PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Association of variants of the interleukin-23 receptor (IL23R) gene with susceptibility to pediatric Crohn’s disease 
Background & Aims
Recently an association was demonstrated between the single nucleotide polymorphism (SNP), rs11209026, within the interleukin-23 receptor (IL23R) locus and Crohn’s disease (CD) as a consequence of a genome wide association study of this disease in adults. We examined the effects of this and other previously reported SNPs at this locus with respect to CD in children.
Methods
Utilizing data from our ongoing genome-wide association study in our cohort of 142 pediatric CD cases and 281 matched controls, we investigated the association of the previously reported SNPs at the IL23R locus with the childhood form of this disease.
Results
Using a Fisher’s exact test, the minor allele frequency (MAF) of rs1120902 in the cases was 1.75% while it was 6.61% in controls, yielding a protective odds ratio (OR) of 0.25 (95% CI 0.10 – 0.65; one-sided P = 9.2×10−4). Furthermore, of all the SNPs previously reported, rs11209026 was the most strongly associated. A subsequent family-based association test (which is more resistant to population stratification) with 65 sets of trios derived from our initial patient cohort yielded significant association with rs11209026 in a transmission disequilibrium test (one-sided P=0.0017). In contrast, no association was detected to the CARD15 gene for the IBD phenotype.
Conclusions
The OR of the IL23R variant in our pediatric study is highly comparable with that reported previously in a non-Jewish adult IBD case-control cohort (OR=0.26). As such, variants in IL23R gene confer a similar magnitude of risk of CD to children as for their adult counterparts.
doi:10.1016/j.cgh.2007.04.024
PMCID: PMC4287202  PMID: 17618837
IL23R; gene; association; Crohn’s Disease
2.  Gene expression profiling of flaxseed in mouse lung tissues-modulation of toxicologically relevant genes 
Background
Flaxseed (FS), a nutritional supplement consisting mainly of omega-3 fatty acids and lignan phenolics has potent anti-inflammatory, anti-fibrotic and antioxidant properties. The usefulness of flaxseed as an alternative and complimentary treatment option has been known since ancient times. We have shown that dietary FS supplementation ameliorates oxidative stress and inflammation in experimental models of acute and chronic lung injury in mice resulting from diverse toxicants. The development of lung tissue damage in response to direct or indirect oxidant stress is a complex process, associated with changes in expression levels of a number of genes. We therefore postulated that flaxseed might modulate gene expression of vital signaling pathways, thus interfering with the development of tissue injury.
Methods
We evaluated gene expression in lungs of flaxseed-fed (10%FS) mice under unchallenged, control conditions. We reasoned that array technology would provide a powerful tool for studying the mechanisms behind this response and aid the evaluation of dietary flaxseed intervention with a focus on toxicologically relevant molecular gene targets. Gene expression levels in lung tissues were analyzed using a large-scale array whereby 28,800 genes were evaluated.
Results
3,713 genes (12.8 %) were significantly (p < 0.05) differentially expressed, of which 2,088 had a >1.5-fold change. Genes affected by FS include those in protective pathways such as Phase I and Phase II.
Conclusions
The array studies have provided information on how FS modulates gene expression in lung and how they might be related to protective mechanisms. In addition, our study has confirmed that flaxseed is a nutritional supplement with potentially useful therapeutic applications in complementary and alternative (CAM) medicine especially in relation to treatment of lung disease.
doi:10.1186/1472-6882-12-47
PMCID: PMC3409040  PMID: 22520446
Antioxidant; CAM; Flaxseed; Genomic profiling; Lignans; Lung disease; Oxidative stress
3.  Dietary Curcumin Increases Antioxidant Defenses in Lung, Ameliorates Radiation-Induced Pulmonary Fibrosis, and Improves Survival in Mice 
Radiation research  2010;173(5):590-601.
The effectiveness of lung radiotherapy is limited by radiation tolerance of normal tissues and by the intrinsic radiosensitivity of lung cancer cells. The chemopreventive agent curcumin has known antioxidant and tumor cell radiosensitizing properties. Its usefulness in preventing radiation-induced pneumonopathy has not been tested previously. We evaluated dietary curcumin in radiation-induced pneumonopathy and lung tumor regression in a murine model. Mice were given 1%or 5%(w/w) dietary curcumin or control diet prior to irradiation and for the duration of the experiment. Lungs were evaluated at 3 weeks after irradiation for acute lung injury and inflammation by evaluating bronchoalveolar lavage (BAL) fluid content for proteins, neutrophils and at 4 months for pulmonary fibrosis. In a separate series of experiments, an orthotopic model of lung cancer using intravenously injected Lewis lung carcinoma (LLC) cells was used to exclude possible tumor radioprotection by dietary curcumin. In vitro, curcumin boosted antioxidant defenses by increasing heme oxygenase 1 (HO-1) levels in primary lung endothelial and fibroblast cells and blocked radiation-induced generation of reactive oxygen species (ROS). Dietary curcumin significantly increased HO-1 in lungs as early as after 1 week of feeding, coinciding with a steady-state level of curcumin in plasma. Although both 1% and 5% w/w dietary curcumin exerted physiological changes in lung tissues by significantly decreasing LPS-induced TNF-α production in lungs, only 5%dietary curcumin significantly improved survival of mice after irradiation and decreased radiation-induced lung fibrosis. Importantly, dietary curcumin did not protect LLC pulmonary metastases from radiation killing. Thus dietary curcumin ameliorates radiation-induced pulmonary fibrosis and increases mouse survival while not impairing tumor cell killing by radiation.
doi:10.1667/RR1522.1
PMCID: PMC2873679  PMID: 20426658
5.  DIETARY FLAXSEED PREVENTS RADIATION-INDUCED OXIDATIVE LUNG DAMAGE, INFLAMMATION AND FIBROSIS IN A MOUSE MODEL OF THORACIC RADIATION INJURY 
Cancer biology & therapy  2009;8(1):47-53.
Flaxseed (FS) has high contents of omega-3 fatty acids and lignans with antioxidant properties. Its use in preventing thoracic X-ray radiation therapy (XRT)-induced pneumonopathy has never been evaluated. We evaluated FS supplementation given to mice given before and post-XRT. FS-derived lignans, known for their direct antioxidant properties, were evaluated in abrogating ROS generation in cultured endothelial cells following gamma radiation exposure. Mice were fed 10% FS or isocaloric control diet for three weeks and given 13.5 Gy thoracic XRT. Lungs were evaluated at 24 hours for markers of radiation-induced injury, three weeks for acute lung damage (lipid peroxidation, lung edema and inflammation), and at four months for late lung damage (inflammation and fibrosis). FS-Lignans blunted ROS generation in vitro, resulting from radiation in a dose-dependent manner. FS-fed mice had reduced expression of lung injury biomarkers (Bax, p21, and TGF-beta1) at 24 hours following XRT and reduced oxidative lung damage as measured by malondialdehyde (MDA) levels at 3 weeks following XRT. In addition, FS-fed mice had decreased lung fibrosis as determined by hydroxyproline content and decreased inflammatory cell influx into lungs at 4 months post XRT. Importantly, when Lewis Lung carcinoma cells were injected systemically in mice, FS dietary supplementation did not appear to protect lung tumors from responding to thoracic XRT. Dietary FS is protective against pulmonary fibrosis, inflammation and oxidative lung damage in a murine model. Moreover, in this model, tumor radioprotection was not observed. FS lignans exhibited potent radiation-induced ROS scavenging action. Taken together, these data suggest that dietary flaxseed may be clinically useful as an agent to increase the therapeutic index of thoracic XRT by increasing the radiation tolerance of lung tissues.
PMCID: PMC2745149  PMID: 18981722
Flaxseed; radiation pneumonopathy; TGF-β1; lung fibrosis; antioxidant; flaxseed lignans; lung injury; ROS; inflammation; mouse model

Results 1-5 (5)