PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (74)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Modification of Multiple Sclerosis Phenotypes by African Ancestry at HLA 
Archives of neurology  2009;66(2):226-233.
Background
In those with multiple sclerosis (MS), African American individuals have a more severe disease course, an older age at onset, and more often have clinical manifestations restricted to the optic nerves and spinal cord (opticospinal MS) than white persons.
Objective
To determine whether genetic variation influences clinical MS patterns.
Design
Retrospective multicenter cohort study.
Participants
Six hundred seventy-three African American and 717 white patients with MS.
Main Outcome Measures
Patients with MS were geno-typed for HLA-DRB1 and HLA-DQB1 alleles. The proportion of European ancestry at HLA was estimated by genotyping single-nucleotide polymorphisms with known significant frequency differences in West African and European populations. These genotypes were correlated with the opticospinal disease phenotype, disability measures, and age at onset.
Results
Subjects with DRB1*15 alleles were twice as likely to have typical MS rather than opticospinal MS (P = .001). Of the subjects with opticospinal MS or a history of recurrent transverse myelitis who were seropositive for anti–aquaporin 4 antibodies (approximately 5%), none carried DRB1*15 alleles (P = .008). Independently of DRB1* 15, African ancestry at HLA correlated with disability as measured by the Multiple Sclerosis Severity Score (P < .001) andriskof cane dependency (hazard ratio, 1.36; P < .001); DRB1*15 alleles were associated with a 2.1-year earlier age at onset (P < .001).
Conclusions
These data indicate that the role of HLA in MS is not limited to disease susceptibility but that genes embedded in this locus also influence clinical outcomes.
doi:10.1001/archneurol.2008.541
PMCID: PMC4334456  PMID: 19204159
2.  Genetic history of an archaic hominin group from Denisova Cave in Siberia 
Nature  2010;468(7327):1053-1060.
Using DNA extracted from a finger bone found in Denisova Cave in southern Siberia, we have sequenced the genome of an archaic hominin to about 1.9-fold coverage. This individual is from a group that shares a common origin with Neanderthals. This population was not involved in the putative gene flow from Neanderthals into Eurasians; however, the data suggest that it contributed 4–6% of its genetic material to the genomes of present-day Melanesians. We designate this hominin population ‘Denisovans’ and suggest that it may have been widespread in Asia during the Late Pleistocene epoch. A tooth found in Denisova Cave carries a mitochondrial genome highly similar to that of the finger bone. This tooth shares no derived morphological features with Neanderthals or modern humans, further indicating that Denisovans have an evolutionary history distinct from Neanderthals and modern humans.
doi:10.1038/nature09710
PMCID: PMC4306417  PMID: 21179161
3.  Is the Observed Association Between Dairy Intake and Fibroids in African Americans Explained by Genetic Ancestry? 
American Journal of Epidemiology  2013;178(7):1114-1119.
Uterine leiomyomata are a major source of gynecological morbidity and are 2–3 times more prevalent in African Americans than European Americans. In an earlier report, we found that dairy intake was inversely associated with uterine leiomyomata among African Americans. Because African Americans are more likely to have lactose intolerance and avoid dairy products, the observed association might have been confounded by genetic ancestry. This report reevaluates the dairy-uterine leiomyomata association after accounting for genetic ancestry among 1,968 cases and 2,183 noncases from the Black Women's Health Study (1997–2007). Dairy intake was estimated by using food frequency questionnaires in 1995 and 2001. Percent European ancestry was estimated by using a panel of ancestry informative markers. Incidence rate ratios and 95% confidence intervals were estimated by using Cox regression, with adjustment for potential confounders and percent European ancestry. Incidence rate ratios comparing 1, 2, 3, and ≥4 servings/day with <1 serving/day of dairy products were 0.95 (95% confidence interval (CI): 0.85, 1.06), 0.75 (95% CI: 0.61, 0.92), 0.77 (95% CI: 0.57, 1.04), and 0.59 (95% CI: 0.41, 0.86), respectively (Ptrend = 0.0003). These effect estimates were similar to those obtained without control for ancestry. The findings suggest that the observed inverse association between dairy consumption and uterine leiomyomata in African Americans is not explained by percent European ancestry.
doi:10.1093/aje/kwt091
PMCID: PMC3857926  PMID: 23825169
African Americans; dairy products; genetic ancestry; leiomyoma; prospective studies
4.  The landscape of Neandertal ancestry in present-day humans 
Nature  2014;507(7492):354-357.
Analyses of Neandertal genomes have revealed that Neandertals have contributed genetic variants to modern humans1–2. The antiquity of Neandertal gene flow into modern humans means that regions that derive from Neandertals in any one human today are usually less than a hundred kilobases in size. However, Neandertal haplotypes are also distinctive enough that several studies have been able to detect Neandertal ancestry at specific loci1,3–8. Here, we have systematically inferred Neandertal haplotypes in the genomes of 1,004 present-day humans12. Regions that harbor a high frequency of Neandertal alleles in modern humans are enriched for genes affecting keratin filaments suggesting that Neandertal alleles may have helped modern humans adapt to non-African environments. Neandertal alleles also continue to shape human biology, as we identify multiple Neandertal-derived alleles that confer risk for disease. We also identify regions of millions of base pairs that are nearly devoid of Neandertal ancestry and enriched in genes, implying selection to remove genetic material derived from Neandertals. Neandertal ancestry is significantly reduced in genes specifically expressed in testis, and there is an approximately 5-fold reduction of Neandertal ancestry on chromosome X, which is known to harbor a disproportionate fraction of male hybrid sterility genes20–22. These results suggest that part of the reduction in Neandertal ancestry near genes is due to Neandertal alleles that reduced fertility in males when moved to a modern human genetic background.
doi:10.1038/nature12961
PMCID: PMC4072735  PMID: 24476815
5.  The complete genome sequence of a Neandertal from the Altai Mountains 
Nature  2013;505(7481):43-49.
We present a high-quality genome sequence of a Neandertal woman from Siberia. We show that her parents were related at the level of half siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neandertal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neandertals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high quality Neandertal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neandertals and Denisovans.
doi:10.1038/nature12886
PMCID: PMC4031459  PMID: 24352235
6.  Analysis of Latino populations from GALA and MEC studies reveals genomic loci with biased local ancestry estimation 
Bioinformatics  2013;29(11):1407-1415.
Motivation: Local ancestry analysis of genotype data from recently admixed populations (e.g. Latinos, African Americans) provides key insights into population history and disease genetics. Although methods for local ancestry inference have been extensively validated in simulations (under many unrealistic assumptions), no empirical study of local ancestry accuracy in Latinos exists to date. Hence, interpreting findings that rely on local ancestry in Latinos is challenging.
Results: Here, we use 489 nuclear families from the mainland USA, Puerto Rico and Mexico in conjunction with 3204 unrelated Latinos from the Multiethnic Cohort study to provide the first empirical characterization of local ancestry inference accuracy in Latinos. Our approach for identifying errors does not rely on simulations but on the observation that local ancestry in families follows Mendelian inheritance. We measure the rate of local ancestry assignments that lead to Mendelian inconsistencies in local ancestry in trios (MILANC), which provides a lower bound on errors in the local ancestry estimates. We show that MILANC rates observed in simulations underestimate the rate observed in real data, and that MILANC varies substantially across the genome. Second, across a wide range of methods, we observe that loci with large deviations in local ancestry also show enrichment in MILANC rates. Therefore, local ancestry estimates at such loci should be interpreted with caution. Finally, we reconstruct ancestral haplotype panels to be used as reference panels in local ancestry inference and show that ancestry inference is significantly improved by incoroprating these reference panels.
Availability and implementation: We provide the reconstructed reference panels together with the maps of MILANC rates as a public resource for researchers analyzing local ancestry in Latinos at http://bogdanlab.pathology.ucla.edu.
Contact: bpasaniuc@mednet.ucla.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btt166
PMCID: PMC3661056  PMID: 23572411
7.  Ancient DNA reveals key stages in the formation of Central European mitochondrial genetic diversity 
Science (New York, N.Y.)  2013;342(6155):257-261.
The processes which shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42kyrs ago and the immigration of Neolithic farmers into Europe ~8kyrs ago appear to have played important roles, but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5,500–1,550 cal BC). We use this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity.
doi:10.1126/science.1241844
PMCID: PMC4039305  PMID: 24115443
8.  Great ape genetic diversity and population history 
Prado-Martinez, Javier | Sudmant, Peter H. | Kidd, Jeffrey M. | Li, Heng | Kelley, Joanna L. | Lorente-Galdos, Belen | Veeramah, Krishna R. | Woerner, August E. | O’Connor, Timothy D. | Santpere, Gabriel | Cagan, Alexander | Theunert, Christoph | Casals, Ferran | Laayouni, Hafid | Munch, Kasper | Hobolth, Asger | Halager, Anders E. | Malig, Maika | Hernandez-Rodriguez, Jessica | Hernando-Herraez, Irene | Prüfer, Kay | Pybus, Marc | Johnstone, Laurel | Lachmann, Michael | Alkan, Can | Twigg, Dorina | Petit, Natalia | Baker, Carl | Hormozdiari, Fereydoun | Fernandez-Callejo, Marcos | Dabad, Marc | Wilson, Michael L. | Stevison, Laurie | Camprubí, Cristina | Carvalho, Tiago | Ruiz-Herrera, Aurora | Vives, Laura | Mele, Marta | Abello, Teresa | Kondova, Ivanela | Bontrop, Ronald E. | Pusey, Anne | Lankester, Felix | Kiyang, John A. | Bergl, Richard A. | Lonsdorf, Elizabeth | Myers, Simon | Ventura, Mario | Gagneux, Pascal | Comas, David | Siegismund, Hans | Blanc, Julie | Agueda-Calpena, Lidia | Gut, Marta | Fulton, Lucinda | Tishkoff, Sarah A. | Mullikin, James C. | Wilson, Richard K. | Gut, Ivo G. | Gonder, Mary Katherine | Ryder, Oliver A. | Hahn, Beatrice H. | Navarro, Arcadi | Akey, Joshua M. | Bertranpetit, Jaume | Reich, David | Mailund, Thomas | Schierup, Mikkel H. | Hvilsom, Christina | Andrés, Aida M. | Wall, Jeffrey D. | Bustamante, Carlos D. | Hammer, Michael F. | Eichler, Evan E. | Marques-Bonet, Tomas
Nature  2013;499(7459):10.1038/nature12228.
doi:10.1038/nature12228
PMCID: PMC3822165  PMID: 23823723
9.  Riluzole for relapse prevention following intravenous ketamine in treatment-resistant depression: a pilot randomized, placebo-controlled continuation trial 
The N-methyl-d-aspartate (NMDA) glutamate receptor antagonist ketamine may have rapid, albeit transient, antidepressant properties. This study in patients with treatment-resistant major depression (TRD) aimed to (1) replicate the acute efficacy of single-dose intravenous (i.v.) ketamine; (2) test the efficacy of the glutamate-modulating agent riluzole in preventing post-ketamine relapse ; and (3) examine whether pretreatment with lamotrigine would attenuate ketamine’s psychotomimetic effects and enhance its antidepressant activity. Twenty-six medication-free patients received open-label i.v. ketamine (0.5 mg/kg over 40 min). Two hours prior to infusion, patients were randomized to lamotrigine (300 mg) or placebo. Seventeen patients (65%) met response criterion (≥50% reduction from baseline on the Montgomery–Asberg Depression Rating Scale) 24 h following ketamine. Lamotrigine failed to attenuate the mild, transient side-effects associated with ketamine and did not enhance its antidepressant effects. Fourteen patients (54%) met response criterion 72 h following ketamine and proceeded to participate in a 32-d, randomized, double-blind, placebo-controlled, flexible-dose continuation trial of riluzole (100–200 mg/d). The main outcome measure was time-to-relapse. An interim analysis found no significant differences in time-to-relapse between riluzole and placebo groups [log-rank χ2 = 0.17, d.f. = 1, p = 0.68], with 80% of patients relapsing on riluzole vs. 50% on placebo. The trial was thus stopped for futility. This pilot study showed that a sub-anaesthetic dose of i.v. ketamine is well-tolerated in TRD, and may have rapid and sustained antidepressant properties. Riluzole did not prevent relapse in the first month following ketamine. Further investigation of relapse prevention strategies post-ketamine is necessary.
doi:10.1017/S1461145709000169
PMCID: PMC3883127  PMID: 19288975
Ketamine; lamotrigine; major depression; riluzole; treatment resistance
10.  African Ancestry and Genetic Risk for Uterine Leiomyomata 
American Journal of Epidemiology  2012;176(12):1159-1168.
Rates of uterine leiomyomata (UL) are 2–3 times higher in African Americans than in European Americans. It is unclear whether inherited factors explain the ethnic disparity. To investigate the presence of risk alleles for UL that are highly differentiated in frequency between African Americans and European Americans, the authors conducted an admixture-based genome-wide scan of 2,453 UL cases confirmed by ultrasound or surgery in the Black Women's Health Study (1997–2009), a national prospective cohort study. Controls (n = 2,102) were women who did not report a UL diagnosis through 2009. Mean percentage of European ancestry was significantly lower among cases (20.00%) than among controls (21.63%; age-adjusted mean difference = −1.76%, 95% confidence interval: −2.40, −1.12; P < 0.0001), and the association was stronger in younger cases. Admixture analyses showed suggestive evidence of association at chromosomes 2, 4, and 10. The authors also genotyped a dense set of tag single nucleotide polymorphisms at different loci associated with UL in Japanese women but failed to replicate the associations. This suggests that genetic variation for UL differs in populations with and without African ancestry. The admixture findings further indicate that no single highly differentiated locus is responsible for the ethnic disparity in UL, raising the possibility that multiple variants jointly contribute to the higher incidence of UL in African Americans.
doi:10.1093/aje/kws276
PMCID: PMC3571235  PMID: 23161897
African Americans; African continental ancestry group; European continental ancestry group; female; genetics; leiomyoma; prospective studies; uterine neoplasms
11.  Using population admixture to help complete maps of the human genome 
Nature genetics  2013;45(4):406-414e2.
Tens of millions of base pairs of euchromatic human genome sequence, including many protein-coding genes, have no known location in the human genome. We describe an approach for localizing the human genome's missing pieces by utilizing the patterns of genome sequence variation created by population admixture. We mapped the locations of 70 scaffolds spanning four million base pairs of the human genome's unplaced euchromatic sequence, including more than a dozen protein-coding genes, and identified eight large novel inter-chromosomal segmental duplications. We find that most of these sequences are hidden in the genome's heterochromatin, particularly its pericentromeric regions. Many cryptic, pericentromeric genes are expressed in RNA and have been maintained intact for millions of years while their expression patterns diverged from those of paralogous genes elsewhere in the genome. We describe how knowledge of the locations of these sequences can inform disease association and genome biology studies.
doi:10.1038/ng.2565
PMCID: PMC3683849  PMID: 23435088
12.  The HLA–DRB1 Shared Epitope Is Associated With Susceptibility to Rheumatoid Arthritis in African Americans Through European Genetic Admixture 
Arthritis and rheumatism  2008;58(2):349-358.
Objective
To determine whether shared epitope (SE)–containing HLA–DRB1 alleles are associated with rheumatoid arthritis (RA) in African Americans and whether their presence is associated with higher degrees of global (genome-wide) genetic admixture from the European population.
Methods
In this multicenter cohort study, African Americans with early RA and matched control subjects were analyzed. In addition to measurement of serum anti–cyclic citrullinated peptide (anti-CCP) antibodies and HLA–DRB1 genotyping, a panel of >1,200 ancestry-informative markers was analyzed in patients with RA and control subjects, to estimate the proportion of European ancestry.
Results
The frequency of SE-containing HLA–DRB1 alleles was 25.2% in African American patients with RA versus 13.6% in control subjects (P = 0.00005). Of 321 patients with RA, 42.1% had at least 1 SE-containing allele, compared with 25.3% of 166 control subjects (P = 0.0004). The mean estimated percent European ancestry was associated with SE-containing HLA–DRB1 alleles in African Americans, regardless of disease status (RA or control). As reported in RA patients of European ancestry, there was a significant association of the SE with the presence of the anti-CCP antibody: 86 (48.9%) of 176 patients with anti-CCP antibody–positive RA had at least 1 SE allele, compared with 36 (32.7%) of 110 patients with anti-CCP antibody–negative RA (P = 0.01, by chi-square test).
Conclusion
HLA–DRB1 alleles containing the SE are strongly associated with susceptibility to RA in African Americans. The absolute contribution is less than that reported in RA among populations of European ancestry, in which ~50–70% of patients have at least 1 SE allele. As in Europeans with RA, the SE association was strongest in the subset of African American patients with anti-CCP antibodies. The finding of a higher degree of European ancestry among African Americans with SE alleles suggests that a genetic risk factor for RA was introduced into the African American population through admixture, thus making these individuals more susceptible to subsequent environmental or unknown factors that trigger the disease.
doi:10.1002/art.23166
PMCID: PMC3726059  PMID: 18240241
13.  Efficient Moment-Based Inference of Admixture Parameters and Sources of Gene Flow 
Molecular Biology and Evolution  2013;30(8):1788-1802.
The recent explosion in available genetic data has led to significant advances in understanding the demographic histories of and relationships among human populations. It is still a challenge, however, to infer reliable parameter values for complicated models involving many populations. Here, we present MixMapper, an efficient, interactive method for constructing phylogenetic trees including admixture events using single nucleotide polymorphism (SNP) genotype data. MixMapper implements a novel two-phase approach to admixture inference using moment statistics, first building an unadmixed scaffold tree and then adding admixed populations by solving systems of equations that express allele frequency divergences in terms of mixture parameters. Importantly, all features of the model, including topology, sources of gene flow, branch lengths, and mixture proportions, are optimized automatically from the data and include estimates of statistical uncertainty. MixMapper also uses a new method to express branch lengths in easily interpretable drift units. We apply MixMapper to recently published data for Human Genome Diversity Cell Line Panel individuals genotyped on a SNP array designed especially for use in population genetics studies, obtaining confident results for 30 populations, 20 of them admixed. Notably, we confirm a signal of ancient admixture in European populations—including previously undetected admixture in Sardinians and Basques—involving a proportion of 20–40% ancient northern Eurasian ancestry.
doi:10.1093/molbev/mst099
PMCID: PMC3708505  PMID: 23709261
admixture; human populations; genetic drift; moment statistics
14.  A HIGH COVERAGE GENOME SEQUENCE FROM AN ARCHAIC DENISOVAN INDIVIDUAL 
Science (New York, N.Y.)  2012;338(6104):222-226.
We present a DNA library preparation method that has allowed us to reconstruct a high coverage (30X) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of “missing evolution” in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans.
doi:10.1126/science.1224344
PMCID: PMC3617501  PMID: 22936568
15.  Reconstructing Native American Population History 
Nature  2012;488(7411):370-374.
The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved1–5. One contentious issue is whether the settlement occurred via a single6–8 or multiple streams of migration from Siberia9–15. The pattern of dispersals within the Americas is also poorly understood. To address these questions at higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. We show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call “First American”. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan-speakers on both sides of the Panama Isthmus, who have ancestry from both North and South America.
doi:10.1038/nature11258
PMCID: PMC3615710  PMID: 22801491
16.  A direct characterization of human mutation based on microsatellites 
Nature genetics  2012;44(10):1161-1165.
Mutations are the raw material of evolution, but have been difficult to study directly. We report the largest study of new mutations to date: 2,058 germline changes discovered by analyzing 85,289 Icelanders at 2,477 microsatellites. The paternal-to-maternal mutation rate ratio is 3.3, and the rate in fathers doubles from age 20 to 58 whereas there is no association with age in mothers. Longer microsatellite alleles are more mutagenic and tend to decrease in length, whereas the opposite is seen for shorter alleles. We use these empirical observations to build a model that we apply to individuals for whom we have both genome sequence and microsatellite data, allowing us to estimate key parameters of evolution without calibration to the fossil record. We infer that the sequence mutation rate is 1.4–2.3×10−8 per base pair per generation (90% credible interval), and that human-chimpanzee speciation occurred 3.7–6.6 million years ago.
doi:10.1038/ng.2398
PMCID: PMC3459271  PMID: 22922873
17.  Inferring Admixture Histories of Human Populations Using Linkage Disequilibrium 
Genetics  2013;193(4):1233-1254.
Long-range migrations and the resulting admixtures between populations have been important forces shaping human genetic diversity. Most existing methods for detecting and reconstructing historical admixture events are based on allele frequency divergences or patterns of ancestry segments in chromosomes of admixed individuals. An emerging new approach harnesses the exponential decay of admixture-induced linkage disequilibrium (LD) as a function of genetic distance. Here, we comprehensively develop LD-based inference into a versatile tool for investigating admixture. We present a new weighted LD statistic that can be used to infer mixture proportions as well as dates with fewer constraints on reference populations than previous methods. We define an LD-based three-population test for admixture and identify scenarios in which it can detect admixture events that previous formal tests cannot. We further show that we can uncover phylogenetic relationships among populations by comparing weighted LD curves obtained using a suite of references. Finally, we describe several improvements to the computation and fitting of weighted LD curves that greatly increase the robustness and speed of the calculations. We implement all of these advances in a software package, ALDER, which we validate in simulations and apply to test for admixture among all populations from the Human Genome Diversity Project (HGDP), highlighting insights into the admixture history of Central African Pygmies, Sardinians, and Japanese.
doi:10.1534/genetics.112.147330
PMCID: PMC3606100  PMID: 23410830
admixture; linkage disequilibrium
18.  Reconstructing Roma History from Genome-Wide Data 
PLoS ONE  2013;8(3):e58633.
The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000–1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry–derived from a combination of European and South Asian sources–and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe.
doi:10.1371/journal.pone.0058633
PMCID: PMC3596272  PMID: 23516520
19.  Measurement of the human allele frequency spectrum demonstrates greater genetic drift in East Asians than in Europeans 
Nature genetics  2007;39(10):1251-1255.
Large data sets on human genetic variation have been collected recently, but their usefulness for learning about history and natural selection has been limited by biases in the ways polymorphisms were chosen. We report large subsets of SNPs from the International HapMap Project1,2 that allow us to overcome these biases and to provide accurate measurement of a quantity of crucial importance for understanding genetic variation: the allele frequency spectrum. Our analysis shows that East Asian and northern European ancestors shared the same population bottleneck expanding out of Africa but that both also experienced more recent genetic drift, which was greater in East Asians.
doi:10.1038/ng2116
PMCID: PMC3586588  PMID: 17828266
20.  Evidence of widespread selection on standing variation in Europe at height-associated SNPs 
Nature genetics  2012;44(9):1015-1019.
Strong signatures of positive selection at newly arising genetic variants are well-documented in humans1–8, but this form of selection may not be widespread in recent human evolution9. Because many human traits are highly polygenic and partly determined by common, ancient genetic variation, an alternative model for rapid genetic adaptation has been proposed: weak selection acting on many pre-existing (standing) genetic variants, or polygenic adaptation10–12. By studying height, a classic polygenic trait, we demonstrate the first human signature of widespread selection on standing variation. We show that frequencies of alleles associated with increased height, both at known loci and genome-wide, are systematically elevated in Northern Europeans compared with Southern Europeans (p<4.3×10−4). This pattern mirrors intra-European height differences and is not confounded by ancestry or other ascertainment biases. The systematic frequency differences are consistent with the presence of widespread weak selection (selection coefficients ~10−3–10−5 per allele) rather than genetic drift alone (p<10−15).
doi:10.1038/ng.2368
PMCID: PMC3480734  PMID: 22902787
Human Genomics; Population Genetics; Europeans; Height; Selection
21.  Hair Relaxer Use and Risk of Uterine Leiomyomata in African-American Women 
American Journal of Epidemiology  2012;175(5):432-440.
Hair relaxers are used by millions of black women, possibly exposing them to various chemicals through scalp lesions and burns. In the Black Women’s Health Study, the authors assessed hair relaxer use in relation to uterine leiomyomata incidence. In 1997, participants reported on hair relaxer use (age at first use, frequency, duration, number of burns, and type of formulation). From 1997 to 2009, 23,580 premenopausal women were followed for incident uterine leiomyomata. Multivariable Cox regression was used to estimate incidence rate ratios and 95% confidence intervals. During 199,991 person-years, 7,146 cases of uterine leiomyomata were reported as confirmed by ultrasound (n = 4,630) or surgery (n = 2,516). The incidence rate ratio comparing ever with never use of relaxers was 1.17 (95% confidence interval (CI): 1.06, 1.30). Positive trends were observed for frequency of use (Ptrend < 0.001), duration of use (Ptrend = 0.015), and number of burns (Ptrend < 0.001). Among long-term users (≥10 years), the incidence rate ratios for frequency of use categories 3–4, 5–6, and ≥7 versus 1–2 times/year were 1.04 (95% CI: 0.92, 1.19), 1.12 (95% CI: 0.99, 1.27), and 1.15 (95% CI: 1.01, 1.31), respectively (Ptrend = 0.002). Risk was unrelated to age at first use or type of formulation. These findings raise the hypothesis that hair relaxer use increases uterine leiomyomata risk.
doi:10.1093/aje/kwr351
PMCID: PMC3282879  PMID: 22234483
African Americans; female; hair straighteners; leiomyoma; prospective studies
22.  Extremely low-coverage sequencing and imputation increases power for genome-wide association studies 
Nature genetics  2012;44(6):631-635.
Genome wide association studies (GWAS) have proven a powerful method to identify common genetic variants contributing to susceptibility to common diseases. Here we show that extremely low-coverage sequencing (0.1–0.5x) captures almost as much of the common (>5%) and low-frequency (1–5%) variation across the genome as SNP arrays. As an empirical demonstration, we show that genome-wide SNP genotypes can be inferred at a mean r2 of 0.71 using off-target data (0.24x average coverage) in a whole-exome study of 909 samples. Using both simulated and real exome sequencing datasets we show that association statistics obtained using ultra low-coverage sequencing data attain similar P-values at known associated variants as genotyping arrays, without an excess of false positives. Within the context of reductions in sample preparation and sequencing costs, funds invested in ultra low-coverage sequencing can yield several times the effective sample size of SNP-array GWAS, and a commensurate increase in statistical power.
doi:10.1038/ng.2283
PMCID: PMC3400344  PMID: 22610117
23.  MHC region and risk of systemic lupus erythematosus in African-American women 
Human genetics  2011;130(6):807-815.
The major histocompatibility complex (MHC) on chromosome 6p21 is a key contributor to the genetic basis of systemic lupus erythemathosus (SLE). Although SLE affects African Americans disproportionately compared to European Americans, there has been no comprehensive analysis of the MHC region in relationship to SLE in African Americans. We conducted a screening of the MHC region for 1,536 single nucleotide polymorphisms (SNPs) and the deletion of the C4A gene in a SLE case-control study (380 cases, 765 age-matched controls) nested within the prospective Black Women’s Health Study. We also genotyped 1,509 ancestral informative markers throughout the genome to estimate European ancestry in order to control for population stratification due to population admixture. The most strongly associated SNP with SLE was the rs9271366 (odds ratio, OR = 1.70, p = 5.6×10−5) near the HLA-DRB1 gene. Conditional haplotype analysis revealed three other SNPs, rs204890 (OR = 1.86, p = 1.2×10−4), rs2071349 (OR = 1.53, p = 1.0×10−3), and rs2844580 (OR = 1.43, p = 1.3×10−3) to be associated with SLE independent of the rs9271366 SNP. In univariate analysis, the OR for the C4A deletion was 1.38, p = 0.075, but after simultaneous adjustment for the other four SNPs the odds ratio was 1.01, p = 0.98. A genotype score combining the four newly identified SNPs showed an additive risk according to the number of high-risk alleles (OR = 1.67 per high-risk allele, p< 0.0001). Our strongest signal, the rs9271366 SNP, was also associated with higher risk of SLE in a previous Chinese genome-wide association study (GWAS). In addition, two SNPs found in a GWAS of European ancestry women were confirmed in our study, indicating that African Americans share some genetic risk factors for SLE with European and Chinese subjects. In summary, we found four independent signals in the MHC region associated with risk of SLE in African American women.
doi:10.1007/s00439-011-1045-2
PMCID: PMC3215804  PMID: 21695597
systemic lupus erythemathosus; African Americans; major histocompatibility complex; single nucleotide polymorphisms
24.  The Date of Interbreeding between Neandertals and Modern Humans 
PLoS Genetics  2012;8(10):e1002947.
Comparisons of DNA sequences between Neandertals and present-day humans have shown that Neandertals share more genetic variants with non-Africans than with Africans. This could be due to interbreeding between Neandertals and modern humans when the two groups met subsequent to the emergence of modern humans outside Africa. However, it could also be due to population structure that antedates the origin of Neandertal ancestors in Africa. We measure the extent of linkage disequilibrium (LD) in the genomes of present-day Europeans and find that the last gene flow from Neandertals (or their relatives) into Europeans likely occurred 37,000–86,000 years before the present (BP), and most likely 47,000–65,000 years ago. This supports the recent interbreeding hypothesis and suggests that interbreeding may have occurred when modern humans carrying Upper Paleolithic technologies encountered Neandertals as they expanded out of Africa.
Author Summary
One of the key discoveries from the analysis of the Neandertal genome is that Neandertals share more genetic variants with non-Africans than with Africans. This observation is consistent with two hypotheses: interbreeding between Neandertals and modern humans after modern humans emerged out of Africa or population structure in the ancestors of Neandertals and modern humans. These hypotheses make different predictions about the date of last gene exchange between the ancestors of Neandertals and modern non-Africans. We estimate this date by measuring the extent of linkage disequilibrium (LD) in the genomes of present-day Europeans and find that the last gene flow from Neandertals into Europeans likely occurred 37,000–86,000 years before the present (BP), and most likely 47,000–65,000 years ago. This supports the recent interbreeding hypothesis and suggests that interbreeding occurred when modern humans carrying Upper Paleolithic technologies encountered Neandertals as they expanded out of Africa.
doi:10.1371/journal.pgen.1002947
PMCID: PMC3464203  PMID: 23055938

Results 1-25 (74)