Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  MST1 is a novel regulator of apoptosis in pancreatic beta-cells 
Nature medicine  2014;20(4):385-397.
Apoptotic cell death is a hallmark of the loss of insulin producing beta-cells in all forms of diabetes mellitus. Current treatment fails to halt the decline in functional beta-cell mass. Strategies to prevent beta-cell apoptosis and dysfunction are urgently needed. Here, we identified Mammalian Sterile 20-like kinase 1 (MST1) as a critical regulator of apoptotic beta-cell death and function. MST1 was strongly activated in beta-cells under diabetogenic conditions and correlated with beta-cell apoptosis. MST1 specifically induced the mitochondrial-dependent pathway of apoptosis in beta-cells through up-regulation of the BH3-only protein Bim. MST1 directly phosphorylated PDX1 at Thr11, resulting in its ubiquitination, degradation and impaired insulin secretion. Mst1 deficiency completely restored normoglycemia, beta-cell function and survival in vitro and in vivo. We show MST1 as novel pro-apoptotic kinase and key mediator of apoptotic signaling and beta-cell dysfunction, which may serve as target for the development of novel therapies for diabetes.
PMCID: PMC3981675  PMID: 24633305
MST1; apoptosis; diabetes; beta-cells; pancreas
2.  Possible Role of Interleukin-1β in Type 2 Diabetes Onset and Implications for Anti-inflammatory Therapy Strategies 
PLoS Computational Biology  2014;10(8):e1003798.
Increasing evidence of a role of chronic inflammation in type 2 diabetes progression has led to the development of therapies targeting the immune system. We develop a model of interleukin-1β dynamics in order to explain principles of disease onset. The parameters in the model are derived from in vitro experiments and patient data. In the framework of this model, an IL-1β switch is sufficient and necessary to account for type 2 diabetes onset. The model suggests that treatments targeting glucose bear the potential of stopping progression from pre-diabetes to overt type 2 diabetes. However, once in overt type 2 diabetes, these treatments have to be complemented by adjuvant anti-inflammatory therapies in order to stop or decelerate disease progression. Moreover, the model suggests that while glucose-lowering therapy needs to be continued all the way, dose and duration of the anti-inflammatory therapy needs to be specifically controlled. The model proposes a framework for the discussion of clinical trial outcomes.
Author Summary
Insulin resistance and relative insulin deficiency are two hallmarks of type 2 diabetes. While insulin resistance is always present in the early phase, it is β-cell failure that determines the pace of the disease onset. Increasing evidence that the immune system is activated and plays an important role in type 2 diabetes has stimulated efforts of developing drugs targeting inflammatory cytokines. We built a model to describe the principles of type 2 diabetes onset under the influence of interleukin-1β. The disease onset is understood in terms of bifurcation. It is found that inflammatory cytokines are required to be suppressed for a limited time only, while glucose has to be controlled over the long term. These structural insights may serve as a guideline for future clinical trials.
PMCID: PMC4148195  PMID: 25167060
3.  The Adipocytokine Nampt and Its Product NMN Have No Effect on Beta-Cell Survival but Potentiate Glucose Stimulated Insulin Secretion 
PLoS ONE  2013;8(1):e54106.
Obesity is associated with a dysregulation of beta-cell and adipocyte function. The molecular interactions between adipose tissue and beta-cells are not yet fully elucidated. We investigated, whether or not the adipocytokine Nicotinamide phosphoribosyltransferase (Nampt) and its enzymatic product Nicotinamide mononucleotide (NMN), which has been associated with obesity and type 2 diabetes mellitus (T2DM) directly influence beta-cell survival and function.
The effect of Nampt and NMN on viability of INS-1E cells was assessed by WST-1 assay. Apoptosis was measured by Annexin V/PI and TUNEL assay. Activation of apoptosis signaling pathways was evaluated. Adenylate kinase release was determined to assess cytotoxicity. Chronic and acute effects of the adipocytokine Nampt and its enzymatic product NMN on insulin secretion were assessed by glucose stimulated insulin secretion in human islets.
While stimulation of beta-cells with the cytokines IL-1β, TNFα and IFN-γ or palmitate significantly decreased viability, Nampt and NMN showed no direct effect on viability in INS-1E cells or in human islets, neither alone nor in the presence of pro-diabetic conditions (elevated glucose concentrations and palmitate or cytokines). At chronic conditions over 3 days of culture, Nampt and its product NMN had no effects on insulin secretion. In contrast, both Nampt and NMN potentiated glucose stimulated insulin secretion acutely during 1 h incubation of human islets.
Nampt and NMN neither influenced beta-cell viability nor apoptosis but acutely potentiated glucose stimulated insulin secretion.
PMCID: PMC3546920  PMID: 23342086
4.  COUP-TFII Controls Mouse Pancreatic β-Cell Mass through GLP-1-β-Catenin Signaling Pathways 
PLoS ONE  2012;7(1):e30847.
The control of the functional pancreatic β-cell mass serves the key homeostatic function of releasing the right amount of insulin to keep blood sugar in the normal range. It is not fully understood though how β-cell mass is determined.
Methodology/Principal Findings
Conditional chicken ovalbumin upstream promoter transcription factor II (COUP-TFII)-deficient mice were generated and crossed with mice expressing Cre under the control of pancreatic duodenal homeobox 1 (pdx1) gene promoter. Ablation of COUP-TFII in pancreas resulted in glucose intolerance. Beta-cell number was reduced at 1 day and 3 weeks postnatal. Together with a reduced number of insulin-containing cells in the ductal epithelium and normal β-cell proliferation and apoptosis, this suggests decreased β-cell differentiation in the neonatal period. By testing islets isolated from these mice and cultured β-cells with loss and gain of COUP-TFII function, we found that COUP-TFII induces the expression of the β-catenin gene and its target genes such as cyclin D1 and axin 2. Moreover, induction of these genes by glucagon-like peptide 1 (GLP-1) via β-catenin was impaired in absence of COUP-TFII. The expression of two other target genes of GLP-1 signaling, GLP-1R and PDX-1 was significantly lower in mutant islets compared to control islets, possibly contributing to reduced β-cell mass. Finally, we demonstrated that COUP-TFII expression was activated by the Wnt signaling-associated transcription factor TCF7L2 (T-cell factor 7-like 2) in human islets and rat β-cells providing a feedback loop.
Our findings show that COUP-TFII is a novel component of the GLP-1 signaling cascade that increases β-cell number during the neonatal period. COUP-TFII is required for GLP-1 activation of the β-catenin-dependent pathway and its expression is under the control of TCF7L2.
PMCID: PMC3265526  PMID: 22292058
5.  Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function 
Human Molecular Genetics  2009;18(13):2388-2399.
Recent human genetics studies have revealed that common variants of the TCF7L2 (T-cell factor 7-like 2, formerly known as TCF4) gene are strongly associated with type 2 diabetes mellitus (T2DM). We have shown that TCF7L2 expression in the β-cells is correlated with function and survival of the insulin-producing pancreatic β-cell. In order to understand how variations in TCF7L2 influence diabetes progression, we investigated its mechanism of action in the β-cell. We show robust differences in TCF7L2 expression between healthy controls and models of T2DM. While mRNA levels were approximately 2-fold increased in isolated islets from the diabetic db/db mouse, the Vancouver Diabetic Fatty (VDF) Zucker rat and the high fat/high sucrose diet-treated mouse compared with the non-diabetic controls, protein levels were decreased. A similar decrease was observed in pancreatic sections from patients with T2DM. In parallel, expression of the receptors for glucagon-like peptide 1 (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP-R) was decreased in islets from humans with T2DM as well as in isolated human islets treated with siRNA to TCF7L2 (siTCF7L2). Also, insulin secretion stimulated by glucose, GLP-1 and GIP, but not KCl or cyclic adenosine monophosphate (cAMP) was impaired in siTCF7L2-treated isolated human islets. Loss of TCF7L2 resulted in decreased GLP-1 and GIP-stimulated AKT phosphorylation, and AKT-mediated Foxo-1 phosphorylation and nuclear exclusion. Our findings suggest that β-cell function and survival are regulated through an interplay between TCF7L2 and GLP-1R/GIP-R expression and signaling in T2DM.
PMCID: PMC2722186  PMID: 19386626
6.  Efficient gene delivery and silencing of mouse and human pancreatic islets 
BMC Biotechnology  2010;10:28.
In view of the importance of beta cells in glucose homeostasis and the profound repercussions of beta cell pathology on human health, the acquisition of tools to study pancreatic islet function is essential for the design of alternative novel therapies for diabetes. One promising approach toward this goal involves the modification of gene expression profile of beta cells.
This study describes a new method of gene and siRNA delivery into human pancreatic islets by microporation technology. We demonstrated that mild islet distention with accutase greatly enhanced the transfection efficiency without compromising in vitro function (secretion, apoptosis and viability). As an example, the recently identified gene involved in type 2 diabetes, ZnT8, can be over-expressed or silenced by RNA interference using this technology. Microporation can also be used on rodent islets.
Taken together, our results demonstrate that microporation technology can be used to modify gene expression in whole rodent and human islets without altering their in vitro function and will be key to the elucidation of the factors responsible for proper islet function.
PMCID: PMC2853492  PMID: 20353585
7.  Deletion of the Mitochondrial Flavoprotein Apoptosis Inducing Factor (AIF) Induces β-Cell Apoptosis and Impairs β-Cell Mass 
PLoS ONE  2009;4(2):e4394.
Apoptosis is a hallmark of β-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to β-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF). In the present study, we investigated the role of AIF on β-cell mass and survival using the Harlequin (Hq) mutant mice, which are hypomorphic for AIF.
Methodology/Principal Findings
Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT). Analysis of β-cell mass in these mice revealed a greater than 4-fold reduction in β-cell mass together with an 8-fold increase in β-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of β-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in β-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the β-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. β-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on β-cell function was potentiated.
Our results indicate that AIF is essential for maintaining β-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on β-cell survival.
PMCID: PMC2632884  PMID: 19197367
8.  UCP-2 and UCP-3 Proteins Are Differentially Regulated in Pancreatic Beta-Cells 
PLoS ONE  2008;3(1):e1397.
Increased uncoupling protein-2 (UCP-2) expression has been associated with impaired insulin secretion, whereas UCP-3 protein levels are decreased in the skeleton muscle of type-2 diabetic subjects. In the present studies we hypothesize an opposing effect of glucose on the regulation of UCP-2 and UCP-3 in pancreatic islets.
Dominant negative UCP-2 and wild type UCP-3 adenoviruses were generated, and insulin release by transduced human islets was measured. UCP-2 and UCP-3 mRNA levels were determined using quantitative PCR. UCP-2 and UCP-3 protein expression was investigated in human islets cultured in the presence of different glucose concentrations. Human pancreatic sections were analyzed for subcellular localization of UCP-3 using immunohistochemistry.
Principal Findings
Dominant negative UCP-2 expression in human islets increased insulin secretion compared to control islets (p<0.05). UCP-3 mRNA is expressed in human islets, but the relative abundance of UCP-2 mRNA was 8.1-fold higher (p<0.05). Immunohistochemical analysis confirmed co-localization of UCP-3 protein with mitochondria in human beta-cells. UCP-2 protein expression in human islets was increased ∼2-fold after high glucose exposure, whereas UCP-3 protein expression was decreased by ∼40% (p<0.05). UCP-3 overexpression improved glucose-stimulated insulin secretion.
UCP-2 and UCP-3 may have distinct roles in regulating beta-cell function. Increased expression of UCP-2 and decreased expression of UCP-3 in humans with chronic hyperglycemia may contribute to impaired glucose-stimulated insulin secretion. These data imply that mechanisms that suppress UCP-2 or mechanisms that increase UCP-3 expression and/or function are potential therapeutic targets to offset defects of insulin secretion in humans with type-2 diabetes.
PMCID: PMC2164968  PMID: 18167556
9.  Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets 
In type 2 diabetes, chronic hyperglycemia is suggested to be detrimental to pancreatic β cells, causing impaired insulin secretion. IL-1β is a proinflammatory cytokine acting during the autoimmune process of type 1 diabetes. IL-1β inhibits β cell function and promotes Fas-triggered apoptosis in part by activating the transcription factor NF-κB. Recently, we have shown that increased glucose concentrations also induce Fas expression and β cell apoptosis in human islets. The aim of the present study was to test the hypothesis that IL-1β may mediate the deleterious effects of high glucose on human β cells. In vitro exposure of islets from nondiabetic organ donors to high glucose levels resulted in increased production and release of IL-1β, followed by NF-κB activation, Fas upregulation, DNA fragmentation, and impaired β cell function. The IL-1 receptor antagonist protected cultured human islets from these deleterious effects. β cells themselves were identified as the islet cellular source of glucose-induced IL-1β. In vivo, IL-1β–producing β cells were observed in pancreatic sections of type 2 diabetic patients but not in nondiabetic control subjects. Similarly, IL-1β was induced in β cells of the gerbil Psammomys obesus during development of diabetes. Treatment of the animals with phlorizin normalized plasma glucose and prevented β cell expression of IL-1β. These findings implicate an inflammatory process in the pathogenesis of glucotoxicity in type 2 diabetes and identify the IL-1β/NF-κB pathway as a target to preserve β cell mass and function in this condition.
PMCID: PMC151125  PMID: 12235117

Results 1-9 (9)