PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Differential effects of Th1 versus Th2 cytokines in combination with hypoxia on HIFs and angiogenesis in RA 
Arthritis Research & Therapy  2012;14(4):R180.
Introduction
Hypoxia and T-helper cell 1 (Th1) cytokine-driven inflammation are key features of rheumatoid arthritis (RA) and contribute to disease pathogenesis by promoting angiogenesis. The objective of our study was to characterise the angiogenic gene signature of RA fibroblast-like synoviocytes (FLS) in response to hypoxia, as well as Th1 and T-helper cell 2 (Th2) cytokines, and in particular to dissect out effects of combined hypoxia and cytokines on hypoxia inducible transcription factors (HIFs) and angiogenesis.
Methods
Human angiogenesis PCR arrays were used to screen cDNA from RA FLS exposed to hypoxia (1% oxygen) or dimethyloxalylglycine, which stabilises HIFs. The involvement of HIF isoforms in generating the angiogenic signature of RA FLS stimulated with hypoxia and/or cytokines was investigated using a DNA-binding assay and RNA interference. The angiogenic potential of conditioned media from hypoxia-treated and/or cytokine-treated RA FLS was measured using an in vitro endothelial-based assay.
Results
Expression of 12 angiogenic genes was significantly altered in RA FLS exposed to hypoxia, and seven of these were changed by dimethyloxalylglycine, including ephrin A3 (EFNA3), vascular endothelial growth factor (VEGF), adipokines angiopoietin-like (ANGPTL)-4 and leptin. These four proangiogenic genes were dependent on HIF-1 in hypoxia to various degrees: EFNA3 >ANGPTL-4 >VEGF >leptin. The Th1 cytokines TNFα and IL-1β induced HIF-1 but not HIF-2 transcription as well as activity, and this effect was additive with hypoxia. In contrast, Th2 cytokines had no effect on HIFs. IL-1β synergised with hypoxia to upregulate EFNA3 and VEGF in a HIF-1-dependent fashion but, despite strongly inducing HIF-1, TNFα suppressed adipokine expression and had minimal effect on EFNA3. Supernatants from RA FLS subjected to hypoxia and TNFα induced fewer endothelial tubules than those from FLS subjected to TNFα or hypoxia alone, despite high VEGF protein levels. The Th2 cytokine IL-4 strongly induced ANGPTL-4 and angiogenesis by normoxic FLS and synergised with hypoxia to induce further proangiogenic activity.
Conclusion
The present work demonstrates that Th1 cytokines in combination with hypoxia are not sufficient to induce angiogenic activity by RA FLS despite HIF-1 activation and VEGF production. In contrast, Th2 cytokines induce angiogenic activity in normoxia and hypoxia, despite their inability to activate HIFs, highlighting the complex relationships between hypoxia, angiogenesis and inflammation in RA.
doi:10.1186/ar3934
PMCID: PMC3580575  PMID: 22866899
2.  Linkage of Osteoporosis to Chromosome 20p12 and Association to BMP2 
PLoS Biology  2003;1(3):e69.
Osteoporotic fractures are a major cause of morbidity and mortality in ageing populations. Osteoporosis, defined as low bone mineral density (BMD) and associated fractures, have significant genetic components that are largely unknown. Linkage analysis in a large number of extended osteoporosis families in Iceland, using a phenotype that combines osteoporotic fractures and BMD measurements, showed linkage to Chromosome 20p12.3 (multipoint allele-sharing LOD, 5.10; p value, 6.3 × 10−7), results that are statistically significant after adjusting for the number of phenotypes tested and the genome-wide search. A follow-up association analysis using closely spaced polymorphic markers was performed. Three variants in the bone morphogenetic protein 2 (BMP2) gene, a missense polymorphism and two anonymous single nucleotide polymorphism haplotypes, were determined to be associated with osteoporosis in the Icelandic patients. The association is seen with many definitions of an osteoporotic phenotype, including osteoporotic fractures as well as low BMD, both before and after menopause. A replication study with a Danish cohort of postmenopausal women was conducted to confirm the contribution of the three identified variants. In conclusion, we find that a region on the short arm of Chromosome 20 contains a gene or genes that appear to be a major risk factor for osteoporosis and osteoporotic fractures, and our evidence supports the view that BMP2 is at least one of these genes.
Genetic analysis of Icelandic families and a replication study in a Danish population provide evidence that variation in the gene BMP2 might contribute to osteoporosis
doi:10.1371/journal.pbio.0000069
PMCID: PMC270020  PMID: 14691541

Results 1-2 (2)