Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Pancreatic Insufficiency is Not a Prevalent Problem in Alagille Syndrome 
Alagille syndrome (ALGS) is an inherited multisystem disorder in which pancreatic insufficiency has been regarded a minor but important clinical manifestation. As part of a multi-center prospective study, 42 ALGS patients underwent fecal elastase (FE) measurement to screen for exocrine pancreatic insufficiency (PI). FE measurements were normal (>200 μg/g) in 40 (95%) and indeterminate (100-200 μg/g) in 2 (5%). Since FE is the most reliable screen for PI, these data suggest that PI is not a prevalent problem in ALGS.
PMCID: PMC3666161  PMID: 22614108
2.  A Longitudinal Study to Identify Laboratory Predictors of Liver Disease Outcome in Alagille Syndrome 
Liver disease in Alagille syndrome is highly variable ranging from biochemical abnormalities only to end-stage disease. It is not possible to predict whether a child with cholestasis will have improvement or progression of liver disease. This poses a challenge to the clinician in terms of timing therapies. The study aim was to identify laboratory markers present under the age of 5 years that could predict the ultimate outcome of liver disease in Alagille syndrome.
A retrospective review of laboratory data from 33 Alagille syndrome subjects was performed. Patients greater than 10 years of age were stratified into mild (22) and severe (11) hepatic outcome groups. Non-parametric analysis was performed on longitudinal data from birth-5years to determine association with hepatic outcome. JAGGED1 mutational analysis was performed on available samples.
The following variables were statistically different between severe and mild outcome groups; total bilirubin (p= 0.0001), conjugated bilirubin (p =0.0066), and cholesterol (p =0.0022). Further analysis revealed cutoff values that differentiated between severe and mild outcomes; total bilirubin 6.5mg/dL(111micromol/L), conjugated bilirubin 4.5mg/dL(77micromol/L) and cholesterol 520mg/dL(13.5mmol/L). Genetic analysis of JAGGED1 mutations did not reveal genotype-phenotype correlation.
Total bilirubin above 6.5mg/dL, conjugated bilirubin above 4.5mg/dL and cholesterol above 520mg/dL under the age of 5 years are likely to be associated with severe liver disease in later life. These data represent cutoff values below which a child is likely to have a benign outcome and above which more aggressive therapy may be warranted, and can thus be used to guide management.
PMCID: PMC2861305  PMID: 20421762
Alagille; liver; cholestasis; transplantation
4.  Mutations in TJP2 cause progressive cholestatic liver disease 
Nature genetics  2014;46(4):326-328.
The elucidation of genetic causes of cholestasis has proved to be important in understanding the physiology and pathophysiology of the liver. Protein-truncating mutations in the tight junction protein 2 gene (TJP2) are shown to cause failure of protein localisation, with disruption of tight-junction structure leading to severe cholestatic liver disease. This contrasts with the embryonic-lethal knockout mouse, highlighting differences in redundancy in junctional complexes between organs and species.
PMCID: PMC4061468  PMID: 24614073
5.  Glatiramer acetate–induced acute hepatotoxicity in an adolescent with MS 
Neurology  2013;81(9):850-852.
Glatiramer acetate (GA), a synthetic copolymer, is a frequently used first-line treatment for relapsing-remitting multiple sclerosis (RRMS). Probable autoimmune hepatotoxicity during GA treatment has been reported,1–4 but GA hepatotoxicity in the absence of positive autoimmune markers has not previously been described. Here, we report GA-induced hepatotoxicity in a pediatric patient with multiple sclerosis (MS).
PMCID: PMC3908464  PMID: 23884038
6.  Differing Effects of Rapamycin or Calcineurin Inhibitor on T-Regulatory Cells in Pediatric Liver and Kidney Transplant Recipients 
In a cross-sectional study, we assessed effects of calcineurin inhibitor (CNI) or rapamycin on T-regulatory (Treg) cells from children with stable liver (n=53) or kidney (n=9) allografts several years post-transplant. We analyzed Treg number, phenotype, suppressive function, and methylation at the Treg-specific demethylation region (TSDR) using Tregs and peripheral blood mononuclear cells. 48 patients received CNI (39 as monotherapy) and 12 patients received rapamycin (9 as monotherapy). Treg numbers diminished over time on either regimen, but reached significance only with CNI (r=−0.424, p=0.017). CNI levels inversely correlated with Treg number (r=−0.371, p=0.026), and positively correlated with CD127+ expression by Tregs (r=0.437, p=0.023). Patients with CNI levels >3.6 ng/ml had weaker Treg function than those with levels <3.6 ng/ml, whereas rapamycin therapy positively correlated with Treg numbers (r=0.628, p=0.029) and their expression of CTLA4 (r=0.726, p=0.041). Overall, CTLA4 expression, TSDR demethylation and an absence of CD127 were important for Treg suppressive function. We conclude that rapamycin has beneficial effects on Treg biology, whereas long-term and high dose CNI use may impair Treg number, function and phenotype, potentially acting as a barrier to attaining host hyporesponsiveness to an allograft.
PMCID: PMC3513508  PMID: 22994804
Immunosuppression; immunoregulation; clinical transplantation
7.  Alagille Syndrome in a Vietnamese Cohort: Mutation Analysis and Assessment of Facial Features 
Alagille syndrome (ALGS, OMIM #118450) is an autosomal dominant disorder that affects multiple organ systems including the liver, heart, eyes, vertebrae, and face. ALGS is caused by mutations in one of two genes in the Notch Signaling Pathway, JAGGED1 or NOTCH2. In this study, analysis of 21 Vietnamese ALGS individuals led to the identification of 19 different mutations (18 JAGGED1 and 1 NOTCH2), 17 of which are novel, including the third reported NOTCH2 mutation in Alagille Syndrome. The spectrum of JAGGED1 mutations in the Vietnamese patients is similar to that previously reported, including nine frameshift, three missense, two splice site, one nonsense, two whole gene, and onw partial gene deletion. The missense mutations are all likely to be disease causing, as two are loss of cysteines (C22R and C78G) and the third creates a cryptic splice site in exon 9 (G386R). No correlation between genotype and phenotype was observed. Assessment of clinical phenotype revealed that skeletal manifestations occur with a higher frequency than in previously reported Alagille cohorts. Facial features were difficult to assess and a Vietnamese pediatric gastroenterologist was only able to identify the facial phenotype in 61% of the cohort. To assess the agreement among North American dysmorphologists at detecting the presence of ALGS facial features in the Vietnamese patients, 37 clinical dysmorphologists evaluated a photographic panel of 20 Vietnamese children with and without ALGS. The dysmorphologists were unable to identify the individuals with ALGS in the majority of cases, suggesting that evaluation of facial features should not be used in the diagnosis of ALGS in this population. This is the first report of mutations and phenotypic spectrum of ALGS in a Vietnamese population.
PMCID: PMC3331947  PMID: 22488849
Alagille Syndrome; JAGGED1; NOTCH2; JAGGED1 missense mutation
8.  Pathologic Lower Extremity Fractures in Children with Alagille Syndrome 
In this retrospective study, we aimed to determine the incidence and distribution of fractures in patients with Alagille syndrome, one of the leading inherited causes of pediatric cholestatic liver disease.
Surveys regarding growth, nutrition, and organ involvement were distributed to patient families in the Alagille Syndrome Alliance or The Children’s Hospital of Philadelphia research database. Patients with a history of fracture were identified by their response to one question, and details characterizing each patient’s medical, growth, and fracture history were obtained through chart review and telephone contact.
Twelve of 42 patients (28%) reported a total of 27 fractures. Patients experienced fractures at a mean age of 5 years, which contrasts with healthy children, in whom fracture incidence peaks in adolescence. Fractures occurred primarily in the lower extremity long bones (70%) and with little or no trauma (84%). Estimated incidence rate calculations yielded 399.6 total fractures/10,000 person years (95% CI = 206.5, 698.0) and 127.6 femur fractures/10,000 person-years (95% CI = 42.4, 297.7). There were no differences in gender, age distribution or organ system involvement between the fracture and no-fracture groups.
Children with Alagille syndrome may be at risk for pathologic fractures, which manifest at an early age and in a unique distribution favoring the lower extremity long bones. While this preliminary study is limited by small sample size and potential ascertainment bias, the data suggest that larger studies are warranted to further characterize fracture risk and to explore factors contributing to bone fragility in these children.
PMCID: PMC2893241  PMID: 20453673
Alagille syndrome; fracture; osteomalacia
9.  Genomic Alterations in Biliary Atresia Suggests Region of Potential Disease Susceptibility in 2q37.3 
Biliary atresia (BA) is a progressive, idiopathic obliteration of the extrahepatic biliary system occurring exclusively in the neonatal period. It is the most common disease leading to liver transplantation in children. The etiology of BA is unknown, although infectious, immune and genetic causes have been suggested. While the recurrence of BA in families is not common, there are more than 30 multiplex families reported and an underlying genetic susceptibility has been hypothesized. We screened a cohort of 35 BA patients for genomic alterations that might confer susceptibility to BA. DNA was genotyped on the Illumina Quad550 platform, which analyzes over 550,000 single nucleotide polymorphisms (SNPs) for genomic deletions and duplications. Areas of increased and decreased copy number were compared to those found in control populations. In order to identify regions that could serve as susceptibility factors for BA, we searched for regions that were found in BA patients, but not in controls. We identified two unrelated BA patients with overlapping heterozygous deletions of 2q37.3. Patient 1 had a 1.76 Mb (280 SNP), heterozygous deletion containing thirty genes. Patient 2 had a 5.87 Mb (1,346 SNP) heterozygous deletion containing fifty-five genes. The overlapping 1.76 Mb deletion on chromosome 2q37.3 from 240,936,900 to 242,692,820 constitutes the critical region and the genes within this region could be candidates for susceptibility to BA.
PMCID: PMC2914625  PMID: 20358598
Biliary atresia; copy number variation; deletion 2q37.3
10.  SNP array mapping of 20p deletions: Genotypes, Phenotypes and Copy Number Variation 
Human mutation  2009;30(3):371-378.
The use of array technology to define chromosome deletions and duplications is bringing us closer to establishing a genotype/phenotype map of genomic copy number alterations. We studied 21 patients and 5 relatives with deletions of the short arm of chromosome 20 using the Illumina HumanHap550 SNP array to 1) more accurately determine the deletion sizes, 2) identify and compare breakpoints, 3) establish genotype/phenotype correlations and 4) investigate the use of the HumanHap550 platform for analysis of chromosome deletions. Deletions ranged from 95kb to 14.62Mb, and all of the breakpoints were unique. Eleven patients had deletions between 95kb and 4Mb and these individuals had normal development, with no anomalies outside of those associated with Alagille syndrome. The proximal and distal boundaries of these eleven deletions constitute a 5.4MB region, and we propose that haploinsufficiency for only 1 of the 12 genes in this region causes phenotypic abnormalities. This defines the JAG1 associated critical region, in which deletions do not confer findings other than those associated with Alagille syndrome. The other 10 patients had deletions between 3.28Mb and 14.62Mb, which extended outside the critical region, and notably, all of these patients, had developmental delay. This group had other findings such as autism, scoliosis and bifid uvula. We identified 47 additional polymorphic genome-wide copy number variants (>20 SNPs), with 0–5 variants called per patient. Deletions of the short arm of chromosome 20 are associated with relatively mild and limited clinical anomalies. The use of SNP arrays provides accurate high-resolution definition of genomic abnormalities.
PMCID: PMC2650004  PMID: 19058200
SNP array analysis; 20p deletion; copy number variants; Alagille syndrome; haploinsufficiency; JAG1

Results 1-10 (10)