PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Risk factors of type 2 diabetes in population of Jammu and Kashmir, India 
Journal of Biomedical Research  2013;27(5):372-379.
We sought to identify risk factors for type 2 diabetes (T2D) in Jammu and Kashmir populations, India. A total of 424 diabetic and 226 non-diabetic subjects from Jammu, and 161 diabetic and 100 non-diabetic subjects from Kashmir were screened for various parameters including fasting blood glucose level, 2 hour glucose level, urea, creatinine, triglycerides, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein (VLDL-C), uric acid, systolic and diastolic blood pressure level. We found that subjects aged 40-49 years had the highest rate of diabetes, with family income playing not much of a role. Kashmiri migrants or populations with rapid cultural, environmental, social or lifestyle change along with reduced physical activity, obesity and unhealthy lifestyle (smoking and alcohol consumption) were found to have higher rates of diabetes. High blood glucose, triglycerides and low HDL-C levels were found to be contributing to disease outcome. High blood pressure also contributed to a higher risk of developing T2D. Our study supports earlier reports confirming the contribution of comfortable life style, Western dietary habits and rapid life style change along with many other factors to the prevalence of diabetes. This may contribute to the epidemic proportion of diabetes in Jammu and Kashmir. Early diagnosis and routine screening for undiagnosed diabetes in obese subjects and subjects with parental diabetes history is expected to decrease the burden of chronic diabetic complications worldwide.
doi:10.7555/JBR.27.20130043
PMCID: PMC3783822  PMID: 24086170
type 2 diabetes; north India; life style; kashmiri migrants; body mass index
2.  Replication of Type 2 Diabetes Candidate Genes Variations in Three Geographically Unrelated Indian Population Groups 
PLoS ONE  2013;8(3):e58881.
Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, p<5.5E−04) with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E−08) in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR)<1.38 increased to OR = 2.44, (95%CI = 1.67–3.59) when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.
doi:10.1371/journal.pone.0058881
PMCID: PMC3602599  PMID: 23527042
3.  Association between Common Variants near LBX1 and Adolescent Idiopathic Scoliosis Replicated in the Chinese Han Population 
PLoS ONE  2013;8(1):e53234.
Background
Adolescent idiopathic scoliosis (AIS) is one of the most common spinal deformities found in adolescent populations. Recently, a genome-wide association study (GWAS) in a Japanese population indicated that three single nucleotide polymorphisms (SNPs), rs11190870, rs625039 and rs11598564, all located near the LBX1 gene, may be associated with AIS susceptibility [1]. This study suggests a novel AIS predisposition candidate gene and supports the hypothesis that somatosensory functional disorders could contribute to the pathogenesis of AIS. These findings warrant replication in other populations.
Methodology/Principal Findings
First, we conducted a case-control study consisting of 953 Chinese Han individuals from southern China (513 patients and 440 healthy controls), and the three SNPs were all found to be associated with AIS predisposition. The ORs were observed as 1.49 (95% CI 1.23–1.80, P = 5.09E-5), 1.70 (95% CI 1.42–2.04, P = 1.17E-8) and 1.52 (95% CI 1.27–1.83, P = 5.54E-6) for rs625039, rs11190870 and rs11598564, respectively. Second, a case-only study including a subgroup of AIS patients (N = 234) was performed to determine the effects of these variants on the severity of the condition. However, we did not find any association between these variants and the severity of curvature.
Conclusion
This study shows that the genetic variants near the LBX1 gene are associated with AIS susceptibility in Chinese Han population. It successfully replicates the results of the GWAS, which was performed in a Japanese population.
doi:10.1371/journal.pone.0053234
PMCID: PMC3537668  PMID: 23308168
4.  The Interactive Effect of SIRT1 Promoter Region Polymorphism on Type 2 Diabetes Susceptibility in the North Indian Population 
PLoS ONE  2012;7(11):e48621.
Our previous studies have implicated genes mainly involved in the activity of pancreatic β cells in type 2 diabetes (T2D) susceptibility in the North Indian population. Recent literature on the role of SIRT1 as a potential master switch modulating insulin secretion and regulating gene expression in pancreatic β cells has warranted an evaluation of SIRT1 promoter region polymorphisms in the North Indian population, which is the main focus of the present study. 1542 samples (692 T2D patients and 850 controls) were sequenced for the 1.46 kb region upstream the translation start site of the SIRT1 gene. We performed a functional characterization of the SIRT1 promoter region polymorphisms using luciferase assay and observed a single-nucleotide polymorphism (SNP), rs12778366, in association with SIRT1 expression. We propose that TT, the high-expressing genotype of SNP rs12778366 in the SIRT1 promoter region and present in >80% of the North Indian population, was favored under conditions of feast-famine cycles in evolution, which has turned out to be a cause of concern in the present sedentary lifestyle under ad libitum conditions. Case-control association analysis did not implicate rs12778366 in T2DM per se in the studied population. However, our earlier reported risk genotype combinations of mt-ND3, PGC1α, and UCP2-866, when compared with the protective genotype combinations, in the background of the high-expressing TT genotype of SIRT1 SNP rs12778366, showed a very high additive risk [corrected odd ratio (OR) = 8.91; p = 6.5×10−11]. The risk level was considerably low in the genotype backgrounds of TX (OR = 6.68; p = 2.71×10−12) and CX (OR = 3.74; p = 4.0×10−3). In addition, we screened other reported T2D-associated polymorphisms: PIK3R1 rs3730089, IRS1 rs1801278, and PPP1R3 rs1799999, which did not show any significant association in North Indian population. The present paper emphasizes the importance of gene interactions in the biological pathways of T2D, a complex lifestyle disease.
doi:10.1371/journal.pone.0048621
PMCID: PMC3486794  PMID: 23133645
5.  Normal Leptin Expression, Lower Adipogenic Ability, Decreased Leptin Receptor and Hyposensitivity to Leptin in Adolescent Idiopathic Scoliosis 
PLoS ONE  2012;7(5):e36648.
Leptin has been suggested to play a role in the etiology of Adolescent Idiopathic Scoliosis (AIS), however, the leptin levels in AIS girls are still a discrepancy, and no in vitro study of leptin in AIS is reported. We took a series of case-control studies, trying to understand whether Leptin gene polymorphisms are involved in the etiology of the AIS or the change in leptin level is a secondary event, to assess the level of leptin receptor, and to evaluate the differences of response to leptin between AIS cases and controls. We screened all exons of Leptin gene in 45 cases and 45 controls and selected six tag SNPs to cover all the observed variations. Association analysis in 446 AIS patients and 550 healthy controls showed no association between the polymorphisms of Leptin gene and susceptibility/severity to AIS. Moreover, adipogenesis assay of bone mesenchymal stem cells (MSCs) suggested that the adipogenic ability of MSCs from AIS girls was lower than controls. After adjusting the differentiation rate, expressions of leptin and leptin receptor were similar between two groups. Meanwhile, osteogenesis assay of MSC showed the leptin level was similar after adjusting the differentiation rate, but the leptin receptor level was decreased in induced AIS osteoblasts. Immunocytochemistry and western blot analysis showed less leptin receptors expressed in AIS group. Furthermore, factorial designed studies with adipogenesis and osteogenesis revealed that the MSCs from patients have no response to leptin treatment. Our results suggested that Leptin gene variations are not associated with AIS and low serum leptin probably is a secondary outcome which may be related to the low capability of adipogenesis in AIS. The decreased leptin receptor levels may lead to the hyposensitivity to leptin. These findings implied that abnormal peripheral leptin signaling plays an important role in the pathological mechanism of AIS.
doi:10.1371/journal.pone.0036648
PMCID: PMC3352937  PMID: 22615788
6.  Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes 
Human Molecular Genetics  2011;20(7):1456-1466.
Adolescent idiopathic scoliosis (AIS) is an unexplained and common spinal deformity seen in otherwise healthy children. Its pathophysiology is poorly understood despite intensive investigation. Although genetic underpinnings are clear, replicated susceptibility loci that could provide insight into etiology have not been forthcoming. To address these issues, we performed genome-wide association studies (GWAS) of ∼327 000 single nucleotide polymorphisms (SNPs) in 419 AIS families. We found strongest evidence of association with chromosome 3p26.3 SNPs in the proximity of the CHL1 gene (P < 8 × 10−8 for rs1400180). We genotyped additional chromosome 3p26.3 SNPs and tested replication in two follow-up case–control cohorts, obtaining strongest results when all three cohorts were combined (rs10510181 odds ratio = 1.49, 95% confidence interval = 1.29–1.73, P = 2.58 × 10−8), but these were not confirmed in a separate GWAS. CHL1 is of interest, as it encodes an axon guidance protein related to Robo3. Mutations in the Robo3 protein cause horizontal gaze palsy with progressive scoliosis (HGPPS), a rare disease marked by severe scoliosis. Other top associations in our GWAS were with SNPs in the DSCAM gene encoding an axon guidance protein in the same structural class with Chl1 and Robo3. We additionally found AIS associations with loci in CNTNAP2, supporting a previous study linking this gene with AIS. Cntnap2 is also of functional interest, as it interacts directly with L1 and Robo class proteins and participates in axon pathfinding. Our results suggest the relevance of axon guidance pathways in AIS susceptibility, although these findings require further study, particularly given the apparent genetic heterogeneity in this disease.
doi:10.1093/hmg/ddq571
PMCID: PMC3049353  PMID: 21216876
7.  TDT-HET: A new transmission disequilibrium test that incorporates locus heterogeneity into the analysis of family-based association data 
BMC Bioinformatics  2012;13:13.
Background
Locus heterogeneity is one of the most documented phenomena in genetics. To date, relatively little work had been done on the development of methods to address locus heterogeneity in genetic association analysis. Motivated by Zhou and Pan's work, we present a mixture model of linked and unlinked trios and develop a statistical method to estimate the probability that a heterozygous parent transmits the disease allele at a di-allelic locus, and the probability that any trio is in the linked group. The purpose here is the development of a test that extends the classic transmission disequilibrium test (TDT) to one that accounts for locus heterogeneity.
Results
Our simulations suggest that, for sufficiently large sample size (1000 trios) our method has good power to detect association even the proportion of unlinked trios is high (75%). While the median difference (TDT-HET empirical power - TDT empirical power) is approximately 0 for all MOI, there are parameter settings for which the power difference can be substantial. Our multi-locus simulations suggest that our method has good power to detect association as long as the markers are reasonably well-correlated and the genotype relative risk are larger. Results of both single-locus and multi-locus simulations suggest our method maintains the correct type I error rate.
Finally, the TDT-HET statistic shows highly significant p-values for most of the idiopathic scoliosis candidate loci, and for some loci, the estimated proportion of unlinked trios approaches or exceeds 50%, suggesting the presence of locus heterogeneity.
Conclusions
We have developed an extension of the TDT statistic (TDT-HET) that allows for locus heterogeneity among coded trios. Benefits of our method include: estimates of parameters in the presence of heterogeneity, and reasonable power even when the proportion of linked trios is small. Also, we have extended multi-locus methods to TDT-HET and have demonstrated that the empirical power may be high to detect linkage. Last, given that we obtain PPBs, we conjecture that the TDT-HET may be a useful method for correctly identifying linked trios. We anticipate that researchers will find this property increasingly useful as they apply next-generation sequencing data in family based studies.
doi:10.1186/1471-2105-13-13
PMCID: PMC3292499  PMID: 22264315
8.  A novel subgroup Q5 of human Y-chromosomal haplogroup Q in India 
Background
Y-chromosomal haplogroup (Y-HG) Q is suggested to originate in Asia and represent recent founder paternal Native American radiation into the Americas. This group is delineated into Q1, Q2 and Q3 subgroups defined by biallelic markers M120, M25/M143 and M3, respectively. Recently, a novel subgroup Q4 has been identified which is defined by bi-allelic marker M346, representing HG Q (0.41%, 3/728) in Indian population. With scanty details of HG Q in Asia, especially India, it was pertinent to explore the status of the Y-HG Q in Indian population to gather an insight to determine the extent of diversity within this region.
Results
We observed 15/630 (2.38%) Y-HG Q individuals in India with an ancestral state at M120, M25, M3 and M346 markers, indicating an absence of already known Q1, Q2, Q3 and Q4 sub-haplogroups. Interestingly, we further observed a novel 4 bp deletion/insertion polymorphism (ss4 bp, rs41352448) at 72,314 position of human arylsulfatase D pseudogene, defining a novel sub-lineage Q5 (in 5/15 individuals, i.e., 33.3 % of the observed Y-HG Q) with distributions independent of the social, cultural, linguistic and geographical affiliations in India.
Conclusion
The study adds another sublineage Q5 in the already existing arrangement of Y-HG Q in literature. It was quite interesting to observe an ancestral state Q* and a novel sub-branch Q5, not reported elsewhere, in Indian subcontinent, though in low frequency. A novel subgroup Q4 was identified recently which is also restricted to Indian subcontinent. The most plausible explanation for these observations could be an ancestral migration of individuals bearing ancestral lineage Q* to Indian subcontinent followed by an autochthonous differentiation to Q4 and Q5 sublineages later on. However, other explanations of, either the presence of both the sub haplogroups (Q4 and Q5) in ancestral migrants or recent migrations from central Asia, cannot be ruled out till the distribution and diversity of these subgroups is explored extensively in Central Asia and other regions.
doi:10.1186/1471-2148-7-232
PMCID: PMC2258157  PMID: 18021436

Results 1-8 (8)