinted genes. Furthermore, a novel variant rs2334499 at 11p15 was seen to associate with T2D where the allele that confers risk when paternally inherited is protective when maternally transmitted. We identified a differentially methylated CTCF binding site at 11p15 and demonstrated correlation of rs2334499 with decreased methylation of that site.
doi:10.1038/nature08625
PMCID: PMC3746295  PMID: 20016592
3.  Effect of vertebral fractures on function, quality of life and hospitalisation the AGES-Reykjavik study 
Age and Ageing  2012;41(3):351-357.
Background: understanding the determinants of health burden after a fracture in ageing populations is important.
Objective: assess the effect of clinical vertebral and other osteoporotic fractures on function and the subsequent risk of hospitalisation.
Design: individuals from the prospective population-based cohort study Age, Gene/Environment Susceptibility (AGES)-Reykjavik study were examined between 2002 and 2006 and followed up for 5.4 years.
Subjects: a total of 5,764 individuals, 57.7% women, born 1907–35, mean age 77.
Method: four groups with a verified fracture status were used; vertebral fractures, other osteoporotic fractures excluding vertebral, non-osteoporotic fractures and not-fractured were compared and analysed for the effect on mobility, strength, QoL, ADL, co-morbidity and hospitalisation.
Results: worst performance on functional tests was in the vertebral fracture group for women (P < 0.0001) and the other osteoporotic fractures group for men (P < 0.05). Both vertebral and other osteoporotic fractures, showed an increased risk of hospitalisation, HR = 1.4 (95% CI: 1.3–1.7) and 1.2 (95% CI: 1.1–1.2) respectively (P < 0.0001). Individuals with vertebral fractures had 50% (P < 0.0001) longer hospitalisation than not-fractured and 33% (P < 0.002) longer than the other osteoporotic fractures group.
Conclusion: individuals with a history of clinical vertebral fracture seem to carry the greatest health burden compared with other fracture groups, emphasising the attention which should be given to those individuals.
doi:10.1093/ageing/afs003
PMCID: PMC3335370  PMID: 22367357
vertebral fracture; health burden; osteoporotic fracture; strength; ADL; quality of life; mobility; elderly
4.  Rate of de novo mutations, father’s age, and disease risk 
Nature  2012;488(7412):471-475.
Mutations generate sequence diversity and provide a substrate for selection. The rate of de novo mutations is therefore of major importance to evolution. We conducted a study of genomewide mutation rate by sequencing the entire genomes of 78 Icelandic parent-offspring trios at high coverage. Here we show that in our samples, with an average father’s age of 29.7, the average de novo mutation rate is 1.20×10−8 per nucleotide per generation. Most strikingly, the diversity in mutation rate of single-nucleotide polymorphism (SNP) is dominated by the age of the father at conception of the child. The effect is an increase of about 2 mutations per year. After accounting for random Poisson variation, father’s age is estimated to explain nearly all of the remaining variation in the de novo mutation counts. These observations shed light on the importance of the father’s age on the risk of diseases such as schizophrenia and autism.
doi:10.1038/nature11396
PMCID: PMC3548427  PMID: 22914163
5.  Similar decline in mortality rate of older persons with and without type 2 diabetes between 1993 and 2004 the Icelandic population-based Reykjavik and AGES-Reykjavik cohort studies 
BMC Public Health  2013;13:36.
Background
A decline in mortality rates due to cardiovascular diseases and all-cause mortality has led to increased life expectancy in the Western world in recent decades. At the same time, the prevalence of type 2 diabetes, a disease associated with a twofold excess risk of cardiovascular disease and mortality, has been increasing. The objective of this study was to estimate the secular trend of cardiovascular and all-cause mortality rates in two population-based cohorts of older persons, with and without type 2 diabetes, examined 11 years apart.
Methods
1506 participants (42% men) from the population-based Reykjavik Study, examined during 1991–1996 (median 1993), mean age 75.0 years, and 4814 participants (43% men) from the AGES-Reykjavik Study, examined during 2002–2006 (median 2004), mean age 77.2 years, age range in both cohorts 70–87 years. The main outcome measures were age-specific mortality rates due to cardiovascular disease and all causes, over two consecutive 5.7- and 5.3-year follow-up periods.
Results
A 32% decline in cardiovascular mortality rate and a 19% decline in all-cause mortality rate were observed between 1993 and 2004. The decline was greater in those with type 2 diabetes, as illustrated by the decline in the adjusted hazard ratio of cardiovascular mortality in individuals with diabetes compared to those without diabetes, from 1.88 (95% CI 1.24-2.85) in 1993 to 1.46 (95% CI 1.11-1.91) in 2004. We also observed a concurrent decrease in major cardiovascular risk factors in both those with and without diabetes. A higher proportion of persons with diabetes received glucose-lowering, hypertensive and lipid-lowering medication in 2004.
Conclusions
A decline in cardiovascular and all-cause mortality rates was observed in older persons during the period 1993–2004, in both those with and without type 2 diabetes. This decline may be partly explained by improvements in cardiovascular risk factors and medical treatment over the period studied. However, type 2 diabetes still persists as an independent risk factor for cardiovascular mortality.
doi:10.1186/1471-2458-13-36
PMCID: PMC3626863  PMID: 23320535
Cohort study; Type 2 diabetes; Older persons; Cardiovascular disease mortality; Reykjavik study; AGES-Reykjavik
6.  Distribution of Cortical Bone in the Femoral Neck and Hip Fracture: A Prospective Case-Control Analysis of 143 Incident Hip Fractures; the AGES-REYKJAVIK Study 
Bone  2011;48(6):1268-1276.
In this prospective nested case-control study we analyzed the circumferential differences in estimated cortical thickness (Est CTh) of the mid femoral neck as a risk factor for osteoporotic hip fractures in elderly women and men. Segmental QCT analysis of the mid femoral neck was applied to assess cortical thickness in anatomical quadrants. The superior region of the femoral neck was a stronger predictor for hip fracture than the inferior region, particularly in men. There were significant gender differences in Est CTh measurements in the control group but not in the case group. In multivariable analysis for risk of femoral neck (FN) fracture, Est CTh in the supero-anterior (SA) quadrant was significant in both women and men, and remained a significant predictor after adjustment for FN areal BMD (aBMD, dimensions g/cm2, DXA-like), (p=0.05 and p<0.0001, respectively). In conclusion, Est CTh in the SA quadrant best discriminated cases (n=143) from controls (n=298), especially in men. Cortical thinning superiorly in the hip might be of importance in determining resistance to fracture.
doi:10.1016/j.bone.2011.03.776
PMCID: PMC3129599  PMID: 21473947
cortical thickness; hip fracture; quantitative computed tomography; proximal femur; BMD
7.  A Systems Biology Approach to Drug Targets in Pseudomonas aeruginosa Biofilm 
PLoS ONE  2012;7(4):e34337.
Antibiotic resistance is an increasing problem in the health care system and we are in a constant race with evolving bacteria. Biofilm-associated growth is thought to play a key role in bacterial adaptability and antibiotic resistance. We employed a systems biology approach to identify candidate drug targets for biofilm-associated bacteria by imitating specific microenvironments found in microbial communities associated with biofilm formation. A previously reconstructed metabolic model of Pseudomonas aeruginosa (PA) was used to study the effect of gene deletion on bacterial growth in planktonic and biofilm-like environmental conditions. A set of 26 genes essential in both conditions was identified. Moreover, these genes have no homology with any human gene. While none of these genes were essential in only one of the conditions, we found condition-dependent genes, which could be used to slow growth specifically in biofilm-associated PA. Furthermore, we performed a double gene deletion study and obtained 17 combinations consisting of 21 different genes, which were conditionally essential. While most of the difference in double essential gene sets could be explained by different medium composition found in biofilm-like and planktonic conditions, we observed a clear effect of changes in oxygen availability on the growth performance. Eight gene pairs were found to be synthetic lethal in oxygen-limited conditions. These gene sets may serve as novel metabolic drug targets to combat particularly biofilm-associated PA. Taken together, this study demonstrates that metabolic modeling of human pathogens can be used to identify oxygen-sensitive drug targets and thus, that this systems biology approach represents a powerful tool to identify novel candidate antibiotic targets.
doi:10.1371/journal.pone.0034337
PMCID: PMC3327687  PMID: 22523548
8.  Unfavourable risk factors for type 2 diabetes mellitus are already apparent more than a decade before onset in a population-based study of older persons 
European Journal of Epidemiology  2009;24(6):307-314.
Aims
To evaluate midlife risk factors of developing type 2 diabetes mellitus (T2DM) in late life in a population-based study of older persons.
Methods
A cohort of 2251 persons, aged 65-96, participated in AGES-Reykjavik in 2002-2004; all attended the Reykjavik Study 26 years earlier, at the mean age of 50. Based on glucometabolic status in 2002-2004 the participants are divided into a normoglycemic control group (n=1695), an impaired fasting glucose (IFG) group (n=313) and T2DM group (n=243). Change in risk parameters from midlife is evaluated in these three groups.
Results
Since examined earlier 14.3% of men and 8.2% of women developed T2DM. A family history of diabetes was reported in 39.5% of T2DM compared to 19.3% in both IFG and normoglycemics. The T2DM and IFG groups currently have higher levels of fasting triglycerides, greater BMI and higher systolic blood pressure than normoglycemics and this difference was already apparent in midlife. In late life, two or more metabolic syndrome criteria are present in 60% of the T2DM groups compared to 25% in normoglycemic groups. T2DM with impaired cardiovascular health is more marked in women than men when compared with controls.
Conclusions
Family history and higher levels of BMI, TG and systolic blood pressure in midlife are associated with the development of T2DM in late life, suggesting risk can be evaluated long before onset. A continued rise in risk factors throughout life allows a scope for more aggressive measures in preventing or delaying development of T2DM and its effect on cardiovascular health.
doi:10.1007/s10654-009-9343-x
PMCID: PMC3268120  PMID: 19412572
Cohort study; epidemiology; Type 2 diabetes; older persons; long term risk evaluation of T2DM
9.  Effects of statin medication on mortality risk associated with type 2 diabetes in older persons: the population-based AGES-Reykjavik Study 
BMJ Open  2011;1(1):e000132.
Objective
To examine if the beneficial effect of statin medication on mortality seen in randomised clinical trials of type 2 diabetes applies equally to observational studies in the general population of older people.
Design
A prospective, population-based cohort study.
Setting
Reykjavik, Iceland.
Participants
5152 men and women from the Age, Gene/Environment Susceptibility-Reykjavik Study, mean age 77 years, range of 66–96 years.
Main outcome measure
Cardiovascular and all-cause mortalities and the RR of dying according to statin use and history of coronary heart disease (CHD) in persons with type 2 diabetes and those without diabetes with a median follow-up time of 5.3 years, until end of 2009.
Results
The prevalence of type 2 diabetes was 12.4% of which 35% used statins. Statin use was associated with a 50% (95% CI 8% to 72%) lower cardiovascular mortality and 53% (29% to 68%) lower all-cause mortalities in persons with diabetes. For those without diabetes, statin use was associated with a 16% (−24% to 43%) lower cardiovascular and 30% (11% to 46%) lower all-cause mortalities. Persons with diabetes using statins had a comparable risk of cardiovascular and all-cause mortality to that of the general population without diabetes. The effect was independent of the level of glycaemic control.
Conclusion
This observational study lends important support to existing data from randomised clinical trials. These data suggest that in the general population of older people with diabetes, statin medication markedly reduces the excess cardiovascular and all-cause mortality risk, irrespective of the presence or absence of coronary heart disease or glucose-lowering medication.
Article summary
Article focus
Clinical trials have shown that statin medication is beneficial for persons with diabetes as regards cardiovascular morbidity and mortality.
This is not well established, except within the rigours of randomised clinical studies.
Key messages
This population-based observational study of older individuals demonstrates that treatment with statins in persons with diabetes reduces cardiovascular mortality to a level comparable with that observed in those without diabetes.
The effect observed is of a magnitude comparable with that reported in randomised clinical trials.
Strengths and limitations of this study
A major strength of the study is the proportionally large national representation in this population-based cohort, the high participation rate and the comprehensive information on morbidity and mortality. The effect observed is of comparable magnitude to the effect reported in randomised clinical trials.
A limitation is the non-attendance of frail individuals in the study that may cause a possible bias towards more healthy individuals at baseline of this study. Non-attendees in the study have been shown, however, at earlier visits to have comparable levels of conventional cardiovascular risk factors. A limitation is the unavailability of dietary information for this analysis. A weakness in our study is the relatively low number of events during the 5-year follow-up. A limitation is the lack of glucose tolerance test for diagnosis of diabetes.
doi:10.1136/bmjopen-2011-000132
PMCID: PMC3191423  PMID: 22021772
Cohort study; type 2 diabetes; statins; older persons; cardiovascular disease mortality; AGES-Reykjavik
10.  Analysing the Large Decline in Coronary Heart Disease Mortality in the Icelandic Population Aged 25-74 between the Years 1981 and 2006 
PLoS ONE  2010;5(11):e13957.
Background
Coronary heart disease (CHD) mortality rates have been decreasing in Iceland since the 1980s. We examined how much of the decrease between 1981 and 2006 could be attributed to medical and surgical treatments and how much to changes in cardiovascular risk factors.
Methodology
The previously validated IMPACT CHD mortality model was applied to the Icelandic population. The data sources were official statistics, national quality registers, published trials and meta-analyses, clinical audits and a series of national population surveys.
Principal Findings
Between 1981 and 2006, CHD mortality rates in Iceland decreased by 80% in men and women aged 25 to 74 years, which resulted in 295 fewer deaths in 2006 than if the 1981 rates had persisted. Incidence of myocardial infarction (MI) decreased by 66% and resulted in some 500 fewer incident MI cases per year, which is a major determinant of possible deaths from MI. Based on the IMPACT model approximately 73% (lower and upper bound estimates: 54%–93%) of the mortality decrease was attributable to risk factor reductions: cholesterol 32%; smoking 22%; systolic blood pressure 22%, and physical inactivity 5% with adverse trends for diabetes (−5%), and obesity (−4%). Approximately 25% (lower and upper bound estimates: 8%–40%) of the mortality decrease was attributable to treatments in individuals: secondary prevention 8%; heart failure treatments 6%; acute coronary syndrome treatments 5%; revascularisation 3%; hypertension treatments 2%, and statins 0.5%.
Conclusions
Almost three quarters of the large CHD mortality decrease in Iceland between 1981 and 2006 was attributable to reductions in major cardiovascular risk factors in the population. These findings emphasize the value of a comprehensive prevention strategy that promotes tobacco control and a healthier diet to reduce incidence of MI and highlights the potential importance of effective, evidence based medical treatments.
doi:10.1371/journal.pone.0013957
PMCID: PMC2980472  PMID: 21103050
11.  European Bone Mineral Density Loci Are Also Associated with BMD in East-Asian Populations 
PLoS ONE  2010;5(10):e13217.
Most genome-wide association (GWA) studies have focused on populations of European ancestry with limited assessment of the influence of the sequence variants on populations of other ethnicities. To determine whether markers that we have recently shown to associate with Bone Mineral Density (BMD) in Europeans also associate with BMD in East-Asians we analysed 50 markers from 23 genomic loci in samples from Korea (n = 1,397) and two Chinese Hong Kong sample sets (n = 3,869 and n = 785). Through this effort we identified fourteen loci that associated with BMD in East-Asian samples using a false discovery rate (FDR) of 0.05; 1p36 (ZBTB40, P = 4.3×10−9), 1p31 (GPR177, P = 0.00012), 3p22 (CTNNB1, P = 0.00013), 4q22 (MEPE, P = 0.0026), 5q14 (MEF2C, P = 1.3×10−5), 6q25 (ESR1, P = 0.0011), 7p14 (STARD3NL, P = 0.00025), 7q21 (FLJ42280, P = 0.00017), 8q24 (TNFRSF11B, P = 3.4×10−5), 11p15 (SOX6, P = 0.00033), 11q13 (LRP5, P = 0.0033), 13q14 (TNFSF11, P = 7.5×10−5), 16q24 (FOXL1, P = 0.0010) and 17q21 (SOST, P = 0.015). Our study marks an early effort towards the challenge of cataloguing bone density variants shared by many ethnicities by testing BMD variants that have been established in Europeans, in East-Asians.
doi:10.1371/journal.pone.0013217
PMCID: PMC2951352  PMID: 20949110
12.  Genome-Wide Meta-Analysis for Serum Calcium Identifies Significantly Associated SNPs near the Calcium-Sensing Receptor (CASR) Gene 
PLoS Genetics  2010;6(7):e1001035.
Calcium has a pivotal role in biological functions, and serum calcium levels have been associated with numerous disorders of bone and mineral metabolism, as well as with cardiovascular mortality. Here we report results from a genome-wide association study of serum calcium, integrating data from four independent cohorts including a total of 12,865 individuals of European and Indian Asian descent. Our meta-analysis shows that serum calcium is associated with SNPs in or near the calcium-sensing receptor (CASR) gene on 3q13. The top hit with a p-value of 6.3×10-37 is rs1801725, a missense variant, explaining 1.26% of the variance in serum calcium. This SNP had the strongest association in individuals of European descent, while for individuals of Indian Asian descent the top hit was rs17251221 (p = 1.1×10-21), a SNP in strong linkage disequilibrium with rs1801725. The strongest locus in CASR was shown to replicate in an independent Icelandic cohort of 4,126 individuals (p = 1.02×10-4). This genome-wide meta-analysis shows that common CASR variants modulate serum calcium levels in the adult general population, which confirms previous results in some candidate gene studies of the CASR locus. This study highlights the key role of CASR in calcium regulation.
Author Summary
Calcium levels in blood serum play an important role in many biological processes. The regulation of serum calcium is under strong genetic control. This study describes the first meta-analysis of a genome-wide association study from four cohorts totaling 12,865 participants of European and Indian Asian descent. Confirming previous results in some candidate gene studies, we find that common polymorphisms at the calcium-sensing receptor (CASR) gene locus are associated with serum calcium concentrations. We show that CASR variants give rise to the strongest signals associated with serum calcium levels in both European and Indian Asian populations, while no other locus reaches genome-wide significance. Our results show that CASR is a key player in genetic regulation of serum calcium in the adult general population.
doi:10.1371/journal.pgen.1001035
PMCID: PMC2908705  PMID: 20661308
13.  Markers of Dysglycaemia and Risk of Coronary Heart Disease in People without Diabetes: Reykjavik Prospective Study and Systematic Review 
PLoS Medicine  2010;7(5):e1000278.
Background
Associations between circulating markers of dysglycaemia and coronary heart disease (CHD) risk in people without diabetes have not been reliably characterised. We report new data from a prospective study and a systematic review to help quantify these associations.
Methods and Findings
Fasting and post-load glucose levels were measured in 18,569 participants in the population-based Reykjavik study, yielding 4,664 incident CHD outcomes during 23.5 y of mean follow-up. In people with no known history of diabetes at the baseline survey, the hazard ratio (HR) for CHD, adjusted for several conventional risk factors, was 2.37 (95% CI 1.79–3.14) in individuals with fasting glucose ≥7.0 mmol/l compared to those <7 mmol/l. At fasting glucose values below 7 mmol/l, adjusted HRs were 0.95 (0.89–1.01) per 1 mmol/l higher fasting glucose and 1.03 (1.01–1.05) per 1 mmol/l higher post-load glucose. HRs for CHD risk were generally modest and nonsignificant across tenths of glucose values below 7 mmol/l. We did a meta-analysis of 26 additional relevant prospective studies identified in a systematic review of Western cohort studies that recorded fasting glucose, post-load glucose, or glycated haemoglobin (HbA1c) levels. In this combined analysis, in which participants with a self-reported history of diabetes and/or fasting blood glucose ≥7 mmol/l at baseline were excluded, relative risks for CHD, adjusted for several conventional risk factors, were: 1.06 (1.00–1.12) per 1 mmol/l higher fasting glucose (23 cohorts, 10,808 cases, 255,171 participants); 1.05 (1.03–1.07) per 1 mmol/l higher post-load glucose (15 cohorts, 12,652 cases, 102,382 participants); and 1.20 (1.10–1.31) per 1% higher HbA1c (9 cohorts, 1639 cases, 49,099 participants).
Conclusions
In the Reykjavik Study and a meta-analysis of other Western prospective studies, fasting and post-load glucose levels were modestly associated with CHD risk in people without diabetes. The meta-analysis suggested a somewhat stronger association between HbA1c levels and CHD risk.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Among people diagnosed with type 2 diabetes mellitus (the commonest type of diabetes worldwide), poor management or lack of appropriate treatment can lead to long-term complications resulting from persistently high sugar levels in the blood. The long-term complications of type 2 diabetes are generally divided into two main groups: microvascular problems (such as nerve damage, kidney disease, and eye disorders), and macrovascular disease (such as heart disease, strokes, and peripheral vascular disease). A major goal of diabetes treatment is to keep glucose control as normal as possible through diet, weight control, exercise, and pharmacological treatments. However, it is unclear whether the link between high blood sugar and macrovascular disease (principally heart disease and strokes) also holds for people who have slightly higher than normal blood sugar levels, but in whom this level does not reach the diabetic threshold. Some previous research studies have suggested that a continuous relationship exists between blood sugar level and the risk of heart disease across the spectrum, i.e., below the diabetic threshold as well as above it. If such a relationship were confirmed this might have important implications for the management of high blood sugar levels even among people who would not normally meet the usual definition for a diagnosis of diabetes (the “diabetic threshold”).
Why Was This Study Done?
Studies which examine the risk of serious, but relatively common, outcomes (such as a nonfatal heart attack or fatal heart disease), often suffer from insufficient statistical power: a large number of participants need to be recruited, and followed up over a long time, to find out whether certain factors measured at baseline (e.g., fasting glucose) are indeed associated with a particular outcome (e.g., heart attack) or not during follow up. Given the inconclusive nature of some previous studies in this area, the researchers who carried out this work wanted to gather evidence from a large prospective cohort, and a reappraisal of all existing evidence, in relation to the possible link between high blood sugar and risk of heart disease in people without diabetes.
What Did the Researchers Do and Find?
In this study, the researchers report results from a prospective population-based study (in which participants are followed forward in time) from Reykjavik, Iceland. In the study, men and women without history of heart disease aged between 31 and 57 in 1966 were first invited to join the cohort, and were followed forward in time using national registries that recorded deaths (and causes of death), and incidence of heart disease. A total of 8,888 male and 9,681 female participants were recruited. At baseline, laboratory measurements were taken to record blood sugar levels using two different methods: fasting blood glucose and post-load glucose. Among the group of participants, 4,664 people were recorded as having either a nonfatal heart attack or fatal heart disease, during approximately 23 years of follow-up. In addition, the researchers attempted to identify from the published medical literature previous prospective studies conducted in Western populations that had looked at the association between blood sugar levels and risk of coronary heart disease. They requested, and obtained, re-analyses of data conducted in accordance with a common protocol for most of the identified studies and then analysed these, together with the results of the Reykjavik cohort, to produce a summary estimate (meta-analysis) of the association between blood sugar levels and risk of coronary heart disease in people without diabetes.
In the Reykjavik cohort, the researchers confirmed an increased risk of coronary heart disease among individuals with blood sugar above the diabetic threshold, as compared to those below it. However, when they looked at blood sugar in people below the diabetic threshold, they found no evidence that higher levels were strongly linked with greater risk of coronary heart disease. This held for both methods of measuring blood sugar levels (fasting and post-load).
In the meta-analysis, the researchers obtained data for 27 different studies, comprising 303,961 participants and 16,982 cases of heart disease. In this meta-analysis, very small increases in risk of heart disease were found with higher levels of blood sugar, when measured using fasting blood glucose or post-load glucose. However, studies using glycated haemoglobin (a measure of average sugar levels over the past 1–3 months or so) found this measure to be associated with a somewhat higher risk of heart disease.
What Do these Findings Mean?
In this prospective cohort and wider meta-analysis, the researchers did not find evidence of a strong or continuous association between blood sugar levels and risk of heart disease amongst people without diabetes. The prospective study, and analysis of other cohorts, was large, but only looked at participants of European decent, so it is not clear whether the findings will also hold for non-European groups.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000278.
Information is available from the US National Diabetes Information Clearinghouse about diabetes, heart disease, and stroke
Centers for Disease Control provides information for the public and professionals about diabetes on their diabetes minisite
Medline Plus encyclopedia has an entry about coronary heart disease
doi:10.1371/journal.pmed.1000278
PMCID: PMC2876150  PMID: 20520805
14.  Twenty bone mineral density loci identified by large-scale meta-analysis of genome-wide association studies 
Nature genetics  2009;41(11):1199-1206.
Bone mineral density (BMD) is a heritable complex trait used in the clinical diagnosis of osteoporosis and the assessment of fracture risk. We performed meta-analysis of five genome-wide association studies of femoral neck and lumbar spine BMD in 19,195 subjects of Northern European descent. We identified 20 loci reaching genome-wide significance (GWS; P<5×10−8), of which 13 map to new regions including 1p31.3 (GPR177), 2p21 (SPTBN1), 3p22 (CTNNB1), 4q21.1 (MEPE), 5q14 (MEF2C), 7p14 (STARD3NL), 7q21.3 (FLJ42280), 11p11.2 (LRP4; ARHGAP1; F2), 11p14.1 (DCDC5), 11p15 (SOX6), 16q24 (FOXL1), 17q21 (HDAC5) and 17q12 (CRHR1). The metaanalysis also confirmed at GWS level, seven known BMD loci on 1p36 (ZBTB40), 6q25 (ESR1), 8q24 (TNFRSF11B), 11q13.4 (LRP5), 12q13 (SP7), 13q14 (TNFSF11), and 18q21 (TNFRSF11A). The numerous SNPs associated with BMD map to genes in signaling pathways with relevance to bone metabolism, and highlight the complex genetic architecture underlying osteoporosis and BMD variation.
doi:10.1038/ng.446
PMCID: PMC2783489  PMID: 19801982
15.  Collaborative Meta-analysis: Associations of 150 Candidate Genes With Osteoporosis and Osteoporotic Fracture 
Annals of internal medicine  2009;151(8):528-537.
Background
Osteoporosis is a highly heritable trait. Many candidate genes have been proposed as being involved in regulating bone mineral density (BMD). Few of these findings have been replicated in independent studies.
Objective
To assess the relationship between BMD and fracture and all common single-nucleotide polymorphisms (SNPs) in previously proposed osteoporosis candidate genes.
Design
Large-scale meta-analysis of genome-wide association data.
Setting
5 international, multicenter, population-based studies.
Participants
Data on BMD were obtained from 19 195 participants (14 277 women) from 5 populations of European origin. Data on fracture were obtained from a prospective cohort (n = 5974) from the Netherlands.
Measurements
Systematic literature review using the Human Genome Epidemiology Navigator identified autosomal genes previously evaluated for association with osteoporosis. We explored the common SNPs arising from the haplotype map of the human genome (HapMap) across all these genes. BMD at the femoral neck and lumbar spine was measured by dual-energy x-ray absorptiometry. Fractures were defined as clinically apparent, site-specific, validated nonvertebral and vertebral low-energy fractures.
Results
150 candidate genes were identified and 36 016 SNPs in these loci were assessed. SNPs from 9 gene loci (ESR1, LRP4, ITGA1, LRP5, SOST, SPP1, TNFRSF11A, TNFRSF11B, and TN-FSF11) were associated with BMD at either site. For most genes, no SNP was statistically significant. For statistically significant SNPs (n = 241), effect sizes ranged from 0.04 to 0.18 SD per allele. SNPs from the LRP5, SOST, SPP1, and TNFRSF11A loci were significantly associated with fracture risk; odds ratios ranged from 1.13 to 1.43 per allele. These effects on fracture were partially independent of BMD at SPP1 and SOST.
Limitation
Only common polymorphisms in linkage disequilibrium with SNPs in HapMap could be assessed, and previously reported associations for SNPs in some candidate genes could not be excluded.
Conclusion
In this large-scale collaborative genome-wide meta-analysis, 9 of 150 candidate genes were associated with regulation of BMD, 4 of which also significantly affected risk for fracture. However, most candidate genes had no consistent association with BMD.
Primary Funding Source
European Union, Netherlands Organisation for Scientific Research, Research Institute for Diseases in the Elderly, Netherlands Genomics Initiative, Wellcome Trust, National Institutes of Health, deCODE Genetics, and Canadian Institutes of Health Research.
PMCID: PMC2842981  PMID: 19841454
16.  Age, Gene/Environment Susceptibility – Reykjavik Study: Multidisciplinary Applied Phenomics 
American journal of epidemiology  2007;165(9):1076-1087.
Anticipating the sequencing of the human genome and description of the human proteome, the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik) was initiated in 2002. AGES-Reykjavik was designed to examine risk factors, including genetic susceptibility and gene/environment interaction, in relation to disease and disability in old age. The study is multidisciplinary, providing detailed phenotypes related to the cardiovascular, neurocognitive (including sensory), and musculoskeletal systems, and to body composition and metabolic regulation. Relevant quantitative traits, subclinical indicators of disease, and medical diagnoses are identified using biomarkers, imaging, and other physiologic indicators. The AGES-Reykjavik sample is drawn from an established population-based cohort, the Reykjavik Study. This cohort of men and women born between 1907 and 1935 has been followed in Iceland since 1967 by the Icelandic Heart Association. The AGES-Reykjavik cohort, with cardiovascular risk factor assessments earlier in life and detailed late life phenotypes of quantitative traits, will create a comprehensive study of aging nested in a relatively genetically homogeneous older population. This approach should facilitate identification of genetic factors that contribute to healthy aging as well as the chronic conditions common in old age.
doi:10.1093/aje/kwk115
PMCID: PMC2723948  PMID: 17351290
Aging; Population Genetics; Phenotype; Epidemiology; Cognition; Cardiovascular Disease; Osteoporosis; Body composition
17.  Linkage of Osteoporosis to Chromosome 20p12 and Association to BMP2 
PLoS Biology  2003;1(3):e69.
Osteoporotic fractures are a major cause of morbidity and mortality in ageing populations. Osteoporosis, defined as low bone mineral density (BMD) and associated fractures, have significant genetic components that are largely unknown. Linkage analysis in a large number of extended osteoporosis families in Iceland, using a phenotype that combines osteoporotic fractures and BMD measurements, showed linkage to Chromosome 20p12.3 (multipoint allele-sharing LOD, 5.10; p value, 6.3 × 10−7), results that are statistically significant after adjusting for the number of phenotypes tested and the genome-wide search. A follow-up association analysis using closely spaced polymorphic markers was performed. Three variants in the bone morphogenetic protein 2 (BMP2) gene, a missense polymorphism and two anonymous single nucleotide polymorphism haplotypes, were determined to be associated with osteoporosis in the Icelandic patients. The association is seen with many definitions of an osteoporotic phenotype, including osteoporotic fractures as well as low BMD, both before and after menopause. A replication study with a Danish cohort of postmenopausal women was conducted to confirm the contribution of the three identified variants. In conclusion, we find that a region on the short arm of Chromosome 20 contains a gene or genes that appear to be a major risk factor for osteoporosis and osteoporotic fractures, and our evidence supports the view that BMP2 is at least one of these genes.
Genetic analysis of Icelandic families and a replication study in a Danish population provide evidence that variation in the gene BMP2 might contribute to osteoporosis
doi:10.1371/journal.pbio.0000069
PMCID: PMC270020  PMID: 14691541

Results 1-17 (17)