PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (55)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Genetic predisposition to higher blood pressure increases coronary artery disease risk 
Hypertension  2013;61(5):10.1161/HYPERTENSIONAHA.111.00275.
Hypertension is a risk factor for coronary artery disease. Recent genome-wide association studies have identified 30 genetic variants associated with higher blood pressure at genome-wide significance (p<5×10−8). If elevated blood pressure is a causative factor for coronary artery disease, these variants should also increase coronary artery disease risk. Analyzing genome-wide association data from 22,233 coronary artery disease cases and 64,762 controls, we observed in the Coronary artery disease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) consortium that 88% of these blood pressure-associated polymorphisms were likewise positively associated with coronary artery disease, i.e. they had an odds ratio >1 for coronary artery disease, a proportion much higher than expected by chance (p=4.10−5). The average relative coronary artery disease risk increase per each of the multiple blood pressure-raising alleles observed in the consortium was 3.0% for systolic blood pressure-associated polymorphisms (95% confidence interval, 1.8 to 4.3%) and 2.9% for diastolic blood pressure-associated polymorphisms (95% confidence interval, 1.7 to 4.1%). In sub-studies, individuals carrying most systolic blood pressure- and diastolic blood pressure-related risk alleles (top quintile of a genetic risk score distribution) had 70% (95% confidence interval, 50-94%) and 59% (95% confidence interval, 40-81%) higher odds of having coronary artery disease, respectively, as compared to individuals in the bottom quintile. In conclusion, most blood pressure-associated polymorphisms also confer an increased risk for coronary artery disease. These findings are consistent with a causal relationship of increasing blood pressure to coronary artery disease. Genetic variants primarily affecting blood pressure contribute to the genetic basis of coronary artery disease.
doi:10.1161/HYPERTENSIONAHA.111.00275
PMCID: PMC3855241  PMID: 23478099
Blood pressure; polymorphism; genetics; coronary artery disease
2.  Identification of seven loci affecting mean telomere length and their association with disease 
Codd, Veryan | Nelson, Christopher P. | Albrecht, Eva | Mangino, Massimo | Deelen, Joris | Buxton, Jessica L. | Jan Hottenga, Jouke | Fischer, Krista | Esko, Tõnu | Surakka, Ida | Broer, Linda | Nyholt, Dale R. | Mateo Leach, Irene | Salo, Perttu | Hägg, Sara | Matthews, Mary K. | Palmen, Jutta | Norata, Giuseppe D. | O’Reilly, Paul F. | Saleheen, Danish | Amin, Najaf | Balmforth, Anthony J. | Beekman, Marian | de Boer, Rudolf A. | Böhringer, Stefan | Braund, Peter S. | Burton, Paul R. | de Craen, Anton J. M. | Denniff, Matthew | Dong, Yanbin | Douroudis, Konstantinos | Dubinina, Elena | Eriksson, Johan G. | Garlaschelli, Katia | Guo, Dehuang | Hartikainen, Anna-Liisa | Henders, Anjali K. | Houwing-Duistermaat, Jeanine J. | Kananen, Laura | Karssen, Lennart C. | Kettunen, Johannes | Klopp, Norman | Lagou, Vasiliki | van Leeuwen, Elisabeth M. | Madden, Pamela A. | Mägi, Reedik | Magnusson, Patrik K.E. | Männistö, Satu | McCarthy, Mark I. | Medland, Sarah E. | Mihailov, Evelin | Montgomery, Grant W. | Oostra, Ben A. | Palotie, Aarno | Peters, Annette | Pollard, Helen | Pouta, Anneli | Prokopenko, Inga | Ripatti, Samuli | Salomaa, Veikko | Suchiman, H. Eka D. | Valdes, Ana M. | Verweij, Niek | Viñuela, Ana | Wang, Xiaoling | Wichmann, H.-Erich | Widen, Elisabeth | Willemsen, Gonneke | Wright, Margaret J. | Xia, Kai | Xiao, Xiangjun | van Veldhuisen, Dirk J. | Catapano, Alberico L. | Tobin, Martin D. | Hall, Alistair S. | Blakemore, Alexandra I.F. | van Gilst, Wiek H. | Zhu, Haidong | Erdmann, Jeanette | Reilly, Muredach P. | Kathiresan, Sekar | Schunkert, Heribert | Talmud, Philippa J. | Pedersen, Nancy L. | Perola, Markus | Ouwehand, Willem | Kaprio, Jaakko | Martin, Nicholas G. | van Duijn, Cornelia M. | Hovatta, Iiris | Gieger, Christian | Metspalu, Andres | Boomsma, Dorret I. | Jarvelin, Marjo-Riitta | Slagboom, P. Eline | Thompson, John R. | Spector, Tim D. | van der Harst, Pim | Samani, Nilesh J.
Nature genetics  2013;45(4):422-427e2.
Inter-individual variation in mean leukocyte telomere length (LTL) is associated with cancer and several age-associated diseases. Here, in a genome-wide meta-analysis of 37,684 individuals with replication of selected variants in a further 10,739 individuals, we identified seven loci, including five novel loci, associated with mean LTL (P<5x10−8). Five of the loci contain genes (TERC, TERT, NAF1, OBFC1, RTEL1) that are known to be involved in telomere biology. Lead SNPs at two loci (TERC and TERT) associate with several cancers and other diseases, including idiopathic pulmonary fibrosis. Moreover, a genetic risk score analysis combining lead variants at all seven loci in 22,233 coronary artery disease cases and 64,762 controls showed an association of the alleles associated with shorter LTL with increased risk of CAD (21% (95% CI: 5–35%) per standard deviation in LTL, p=0.014). Our findings support a causal role of telomere length variation in some age-related diseases.
doi:10.1038/ng.2528
PMCID: PMC4006270  PMID: 23535734
3.  Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture 
Berndt, Sonja I. | Gustafsson, Stefan | Mägi, Reedik | Ganna, Andrea | Wheeler, Eleanor | Feitosa, Mary F. | Justice, Anne E. | Monda, Keri L. | Croteau-Chonka, Damien C. | Day, Felix R. | Esko, Tõnu | Fall, Tove | Ferreira, Teresa | Gentilini, Davide | Jackson, Anne U. | Luan, Jian’an | Randall, Joshua C. | Vedantam, Sailaja | Willer, Cristen J. | Winkler, Thomas W. | Wood, Andrew R. | Workalemahu, Tsegaselassie | Hu, Yi-Juan | Lee, Sang Hong | Liang, Liming | Lin, Dan-Yu | Min, Josine L. | Neale, Benjamin M. | Thorleifsson, Gudmar | Yang, Jian | Albrecht, Eva | Amin, Najaf | Bragg-Gresham, Jennifer L. | Cadby, Gemma | den Heijer, Martin | Eklund, Niina | Fischer, Krista | Goel, Anuj | Hottenga, Jouke-Jan | Huffman, Jennifer E. | Jarick, Ivonne | Johansson, Åsa | Johnson, Toby | Kanoni, Stavroula | Kleber, Marcus E. | König, Inke R. | Kristiansson, Kati | Kutalik, Zoltán | Lamina, Claudia | Lecoeur, Cecile | Li, Guo | Mangino, Massimo | McArdle, Wendy L. | Medina-Gomez, Carolina | Müller-Nurasyid, Martina | Ngwa, Julius S. | Nolte, Ilja M. | Paternoster, Lavinia | Pechlivanis, Sonali | Perola, Markus | Peters, Marjolein J. | Preuss, Michael | Rose, Lynda M. | Shi, Jianxin | Shungin, Dmitry | Smith, Albert Vernon | Strawbridge, Rona J. | Surakka, Ida | Teumer, Alexander | Trip, Mieke D. | Tyrer, Jonathan | Van Vliet-Ostaptchouk, Jana V. | Vandenput, Liesbeth | Waite, Lindsay L. | Zhao, Jing Hua | Absher, Devin | Asselbergs, Folkert W. | Atalay, Mustafa | Attwood, Antony P. | Balmforth, Anthony J. | Basart, Hanneke | Beilby, John | Bonnycastle, Lori L. | Brambilla, Paolo | Bruinenberg, Marcel | Campbell, Harry | Chasman, Daniel I. | Chines, Peter S. | Collins, Francis S. | Connell, John M. | Cookson, William | de Faire, Ulf | de Vegt, Femmie | Dei, Mariano | Dimitriou, Maria | Edkins, Sarah | Estrada, Karol | Evans, David M. | Farrall, Martin | Ferrario, Marco M. | Ferrières, Jean | Franke, Lude | Frau, Francesca | Gejman, Pablo V. | Grallert, Harald | Grönberg, Henrik | Gudnason, Vilmundur | Hall, Alistair S. | Hall, Per | Hartikainen, Anna-Liisa | Hayward, Caroline | Heard-Costa, Nancy L. | Heath, Andrew C. | Hebebrand, Johannes | Homuth, Georg | Hu, Frank B. | Hunt, Sarah E. | Hyppönen, Elina | Iribarren, Carlos | Jacobs, Kevin B. | Jansson, John-Olov | Jula, Antti | Kähönen, Mika | Kathiresan, Sekar | Kee, Frank | Khaw, Kay-Tee | Kivimaki, Mika | Koenig, Wolfgang | Kraja, Aldi T. | Kumari, Meena | Kuulasmaa, Kari | Kuusisto, Johanna | Laitinen, Jaana H. | Lakka, Timo A. | Langenberg, Claudia | Launer, Lenore J. | Lind, Lars | Lindström, Jaana | Liu, Jianjun | Liuzzi, Antonio | Lokki, Marja-Liisa | Lorentzon, Mattias | Madden, Pamela A. | Magnusson, Patrik K. | Manunta, Paolo | Marek, Diana | März, Winfried | Mateo Leach, Irene | McKnight, Barbara | Medland, Sarah E. | Mihailov, Evelin | Milani, Lili | Montgomery, Grant W. | Mooser, Vincent | Mühleisen, Thomas W. | Munroe, Patricia B. | Musk, Arthur W. | Narisu, Narisu | Navis, Gerjan | Nicholson, George | Nohr, Ellen A. | Ong, Ken K. | Oostra, Ben A. | Palmer, Colin N.A. | Palotie, Aarno | Peden, John F. | Pedersen, Nancy | Peters, Annette | Polasek, Ozren | Pouta, Anneli | Pramstaller, Peter P. | Prokopenko, Inga | Pütter, Carolin | Radhakrishnan, Aparna | Raitakari, Olli | Rendon, Augusto | Rivadeneira, Fernando | Rudan, Igor | Saaristo, Timo E. | Sambrook, Jennifer G. | Sanders, Alan R. | Sanna, Serena | Saramies, Jouko | Schipf, Sabine | Schreiber, Stefan | Schunkert, Heribert | Shin, So-Youn | Signorini, Stefano | Sinisalo, Juha | Skrobek, Boris | Soranzo, Nicole | Stančáková, Alena | Stark, Klaus | Stephens, Jonathan C. | Stirrups, Kathleen | Stolk, Ronald P. | Stumvoll, Michael | Swift, Amy J. | Theodoraki, Eirini V. | Thorand, Barbara | Tregouet, David-Alexandre | Tremoli, Elena | Van der Klauw, Melanie M. | van Meurs, Joyce B.J. | Vermeulen, Sita H. | Viikari, Jorma | Virtamo, Jarmo | Vitart, Veronique | Waeber, Gérard | Wang, Zhaoming | Widén, Elisabeth | Wild, Sarah H. | Willemsen, Gonneke | Winkelmann, Bernhard R. | Witteman, Jacqueline C.M. | Wolffenbuttel, Bruce H.R. | Wong, Andrew | Wright, Alan F. | Zillikens, M. Carola | Amouyel, Philippe | Boehm, Bernhard O. | Boerwinkle, Eric | Boomsma, Dorret I. | Caulfield, Mark J. | Chanock, Stephen J. | Cupples, L. Adrienne | Cusi, Daniele | Dedoussis, George V. | Erdmann, Jeanette | Eriksson, Johan G. | Franks, Paul W. | Froguel, Philippe | Gieger, Christian | Gyllensten, Ulf | Hamsten, Anders | Harris, Tamara B. | Hengstenberg, Christian | Hicks, Andrew A. | Hingorani, Aroon | Hinney, Anke | Hofman, Albert | Hovingh, Kees G. | Hveem, Kristian | Illig, Thomas | Jarvelin, Marjo-Riitta | Jöckel, Karl-Heinz | Keinanen-Kiukaanniemi, Sirkka M. | Kiemeney, Lambertus A. | Kuh, Diana | Laakso, Markku | Lehtimäki, Terho | Levinson, Douglas F. | Martin, Nicholas G. | Metspalu, Andres | Morris, Andrew D. | Nieminen, Markku S. | Njølstad, Inger | Ohlsson, Claes | Oldehinkel, Albertine J. | Ouwehand, Willem H. | Palmer, Lyle J. | Penninx, Brenda | Power, Chris | Province, Michael A. | Psaty, Bruce M. | Qi, Lu | Rauramaa, Rainer | Ridker, Paul M. | Ripatti, Samuli | Salomaa, Veikko | Samani, Nilesh J. | Snieder, Harold | Sørensen, Thorkild I.A. | Spector, Timothy D. | Stefansson, Kari | Tönjes, Anke | Tuomilehto, Jaakko | Uitterlinden, André G. | Uusitupa, Matti | van der Harst, Pim | Vollenweider, Peter | Wallaschofski, Henri | Wareham, Nicholas J. | Watkins, Hugh | Wichmann, H.-Erich | Wilson, James F. | Abecasis, Goncalo R. | Assimes, Themistocles L. | Barroso, Inês | Boehnke, Michael | Borecki, Ingrid B. | Deloukas, Panos | Fox, Caroline S. | Frayling, Timothy | Groop, Leif C. | Haritunian, Talin | Heid, Iris M. | Hunter, David | Kaplan, Robert C. | Karpe, Fredrik | Moffatt, Miriam | Mohlke, Karen L. | O’Connell, Jeffrey R. | Pawitan, Yudi | Schadt, Eric E. | Schlessinger, David | Steinthorsdottir, Valgerdur | Strachan, David P. | Thorsteinsdottir, Unnur | van Duijn, Cornelia M. | Visscher, Peter M. | Di Blasio, Anna Maria | Hirschhorn, Joel N. | Lindgren, Cecilia M. | Morris, Andrew P. | Meyre, David | Scherag, André | McCarthy, Mark I. | Speliotes, Elizabeth K. | North, Kari E. | Loos, Ruth J.F. | Ingelsson, Erik
Nature genetics  2013;45(5):501-512.
Approaches exploiting extremes of the trait distribution may reveal novel loci for common traits, but it is unknown whether such loci are generalizable to the general population. In a genome-wide search for loci associated with upper vs. lower 5th percentiles of body mass index, height and waist-hip ratio, as well as clinical classes of obesity including up to 263,407 European individuals, we identified four new loci (IGFBP4, H6PD, RSRC1, PPP2R2A) influencing height detected in the tails and seven new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3, ZZZ3) for clinical classes of obesity. Further, we show that there is large overlap in terms of genetic structure and distribution of variants between traits based on extremes and the general population and little etiologic heterogeneity between obesity subgroups.
doi:10.1038/ng.2606
PMCID: PMC3973018  PMID: 23563607
4.  Distinct Loci in the CHRNA5/CHRNA3/CHRNB4 Gene Cluster Are Associated With Onset of Regular Smoking 
Stephens, Sarah H. | Hartz, Sarah M. | Hoft, Nicole R. | Saccone, Nancy L. | Corley, Robin C. | Hewitt, John K. | Hopfer, Christian J. | Breslau, Naomi | Coon, Hilary | Chen, Xiangning | Ducci, Francesca | Dueker, Nicole | Franceschini, Nora | Frank, Josef | Han, Younghun | Hansel, Nadia N. | Jiang, Chenhui | Korhonen, Tellervo | Lind, Penelope A. | Liu, Jason | Lyytikäinen, Leo-Pekka | Michel, Martha | Shaffer, John R. | Short, Susan E. | Sun, Juzhong | Teumer, Alexander | Thompson, John R. | Vogelzangs, Nicole | Vink, Jacqueline M. | Wenzlaff, Angela | Wheeler, William | Yang, Bao-Zhu | Aggen, Steven H. | Balmforth, Anthony J. | Baumeister, Sebastian E. | Beaty, Terri H. | Benjamin, Daniel J. | Bergen, Andrew W. | Broms, Ulla | Cesarini, David | Chatterjee, Nilanjan | Chen, Jingchun | Cheng, Yu-Ching | Cichon, Sven | Couper, David | Cucca, Francesco | Dick, Danielle | Foroud, Tatiana | Furberg, Helena | Giegling, Ina | Gillespie, Nathan A. | Gu, Fangyi | Hall, Alistair S. | Hällfors, Jenni | Han, Shizhong | Hartmann, Annette M. | Heikkilä, Kauko | Hickie, Ian B. | Hottenga, Jouke Jan | Jousilahti, Pekka | Kaakinen, Marika | Kähönen, Mika | Koellinger, Philipp D. | Kittner, Stephen | Konte, Bettina | Landi, Maria-Teresa | Laatikainen, Tiina | Leppert, Mark | Levy, Steven M. | Mathias, Rasika A. | McNeil, Daniel W. | Medland, Sarah E. | Montgomery, Grant W. | Murray, Tanda | Nauck, Matthias | North, Kari E. | Paré, Peter D. | Pergadia, Michele | Ruczinski, Ingo | Salomaa, Veikko | Viikari, Jorma | Willemsen, Gonneke | Barnes, Kathleen C. | Boerwinkle, Eric | Boomsma, Dorret I. | Caporaso, Neil | Edenberg, Howard J. | Francks, Clyde | Gelernter, Joel | Grabe, Hans Jörgen | Hops, Hyman | Jarvelin, Marjo-Riitta | Johannesson, Magnus | Kendler, Kenneth S. | Lehtimäki, Terho | Magnusson, Patrik K.E. | Marazita, Mary L. | Marchini, Jonathan | Mitchell, Braxton D. | Nöthen, Markus M. | Penninx, Brenda W. | Raitakari, Olli | Rietschel, Marcella | Rujescu, Dan | Samani, Nilesh J. | Schwartz, Ann G. | Shete, Sanjay | Spitz, Margaret | Swan, Gary E. | Völzke, Henry | Veijola, Juha | Wei, Qingyi | Amos, Chris | Cannon, Dale S. | Grucza, Richard | Hatsukami, Dorothy | Heath, Andrew | Johnson, Eric O. | Kaprio, Jaakko | Madden, Pamela | Martin, Nicholas G. | Stevens, Victoria L. | Weiss, Robert B. | Kraft, Peter | Bierut, Laura J. | Ehringer, Marissa A.
Genetic epidemiology  2013;37(8):846-859.
Neuronal nicotinic acetylcholine receptor (nAChR) genes (CHRNA5/CHRNA3/CHRNB4) have been reproducibly associated with nicotine dependence, smoking behaviors, and lung cancer risk. Of the few reports that have focused on early smoking behaviors, association results have been mixed. This meta-analysis examines early smoking phenotypes and SNPs in the gene cluster to determine: (1) whether the most robust association signal in this region (rs16969968) for other smoking behaviors is also associated with early behaviors, and/or (2) if additional statistically independent signals are important in early smoking. We focused on two phenotypes: age of tobacco initiation (AOI) and age of first regular tobacco use (AOS). This study included 56,034 subjects (41 groups) spanning nine countries and evaluated five SNPs including rs1948, rs16969968, rs578776, rs588765, and rs684513. Each dataset was analyzed using a centrally generated script. Meta-analyses were conducted from summary statistics. AOS yielded significant associations with SNPs rs578776 (beta = 0.02, P = 0.004), rs1948 (beta = 0.023, P = 0.018), and rs684513 (beta = 0.032, P = 0.017), indicating protective effects. There were no significant associations for the AOI phenotype. Importantly, rs16969968, the most replicated signal in this region for nicotine dependence, cigarettes per day, and cotinine levels, was not associated with AOI (P = 0.59) or AOS (P = 0.92). These results provide important insight into the complexity of smoking behavior phenotypes, and suggest that association signals in the CHRNA5/A3/B4 gene cluster affecting early smoking behaviors may be different from those affecting the mature nicotine dependence phenotype.
doi:10.1002/gepi.21760
PMCID: PMC3947535  PMID: 24186853
CHRNA5; CHRNA3; CHRNB4; meta-analysis; nicotine; smoke
5.  Genetic variants influencing circulating lipid levels and risk of coronary artery disease 
Objectives
Genetic studies might provide new insights into the biological mechanisms underlying lipid metabolism and risk of CAD. We therefore conducted a genome-wide association study to identify novel genetic determinants of LDL-c, HDL-c and triglycerides.
Methods and results
We combined genome-wide association data from eight studies, comprising up to 17,723 participants with information on circulating lipid concentrations. We did independent replication studies in up to 37,774 participants from eight populations and also in a population of Indian Asian descent. We also assessed the association between SNPs at lipid loci and risk of CAD in up to 9,633 cases and 38,684 controls.
We identified four novel genetic loci that showed reproducible associations with lipids (P values 1.6 × 10−8 to 3.1 × 10−10). These include a potentially functional SNP in the SLC39A8 gene for HDL-c, a SNP near the MYLIP/GMPR and PPP1R3B genes for LDL-c and at the AFF1 gene for triglycerides. SNPs showing strong statistical association with one or more lipid traits at the CELSR2, APOB, APOE-C1-C4-C2 cluster, LPL, ZNF259-APOA5-A4-C3-A1 cluster and TRIB1 loci were also associated with CAD risk (P values 1.1 × 10−3 to 1.2 × 10−9).
Conclusions
We have identified four novel loci associated with circulating lipids. We also show that in addition to those that are largely associated with LDL-c, genetic loci mainly associated with circulating triglycerides and HDL-c are also associated with risk of CAD. These findings potentially provide new insights into the biological mechanisms underlying lipid metabolism and CAD risk.
doi:10.1161/ATVBAHA.109.201020
PMCID: PMC3891568  PMID: 20864672
lipids; lipoproteins; genetics; epidemiology
6.  Secretory Phospholipase A2-IIA and Cardiovascular Disease 
Holmes, Michael V. | Simon, Tabassome | Exeter, Holly J. | Folkersen, Lasse | Asselbergs, Folkert W. | Guardiola, Montse | Cooper, Jackie A. | Palmen, Jutta | Hubacek, Jaroslav A. | Carruthers, Kathryn F. | Horne, Benjamin D. | Brunisholz, Kimberly D. | Mega, Jessica L. | van Iperen, Erik P.A. | Li, Mingyao | Leusink, Maarten | Trompet, Stella | Verschuren, Jeffrey J.W. | Hovingh, G. Kees | Dehghan, Abbas | Nelson, Christopher P. | Kotti, Salma | Danchin, Nicolas | Scholz, Markus | Haase, Christiane L. | Rothenbacher, Dietrich | Swerdlow, Daniel I. | Kuchenbaecker, Karoline B. | Staines-Urias, Eleonora | Goel, Anuj | van 't Hooft, Ferdinand | Gertow, Karl | de Faire, Ulf | Panayiotou, Andrie G. | Tremoli, Elena | Baldassarre, Damiano | Veglia, Fabrizio | Holdt, Lesca M. | Beutner, Frank | Gansevoort, Ron T. | Navis, Gerjan J. | Mateo Leach, Irene | Breitling, Lutz P. | Brenner, Hermann | Thiery, Joachim | Dallmeier, Dhayana | Franco-Cereceda, Anders | Boer, Jolanda M.A. | Stephens, Jeffrey W. | Hofker, Marten H. | Tedgui, Alain | Hofman, Albert | Uitterlinden, André G. | Adamkova, Vera | Pitha, Jan | Onland-Moret, N. Charlotte | Cramer, Maarten J. | Nathoe, Hendrik M. | Spiering, Wilko | Klungel, Olaf H. | Kumari, Meena | Whincup, Peter H. | Morrow, David A. | Braund, Peter S. | Hall, Alistair S. | Olsson, Anders G. | Doevendans, Pieter A. | Trip, Mieke D. | Tobin, Martin D. | Hamsten, Anders | Watkins, Hugh | Koenig, Wolfgang | Nicolaides, Andrew N. | Teupser, Daniel | Day, Ian N.M. | Carlquist, John F. | Gaunt, Tom R. | Ford, Ian | Sattar, Naveed | Tsimikas, Sotirios | Schwartz, Gregory G. | Lawlor, Debbie A. | Morris, Richard W. | Sandhu, Manjinder S. | Poledne, Rudolf | Maitland-van der Zee, Anke H. | Khaw, Kay-Tee | Keating, Brendan J. | van der Harst, Pim | Price, Jackie F. | Mehta, Shamir R. | Yusuf, Salim | Witteman, Jaqueline C.M. | Franco, Oscar H. | Jukema, J. Wouter | de Knijff, Peter | Tybjaerg-Hansen, Anne | Rader, Daniel J. | Farrall, Martin | Samani, Nilesh J. | Kivimaki, Mika | Fox, Keith A.A. | Humphries, Steve E. | Anderson, Jeffrey L. | Boekholdt, S. Matthijs | Palmer, Tom M. | Eriksson, Per | Paré, Guillaume | Hingorani, Aroon D. | Sabatine, Marc S. | Mallat, Ziad | Casas, Juan P. | Talmud, Philippa J.
Objectives
This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease.
Background
Higher circulating levels of sPLA2-IIA mass or sPLA2 enzyme activity have been associated with increased risk of cardiovascular events. However, it is not clear if this association is causal. A recent phase III clinical trial of an sPLA2 inhibitor (varespladib) was stopped prematurely for lack of efficacy.
Methods
We conducted a Mendelian randomization meta-analysis of 19 general population studies (8,021 incident, 7,513 prevalent major vascular events [MVE] in 74,683 individuals) and 10 acute coronary syndrome (ACS) cohorts (2,520 recurrent MVE in 18,355 individuals) using rs11573156, a variant in PLA2G2A encoding the sPLA2-IIA isoenzyme, as an instrumental variable.
Results
PLA2G2A rs11573156 C allele associated with lower circulating sPLA2-IIA mass (38% to 44%) and sPLA2 enzyme activity (3% to 23%) per C allele. The odds ratio (OR) for MVE per rs11573156 C allele was 1.02 (95% confidence interval [CI]: 0.98 to 1.06) in general populations and 0.96 (95% CI: 0.90 to 1.03) in ACS cohorts. In the general population studies, the OR derived from the genetic instrumental variable analysis for MVE for a 1-log unit lower sPLA2-IIA mass was 1.04 (95% CI: 0.96 to 1.13), and differed from the non-genetic observational estimate (OR: 0.69; 95% CI: 0.61 to 0.79). In the ACS cohorts, both the genetic instrumental variable and observational ORs showed a null association with MVE. Instrumental variable analysis failed to show associations between sPLA2 enzyme activity and MVE.
Conclusions
Reducing sPLA2-IIA mass is unlikely to be a useful therapeutic goal for preventing cardiovascular events.
doi:10.1016/j.jacc.2013.06.044
PMCID: PMC3826105  PMID: 23916927
cardiovascular diseases; drug development; epidemiology; genetics; Mendelian randomization; ACS, acute coronary syndrome(s); CI, confidence interval; LDL-C, low-density lipoprotein cholesterol; MI, myocardial infarction; MVE, major vascular events; OR, odds ratio; RCT, randomized clinical trial; SNP, single-nucleotide polymorphism; sPLA2, secretory phospholipase A2
7.  A biophysical model of kiwifruit (Actinidia deliciosa) berry development 
Journal of Experimental Botany  2013;64(18):5473-5483.
A model of kiwifruit berry development is presented, building on the model of Fishman and Génard used for peach fruit. That model has been extended to incorporate a number of important features of kiwifruit growth. First, the kiwifruit berry is attached to the stem through a pedicel/receptacle complex which contributes significantly to the hydraulic resistance between the stem and the fruit, and this resistance changes considerably during the season. Second, much of the carbohydrate in kiwifruit berries is stored as starch until the fruit matures late in the season, when the starch hydrolyses to soluble sugars. This starch storage has a major effect on the osmotic potential of the fruit, so an existing model of kiwifruit starch dynamics was included in the model. Using previously published approaches, we also included elasticity and extended the modelling period to cover both the cell division and cell expansion phases of growth. The resulting model showed close simulation of field observations of fresh weight, dry matter, starch, and soluble solids in kiwifruit. Comparison with continuous measurements of fruit diameter confirmed that elasticity was needed to adequately simulate observed diurnal variation in fruit size. Sensitivity analyses suggested that the model is particularly sensitive to variation in inputs relating to water (stem water potential and the humidity of the air), and to parameters controlling cell expansion (cell wall extensibility). Some limitations in the model structure were identified, suggesting that a revised model including current apoplastic/symplastic concepts needs to be developed.
doi:10.1093/jxb/ert317
PMCID: PMC3871809  PMID: 24123250
Fruit growth model; mass flow; osmotic pressure; pedicel; starch; transport; water.
8.  Bayesian refinement of association signals for 14 loci in 3 common diseases 
Nature genetics  2012;44(12):1294-1301.
To further investigate susceptibility loci identified by genome-wide association studies, we genotyped 5,500 SNPs across 14 associated regions in 8,000 samples from a control group and 3 diseases: type 2 diabetes (T2D), coronary artery disease (CAD) and Graves’ disease. We defined, using Bayes theorem, credible sets of SNPs that were 95% likely, based on posterior probability, to contain the causal disease-associated SNPs. In 3 of the 14 regions, TCF7L2 (T2D), CTLA4 (Graves’ disease) and CDKN2A-CDKN2B (T2D), much of the posterior probability rested on a single SNP, and, in 4 other regions (CDKN2A-CDKN2B (CAD) and CDKAL1, FTO and HHEX (T2D)), the 95% sets were small, thereby excluding most SNPs as potentially causal. Very few SNPs in our credible sets had annotated functions, illustrating the limitations in understanding the mechanisms underlying susceptibility to common diseases. Our results also show the value of more detailed mapping to target sequences for functional studies.
doi:10.1038/ng.2435
PMCID: PMC3791416  PMID: 23104008
9.  Variants near TERC are associated with mean telomere length. 
Nature genetics  2010;42(3):197-199.
We conducted genome-wide association analyses of mean leukocyte telomere length in 2,917 subjects and follow-up replication analyses in 9,492 and identified a locus on 3q26 encompassing the telomerase RNA component TERC, with compelling evidence for association (rs12696304, combined P value 3.72×10−14). Each copy of the minor allele of rs12696304 was associated with ≈75 base pairs shorter mean telomere length equivalent to ≈3.6 years of age-related attrition of mean telomere length.
doi:10.1038/ng.532
PMCID: PMC3773906  PMID: 20139977
10.  Increased Genetic Vulnerability to Smoking at CHRNA5 in Early-Onset Smokers 
Hartz, Sarah M. | Short, Susan E. | Saccone, Nancy L. | Culverhouse, Robert | Chen, LiShiun | Schwantes-An, Tae-Hwi | Coon, Hilary | Han, Younghun | Stephens, Sarah H. | Sun, Juzhong | Chen, Xiangning | Ducci, Francesca | Dueker, Nicole | Franceschini, Nora | Frank, Josef | Geller, Frank | Guđbjartsson, Daniel | Hansel, Nadia N. | Jiang, Chenhui | Keskitalo-Vuokko, Kaisu | Liu, Zhen | Lyytikäinen, Leo-Pekka | Michel, Martha | Rawal, Rajesh | Hum, Sc | Rosenberger, Albert | Scheet, Paul | Shaffer, John R. | Teumer, Alexander | Thompson, John R. | Vink, Jacqueline M. | Vogelzangs, Nicole | Wenzlaff, Angela S. | Wheeler, William | Xiao, Xiangjun | Yang, Bao-Zhu | Aggen, Steven H. | Balmforth, Anthony J. | Baumeister, Sebastian E. | Beaty, Terri | Bennett, Siiri | Bergen, Andrew W. | Boyd, Heather A. | Broms, Ulla | Campbell, Harry | Chatterjee, Nilanjan | Chen, Jingchun | Cheng, Yu-Ching | Cichon, Sven | Couper, David | Cucca, Francesco | Dick, Danielle M. | Foroud, Tatiana | Furberg, Helena | Giegling, Ina | Gu, Fangyi | Hall, Alistair S. | Hällfors, Jenni | Han, Shizhong | Hartmann, Annette M. | Hayward, Caroline | Heikkilä, Kauko | Lic, Phil | Hewitt, John K. | Hottenga, Jouke Jan | Jensen, Majken K. | Jousilahti, Pekka | Kaakinen, Marika | Kittner, Steven J. | Konte, Bettina | Korhonen, Tellervo | Landi, Maria-Teresa | Laatikainen, Tiina | Leppert, Mark | Levy, Steven M. | Mathias, Rasika A. | McNeil, Daniel W. | Medland, Sarah E. | Montgomery, Grant W. | Muley, Thomas | Murray, Tanda | Nauck, Matthias | North, Kari | Pergadia, Michele | Polasek, Ozren | Ramos, Erin M. | Ripatti, Samuli | Risch, Angela | Ruczinski, Ingo | Rudan, Igor | Salomaa, Veikko | Schlessinger, David | Styrkársdóttir, Unnur | Terracciano, Antonio | Uda, Manuela | Willemsen, Gonneke | Wu, Xifeng | Abecasis, Goncalo | Barnes, Kathleen | Bickeböller, Heike | Boerwinkle, Eric | Boomsma, Dorret I. | Caporaso, Neil | Duan, Jubao | Edenberg, Howard J. | Francks, Clyde | Gejman, Pablo V. | Gelernter, Joel | Grabe, Hans Jörgen | Hops, Hyman | Jarvelin, Marjo-Riitta | Viikari, Jorma | Kähönen, Mika | Kendler, Kenneth S. | Lehtimäki, Terho | Levinson, Douglas F. | Marazita, Mary L. | Marchini, Jonathan | Melbye, Mads | Mitchell, Braxton D. | Murray, Jeffrey C. | Nöthen, Markus M. | Penninx, Brenda W. | Raitakari, Olli | Rietschel, Marcella | Rujescu, Dan | Samani, Nilesh J. | Sanders, Alan R. | Schwartz, Ann G. | Shete, Sanjay | Shi, Jianxin | Spitz, Margaret | Stefansson, Kari | Swan, Gary E. | Thorgeirsson, Thorgeir | Völzke, Henry | Wei, Qingyi | Wichmann, H.-Erich | Amos, Christopher I. | Breslau, Naomi | Cannon, Dale S. | Ehringer, Marissa | Grucza, Richard | Hatsukami, Dorothy | Heath, Andrew | Johnson, Eric O. | Kaprio, Jaakko | Madden, Pamela | Martin, Nicholas G. | Stevens, Victoria L. | Stitzel, Jerry A. | Weiss, Robert B. | Kraft, Peter | Bierut, Laura J.
Archives of general psychiatry  2012;69(8):854-860.
Context
Recent studies have shown an association between cigarettes per day (CPD) and a nonsynonymous single-nucleotide polymorphism in CHRNA5, rs16969968.
Objective
To determine whether the association between rs16969968 and smoking is modified by age at onset of regular smoking.
Data Sources
Primary data.
Study Selection
Available genetic studies containing measures of CPD and the genotype of rs16969968 or its proxy.
Data Extraction
Uniform statistical analysis scripts were run locally. Starting with 94 050 ever-smokers from 43 studies, we extracted the heavy smokers (CPD >20) and light smokers (CPD ≤10) with age-at-onset information, reducing the sample size to 33 348. Each study was stratified into early-onset smokers (age at onset ≤16 years) and late-onset smokers (age at onset >16 years), and a logistic regression of heavy vs light smoking with the rs16969968 genotype was computed for each stratum. Meta-analysis was performed within each age-at-onset stratum.
Data Synthesis
Individuals with 1 risk allele at rs16969968 who were early-onset smokers were significantly more likely to be heavy smokers in adulthood (odds ratio [OR]=1.45; 95% CI, 1.36–1.55; n=13 843) than were carriers of the risk allele who were late-onset smokers (OR = 1.27; 95% CI, 1.21–1.33, n = 19 505) (P = .01).
Conclusion
These results highlight an increased genetic vulnerability to smoking in early-onset smokers.
doi:10.1001/archgenpsychiatry.2012.124
PMCID: PMC3482121  PMID: 22868939
11.  The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis 
Fall, Tove | Hägg, Sara | Mägi, Reedik | Ploner, Alexander | Fischer, Krista | Horikoshi, Momoko | Sarin, Antti-Pekka | Thorleifsson, Gudmar | Ladenvall, Claes | Kals, Mart | Kuningas, Maris | Draisma, Harmen H. M. | Ried, Janina S. | van Zuydam, Natalie R. | Huikari, Ville | Mangino, Massimo | Sonestedt, Emily | Benyamin, Beben | Nelson, Christopher P. | Rivera, Natalia V. | Kristiansson, Kati | Shen, Huei-yi | Havulinna, Aki S. | Dehghan, Abbas | Donnelly, Louise A. | Kaakinen, Marika | Nuotio, Marja-Liisa | Robertson, Neil | de Bruijn, Renée F. A. G. | Ikram, M. Arfan | Amin, Najaf | Balmforth, Anthony J. | Braund, Peter S. | Doney, Alexander S. F. | Döring, Angela | Elliott, Paul | Esko, Tõnu | Franco, Oscar H. | Gretarsdottir, Solveig | Hartikainen, Anna-Liisa | Heikkilä, Kauko | Herzig, Karl-Heinz | Holm, Hilma | Hottenga, Jouke Jan | Hyppönen, Elina | Illig, Thomas | Isaacs, Aaron | Isomaa, Bo | Karssen, Lennart C. | Kettunen, Johannes | Koenig, Wolfgang | Kuulasmaa, Kari | Laatikainen, Tiina | Laitinen, Jaana | Lindgren, Cecilia | Lyssenko, Valeriya | Läärä, Esa | Rayner, Nigel W. | Männistö, Satu | Pouta, Anneli | Rathmann, Wolfgang | Rivadeneira, Fernando | Ruokonen, Aimo | Savolainen, Markku J. | Sijbrands, Eric J. G. | Small, Kerrin S. | Smit, Jan H. | Steinthorsdottir, Valgerdur | Syvänen, Ann-Christine | Taanila, Anja | Tobin, Martin D. | Uitterlinden, Andre G. | Willems, Sara M. | Willemsen, Gonneke | Witteman, Jacqueline | Perola, Markus | Evans, Alun | Ferrières, Jean | Virtamo, Jarmo | Kee, Frank | Tregouet, David-Alexandre | Arveiler, Dominique | Amouyel, Philippe | Ferrario, Marco M. | Brambilla, Paolo | Hall, Alistair S. | Heath, Andrew C. | Madden, Pamela A. F. | Martin, Nicholas G. | Montgomery, Grant W. | Whitfield, John B. | Jula, Antti | Knekt, Paul | Oostra, Ben | van Duijn, Cornelia M. | Penninx, Brenda W. J. H. | Davey Smith, George | Kaprio, Jaakko | Samani, Nilesh J. | Gieger, Christian | Peters, Annette | Wichmann, H.-Erich | Boomsma, Dorret I. | de Geus, Eco J. C. | Tuomi, TiinaMaija | Power, Chris | Hammond, Christopher J. | Spector, Tim D. | Lind, Lars | Orho-Melander, Marju | Palmer, Colin Neil Alexander | Morris, Andrew D. | Groop, Leif | Järvelin, Marjo-Riitta | Salomaa, Veikko | Vartiainen, Erkki | Hofman, Albert | Ripatti, Samuli | Metspalu, Andres | Thorsteinsdottir, Unnur | Stefansson, Kari | Pedersen, Nancy L. | McCarthy, Mark I. | Ingelsson, Erik | Prokopenko, Inga
PLoS Medicine  2013;10(6):e1001474.
In this study, Prokopenko and colleagues provide novel evidence for causal relationship between adiposity and heart failure and increased liver enzymes using a Mendelian randomization study design.
Please see later in the article for the Editors' Summary
Background
The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach.
Methods and Findings
We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses.
Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001).
Conclusions
We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.
Please see later in the article for the Editors' Summary
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a major cause of illness and death worldwide. In the US, for example, coronary heart disease—a CVD in which narrowing of the heart's blood vessels by fatty deposits slows the blood supply to the heart and may eventually cause a heart attack—is the leading cause of death, and stroke—a CVD in which the brain's blood supply is interrupted—is the fourth leading cause of death. Globally, both the incidence of CVD (the number of new cases in a population every year) and its prevalence (the proportion of the population with CVD) are increasing, particularly in low- and middle-income countries. This increasing burden of CVD is occurring in parallel with a global increase in the incidence and prevalence of obesity—having an unhealthy amount of body fat (adiposity)—and of metabolic diseases—conditions such as diabetes in which metabolism (the processes that the body uses to make energy from food) is disrupted, with resulting high blood sugar and damage to the blood vessels.
Why Was This Study Done?
Epidemiological studies—investigations that record the patterns and causes of disease in populations—have reported an association between adiposity (indicated by an increased body mass index [BMI], which is calculated by dividing body weight in kilograms by height in meters squared) and cardiometabolic traits such as coronary heart disease, stroke, heart failure (a condition in which the heart is incapable of pumping sufficient amounts of blood around the body), diabetes, high blood pressure (hypertension), and high blood cholesterol (dyslipidemia). However, observational studies cannot prove that adiposity causes any particular cardiometabolic trait because overweight individuals may share other characteristics (confounding factors) that are the real causes of both obesity and the cardiometabolic disease. Moreover, it is possible that having CVD or a metabolic disease causes obesity (reverse causation). For example, individuals with heart failure cannot do much exercise, so heart failure may cause obesity rather than vice versa. Here, the researchers use “Mendelian randomization” to examine whether adiposity is causally related to various cardiometabolic traits. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. It is known that a genetic variant (rs9939609) within the genome region that encodes the fat-mass- and obesity-associated gene (FTO) is associated with increased BMI. Thus, an investigation of the associations between rs9939609 and cardiometabolic traits can indicate whether obesity is causally related to these traits.
What Did the Researchers Do and Find?
The researchers analyzed the association between rs9939609 (the “instrumental variable,” or IV) and BMI, between rs9939609 and 24 cardiometabolic traits, and between BMI and the same traits using genetic and health data collected in 36 population-based studies of nearly 200,000 individuals of European descent. They then quantified the strength of the causal association between BMI and the cardiometabolic traits by calculating “IV estimators.” Higher BMI showed a causal relationship with heart failure, metabolic syndrome (a combination of medical disorders that increases the risk of developing CVD), type 2 diabetes, dyslipidemia, hypertension, increased blood levels of liver enzymes (an indicator of liver damage; some metabolic disorders involve liver damage), and several other cardiometabolic traits. All the IV estimators were similar to the BMI–cardiovascular trait associations (observational estimates) derived from the same individuals, with the exception of diabetes, where the causal estimate was higher than the observational estimate, probably because the observational estimate is based on a single BMI measurement, whereas the causal estimate considers lifetime changes in BMI.
What Do These Findings Mean?
Like all Mendelian randomization studies, the reliability of the causal associations reported here depends on several assumptions made by the researchers. Nevertheless, these findings provide support for many previously suspected and biologically plausible causal relationships, such as that between adiposity and hypertension. They also provide new insights into the causal effect of obesity on liver enzyme levels and on heart failure. In the latter case, these findings suggest that a one-unit increase in BMI might increase the incidence of heart failure by 17%. In the US, this corresponds to 113,000 additional cases of heart failure for every unit increase in BMI at the population level. Although additional studies are needed to confirm and extend these findings, these results suggest that global efforts to reduce the burden of obesity will likely also reduce the occurrence of CVD and metabolic disorders.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001474.
The American Heart Association provides information on all aspects of cardiovascular disease and tips on keeping the heart healthy, including weight management (in several languages); its website includes personal stories about stroke and heart attacks
The US Centers for Disease Control and Prevention has information on heart disease, stroke, and all aspects of overweight and obesity (in English and Spanish)
The UK National Health Service Choices website provides information about cardiovascular disease and obesity, including a personal story about losing weight
The World Health Organization provides information on obesity (in several languages)
The International Obesity Taskforce provides information about the global obesity epidemic
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
MedlinePlus provides links to other sources of information on heart disease, on vascular disease, on obesity, and on metabolic disorders (in English and Spanish)
The International Association for the Study of Obesity provides maps and information about obesity worldwide
The International Diabetes Federation has a web page that describes types, complications, and risk factors of diabetes
doi:10.1371/journal.pmed.1001474
PMCID: PMC3692470  PMID: 23824655
12.  Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits 
Randall, Joshua C. | Winkler, Thomas W. | Kutalik, Zoltán | Berndt, Sonja I. | Jackson, Anne U. | Monda, Keri L. | Kilpeläinen, Tuomas O. | Esko, Tõnu | Mägi, Reedik | Li, Shengxu | Workalemahu, Tsegaselassie | Feitosa, Mary F. | Croteau-Chonka, Damien C. | Day, Felix R. | Fall, Tove | Ferreira, Teresa | Gustafsson, Stefan | Locke, Adam E. | Mathieson, Iain | Scherag, Andre | Vedantam, Sailaja | Wood, Andrew R. | Liang, Liming | Steinthorsdottir, Valgerdur | Thorleifsson, Gudmar | Dermitzakis, Emmanouil T. | Dimas, Antigone S. | Karpe, Fredrik | Min, Josine L. | Nicholson, George | Clegg, Deborah J. | Person, Thomas | Krohn, Jon P. | Bauer, Sabrina | Buechler, Christa | Eisinger, Kristina | Bonnefond, Amélie | Froguel, Philippe | Hottenga, Jouke-Jan | Prokopenko, Inga | Waite, Lindsay L. | Harris, Tamara B. | Smith, Albert Vernon | Shuldiner, Alan R. | McArdle, Wendy L. | Caulfield, Mark J. | Munroe, Patricia B. | Grönberg, Henrik | Chen, Yii-Der Ida | Li, Guo | Beckmann, Jacques S. | Johnson, Toby | Thorsteinsdottir, Unnur | Teder-Laving, Maris | Khaw, Kay-Tee | Wareham, Nicholas J. | Zhao, Jing Hua | Amin, Najaf | Oostra, Ben A. | Kraja, Aldi T. | Province, Michael A. | Cupples, L. Adrienne | Heard-Costa, Nancy L. | Kaprio, Jaakko | Ripatti, Samuli | Surakka, Ida | Collins, Francis S. | Saramies, Jouko | Tuomilehto, Jaakko | Jula, Antti | Salomaa, Veikko | Erdmann, Jeanette | Hengstenberg, Christian | Loley, Christina | Schunkert, Heribert | Lamina, Claudia | Wichmann, H. Erich | Albrecht, Eva | Gieger, Christian | Hicks, Andrew A. | Johansson, Åsa | Pramstaller, Peter P. | Kathiresan, Sekar | Speliotes, Elizabeth K. | Penninx, Brenda | Hartikainen, Anna-Liisa | Jarvelin, Marjo-Riitta | Gyllensten, Ulf | Boomsma, Dorret I. | Campbell, Harry | Wilson, James F. | Chanock, Stephen J. | Farrall, Martin | Goel, Anuj | Medina-Gomez, Carolina | Rivadeneira, Fernando | Estrada, Karol | Uitterlinden, André G. | Hofman, Albert | Zillikens, M. Carola | den Heijer, Martin | Kiemeney, Lambertus A. | Maschio, Andrea | Hall, Per | Tyrer, Jonathan | Teumer, Alexander | Völzke, Henry | Kovacs, Peter | Tönjes, Anke | Mangino, Massimo | Spector, Tim D. | Hayward, Caroline | Rudan, Igor | Hall, Alistair S. | Samani, Nilesh J. | Attwood, Antony Paul | Sambrook, Jennifer G. | Hung, Joseph | Palmer, Lyle J. | Lokki, Marja-Liisa | Sinisalo, Juha | Boucher, Gabrielle | Huikuri, Heikki | Lorentzon, Mattias | Ohlsson, Claes | Eklund, Niina | Eriksson, Johan G. | Barlassina, Cristina | Rivolta, Carlo | Nolte, Ilja M. | Snieder, Harold | Van der Klauw, Melanie M. | Van Vliet-Ostaptchouk, Jana V. | Gejman, Pablo V. | Shi, Jianxin | Jacobs, Kevin B. | Wang, Zhaoming | Bakker, Stephan J. L. | Mateo Leach, Irene | Navis, Gerjan | van der Harst, Pim | Martin, Nicholas G. | Medland, Sarah E. | Montgomery, Grant W. | Yang, Jian | Chasman, Daniel I. | Ridker, Paul M. | Rose, Lynda M. | Lehtimäki, Terho | Raitakari, Olli | Absher, Devin | Iribarren, Carlos | Basart, Hanneke | Hovingh, Kees G. | Hyppönen, Elina | Power, Chris | Anderson, Denise | Beilby, John P. | Hui, Jennie | Jolley, Jennifer | Sager, Hendrik | Bornstein, Stefan R. | Schwarz, Peter E. H. | Kristiansson, Kati | Perola, Markus | Lindström, Jaana | Swift, Amy J. | Uusitupa, Matti | Atalay, Mustafa | Lakka, Timo A. | Rauramaa, Rainer | Bolton, Jennifer L. | Fowkes, Gerry | Fraser, Ross M. | Price, Jackie F. | Fischer, Krista | KrjutÅ¡kov, Kaarel | Metspalu, Andres | Mihailov, Evelin | Langenberg, Claudia | Luan, Jian'an | Ong, Ken K. | Chines, Peter S. | Keinanen-Kiukaanniemi, Sirkka M. | Saaristo, Timo E. | Edkins, Sarah | Franks, Paul W. | Hallmans, Göran | Shungin, Dmitry | Morris, Andrew David | Palmer, Colin N. A. | Erbel, Raimund | Moebus, Susanne | Nöthen, Markus M. | Pechlivanis, Sonali | Hveem, Kristian | Narisu, Narisu | Hamsten, Anders | Humphries, Steve E. | Strawbridge, Rona J. | Tremoli, Elena | Grallert, Harald | Thorand, Barbara | Illig, Thomas | Koenig, Wolfgang | Müller-Nurasyid, Martina | Peters, Annette | Boehm, Bernhard O. | Kleber, Marcus E. | März, Winfried | Winkelmann, Bernhard R. | Kuusisto, Johanna | Laakso, Markku | Arveiler, Dominique | Cesana, Giancarlo | Kuulasmaa, Kari | Virtamo, Jarmo | Yarnell, John W. G. | Kuh, Diana | Wong, Andrew | Lind, Lars | de Faire, Ulf | Gigante, Bruna | Magnusson, Patrik K. E. | Pedersen, Nancy L. | Dedoussis, George | Dimitriou, Maria | Kolovou, Genovefa | Kanoni, Stavroula | Stirrups, Kathleen | Bonnycastle, Lori L. | Njølstad, Inger | Wilsgaard, Tom | Ganna, Andrea | Rehnberg, Emil | Hingorani, Aroon | Kivimaki, Mika | Kumari, Meena | Assimes, Themistocles L. | Barroso, Inês | Boehnke, Michael | Borecki, Ingrid B. | Deloukas, Panos | Fox, Caroline S. | Frayling, Timothy | Groop, Leif C. | Haritunians, Talin | Hunter, David | Ingelsson, Erik | Kaplan, Robert | Mohlke, Karen L. | O'Connell, Jeffrey R. | Schlessinger, David | Strachan, David P. | Stefansson, Kari | van Duijn, Cornelia M. | Abecasis, Gonçalo R. | McCarthy, Mark I. | Hirschhorn, Joel N. | Qi, Lu | Loos, Ruth J. F. | Lindgren, Cecilia M. | North, Kari E. | Heid, Iris M.
PLoS Genetics  2013;9(6):e1003500.
Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10−8), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.
Author Summary
Men and women differ substantially regarding height, weight, and body fat. Interestingly, previous work detecting genetic effects for waist-to-hip ratio, to assess body fat distribution, has found that many of these showed sex-differences. However, systematic searches for sex-differences in genetic effects have not yet been conducted. Therefore, we undertook a genome-wide search for sexually dimorphic genetic effects for anthropometric traits including 133,723 individuals in a large meta-analysis and followed promising variants in further 137,052 individuals, including a total of 94 studies. We identified seven loci with significant sex-difference including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were significant in women, but not in men. Of interest is that sex-difference was only observed for waist phenotypes, but not for height or body-mass-index. We found no evidence for sex-differences with opposite effect direction for men and women. The PPARG locus is of specific interest due to its link to diabetes genetics and therapy. Our findings demonstrate the importance of investigating sex differences, which may lead to a better understanding of disease mechanisms with a potential relevance to treatment options.
doi:10.1371/journal.pgen.1003500
PMCID: PMC3674993  PMID: 23754948
13.  Novel Loci Associated with Increased Risk of Sudden Cardiac Death in the Context of Coronary Artery Disease 
PLoS ONE  2013;8(4):e59905.
Background
Recent genome-wide association studies (GWAS) have identified novel loci associated with sudden cardiac death (SCD). Despite this progress, identified DNA variants account for a relatively small portion of overall SCD risk, suggesting that additional loci contributing to SCD susceptibility await discovery. The objective of this study was to identify novel DNA variation associated with SCD in the context of coronary artery disease (CAD).
Methods and Findings
Using the MetaboChip custom array we conducted a case-control association analysis of 119,117 SNPs in 948 SCD cases (with underlying CAD) from the Oregon Sudden Unexpected Death Study (Oregon-SUDS) and 3,050 controls with CAD from the Wellcome Trust Case-Control Consortium (WTCCC). Two newly identified loci were significantly associated with increased risk of SCD after correction for multiple comparisons at: rs6730157 in the RAB3GAP1 gene on chromosome 2 (P = 4.93×10−12, OR = 1.60) and rs2077316 in the ZNF365 gene on chromosome 10 (P = 3.64×10−8, OR = 2.41).
Conclusions
Our findings suggest that RAB3GAP1 and ZNF365 are relevant candidate genes for SCD and will contribute to the mechanistic understanding of SCD susceptibility.
doi:10.1371/journal.pone.0059905
PMCID: PMC3617189  PMID: 23593153
14.  Meta-analysis and imputation refines the association of 15q25 with smoking quantity 
Liu, Jason Z. | Tozzi, Federica | Waterworth, Dawn M. | Pillai, Sreekumar G. | Muglia, Pierandrea | Middleton, Lefkos | Berrettini, Wade | Knouff, Christopher W. | Yuan, Xin | Waeber, Gérard | Vollenweider, Peter | Preisig, Martin | Wareham, Nicholas J | Zhao, Jing Hua | Loos, Ruth J.F. | Barroso, Inês | Khaw, Kay-Tee | Grundy, Scott | Barter, Philip | Mahley, Robert | Kesaniemi, Antero | McPherson, Ruth | Vincent, John B. | Strauss, John | Kennedy, James L. | Farmer, Anne | McGuffin, Peter | Day, Richard | Matthews, Keith | Bakke, Per | Gulsvik, Amund | Lucae, Susanne | Ising, Marcus | Brueckl, Tanja | Horstmann, Sonja | Wichmann, H.-Erich | Rawal, Rajesh | Dahmen, Norbert | Lamina, Claudia | Polasek, Ozren | Zgaga, Lina | Huffman, Jennifer | Campbell, Susan | Kooner, Jaspal | Chambers, John C | Burnett, Mary Susan | Devaney, Joseph M. | Pichard, Augusto D. | Kent, Kenneth M. | Satler, Lowell | Lindsay, Joseph M. | Waksman, Ron | Epstein, Stephen | Wilson, James F. | Wild, Sarah H. | Campbell, Harry | Vitart, Veronique | Reilly, Muredach P. | Li, Mingyao | Qu, Liming | Wilensky, Robert | Matthai, William | Hakonarson, Hakon H. | Rader, Daniel J. | Franke, Andre | Wittig, Michael | Schäfer, Arne | Uda, Manuela | Terracciano, Antonio | Xiao, Xiangjun | Busonero, Fabio | Scheet, Paul | Schlessinger, David | St Clair, David | Rujescu, Dan | Abecasis, Gonçalo R. | Grabe, Hans Jörgen | Teumer, Alexander | Völzke, Henry | Petersmann, Astrid | John, Ulrich | Rudan, Igor | Hayward, Caroline | Wright, Alan F. | Kolcic, Ivana | Wright, Benjamin J | Thompson, John R | Balmforth, Anthony J. | Hall, Alistair S. | Samani, Nilesh J. | Anderson, Carl A. | Ahmad, Tariq | Mathew, Christopher G. | Parkes, Miles | Satsangi, Jack | Caulfield, Mark | Munroe, Patricia B. | Farrall, Martin | Dominiczak, Anna | Worthington, Jane | Thomson, Wendy | Eyre, Steve | Barton, Anne | Mooser, Vincent | Francks, Clyde | Marchini, Jonathan
Nature genetics  2010;42(5):436-440.
Smoking is a leading global cause of disease and mortality1. We performed a genomewide meta-analytic association study of smoking-related behavioral traits in a total sample of 41,150 individuals drawn from 20 disease, population, and control cohorts. Our analysis confirmed an effect on smoking quantity (SQ) at a locus on 15q25 (P=9.45e-19) that includes three genes encoding neuronal nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3, CHRNB4). We used data from the 1000 Genomes project to investigate the region using imputation, which allowed analysis of virtually all common variants in the region and offered a five-fold increase in coverage over the HapMap. This increased the spectrum of potentially causal single nucleotide polymorphisms (SNPs), which included a novel SNP that showed the highest significance, rs55853698, located within the promoter region of CHRNA5. Conditional analysis also identified a secondary locus (rs6495308) in CHRNA3.
doi:10.1038/ng.572
PMCID: PMC3612983  PMID: 20418889
15.  An assessment of composite measures of hospital performance and associated mortality for patients with acute myocardial infarction. Analysis of individual hospital performance and outcome for the National Institute for Cardiovascular Outcomes Research (NICOR) 
Aim:
To investigate whether a hospital-specific opportunity-based composite score (OBCS) was associated with mortality in 136,392 patients with acute myocardial infarction (AMI) using data from the Myocardial Ischaemia National Audit Project (MINAP) 2008–2009.
Methods and results:
For 199 hospitals a multidimensional hospital OBCS was calculated on the number of times that aspirin, thienopyridine, angiotensin-converting enzyme inhibitor (ACEi), statin, β-blocker, and referral for cardiac rehabilitation was given to individual patients, divided by the overall number of opportunities that hospitals had to give that care. OBCS and its six components were compared using funnel plots. Associations between OBCS performance and 30-day and 6-month all-cause mortality were quantified using mixed-effects regression analysis. Median hospital OBCS was 95.3% (range 75.8–100%). By OBCS, 24.1% of hospitals were below funnel plot 99.8% CI, compared to aspirin (11.1%), thienopyridine (15.1%), β-blockers (14.7%), ACEi (19.1%), statins (12.1%), and cardiac rehabilitation (17.6%) on discharge. Mortality (95% CI) decreased with increasing hospital OBCS quartile at 30 days [Q1, 2.25% (2.07–2.43%) vs. Q4, 1.40% (1.25–1.56%)] and 6 months [Q1, 7.93% (7.61–8.25%) vs. Q4, 5.53% (5.22–5.83%)]. Hospital OBCS quartile was inversely associated with adjusted 30-day and 6-month mortality [OR (95% CI), 0.87 (0.80–0.94) and 0.92 (0.88–0.96), respectively] and persisted after adjustment for coronary artery catheterization [0.89 (0.82–0.96) and 0.95 (0.91–0.98), respectively].
Conclusions:
Multidimensional hospital OBCS in AMI survivors are high, discriminate hospital performance more readily than single performance indicators, and significantly inversely predict early and longer-term mortality.
doi:10.1177/2048872612469132
PMCID: PMC3760578  PMID: 24062929
Acute myocardial infarction; composite performance indicators; mortality; performance; quality of care
16.  Statistical profiling of hospital performance using acute coronary syndrome mortality 
Cardiovascular Journal of Africa  2012;23(10):546-551.
Background
In order to improve the quality of care delivered to patients and to enable patient choice, public reports comparing hospital performances are routinely published. Robust systems of hospital ‘report cards’ on performance monitoring and evaluation are therefore crucial in medical decision-making processes. In particular, such systems should effectively account for and minimise systematic differences with regard to definitions and data quality, care and treatment quality, and ‘case mix’.
Methods
Four methods for assessing hospital performance on mortality outcome measures were considered. The methods included combinations of Bayesian fixed- and random-effects models, and risk-adjusted mortality rate, and rank-based profiling techniques. The methods were empirically compared using 30-day mortality in patients admitted with acute coronary syndrome. Agreement was firstly assessed using median estimates between risk-adjusted mortality rates for a hospital and between ranks associated with a hospital’s risk-adjusted mortality rates. Secondly, assessment of agreement was based on a classification of hospitals into low, normal or high performing using risk-adjusted mortality rates and ranks.
Results
There was poor agreement between the point estimates of risk-adjusted mortality rates, but better agreement between ranks. However, for categorised performance, the observed agreement between the methods’ classification of the hospital performance ranged from 90 to 98%. In only two of the six possible pair-wise comparisons was agreement reasonable, as reflected by a Kappa statistic; it was 0.71 between the methods of identifying outliers with the fixed-effect model and 0.77 with the hierarchical model. In the remaining four pair-wise comparisons, the agreement was, at best, moderate.
Conclusions
Even though the inconsistencies among the studied methods raise questions about which hospitals performed better or worse than others, it seems that the choice of the definition of outlying performance is less critical than that of the statistical approach. Therefore there is a need to find robust systems of ‘regulation’ or ‘performance monitoring’ that are meaningful to health service practitioners and providers.
doi:10.5830/CVJA-2011-064
PMCID: PMC3734748  PMID: 23192259
Bayesian methods; health provider performance; league tables
17.  Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study 
Voight, Benjamin F | Peloso, Gina M | Orho-Melander, Marju | Frikke-Schmidt, Ruth | Barbalic, Maja | Jensen, Majken K | Hindy, George | Hólm, Hilma | Ding, Eric L | Johnson, Toby | Schunkert, Heribert | Samani, Nilesh J | Clarke, Robert | Hopewell, Jemma C | Thompson, John F | Li, Mingyao | Thorleifsson, Gudmar | Newton-Cheh, Christopher | Musunuru, Kiran | Pirruccello, James P | Saleheen, Danish | Chen, Li | Stewart, Alexandre FR | Schillert, Arne | Thorsteinsdottir, Unnur | Thorgeirsson, Gudmundur | Anand, Sonia | Engert, James C | Morgan, Thomas | Spertus, John | Stoll, Monika | Berger, Klaus | Martinelli, Nicola | Girelli, Domenico | McKeown, Pascal P | Patterson, Christopher C | Epstein, Stephen E | Devaney, Joseph | Burnett, Mary-Susan | Mooser, Vincent | Ripatti, Samuli | Surakka, Ida | Nieminen, Markku S | Sinisalo, Juha | Lokki, Marja-Liisa | Perola, Markus | Havulinna, Aki | de Faire, Ulf | Gigante, Bruna | Ingelsson, Erik | Zeller, Tanja | Wild, Philipp | de Bakker, Paul I W | Klungel, Olaf H | Maitland-van der Zee, Anke-Hilse | Peters, Bas J M | de Boer, Anthonius | Grobbee, Diederick E | Kamphuisen, Pieter W | Deneer, Vera H M | Elbers, Clara C | Onland-Moret, N Charlotte | Hofker, Marten H | Wijmenga, Cisca | Verschuren, WM Monique | Boer, Jolanda MA | van der Schouw, Yvonne T | Rasheed, Asif | Frossard, Philippe | Demissie, Serkalem | Willer, Cristen | Do, Ron | Ordovas, Jose M | Abecasis, Gonçalo R | Boehnke, Michael | Mohlke, Karen L | Daly, Mark J | Guiducci, Candace | Burtt, Noël P | Surti, Aarti | Gonzalez, Elena | Purcell, Shaun | Gabriel, Stacey | Marrugat, Jaume | Peden, John | Erdmann, Jeanette | Diemert, Patrick | Willenborg, Christina | König, Inke R | Fischer, Marcus | Hengstenberg, Christian | Ziegler, Andreas | Buysschaert, Ian | Lambrechts, Diether | Van de Werf, Frans | Fox, Keith A | El Mokhtari, Nour Eddine | Rubin, Diana | Schrezenmeir, Jürgen | Schreiber, Stefan | Schäfer, Arne | Danesh, John | Blankenberg, Stefan | Roberts, Robert | McPherson, Ruth | Watkins, Hugh | Hall, Alistair S | Overvad, Kim | Rimm, Eric | Boerwinkle, Eric | Tybjaerg-Hansen, Anne | Cupples, L Adrienne | Reilly, Muredach P | Melander, Olle | Mannucci, Pier M | Ardissino, Diego | Siscovick, David | Elosua, Roberto | Stefansson, Kari | O'Donnell, Christopher J | Salomaa, Veikko | Rader, Daniel J | Peltonen, Leena | Schwartz, Stephen M | Altshuler, David | Kathiresan, Sekar
Lancet  2012;380(9841):572-580.
Summary
Background
High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal.
Methods
We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20 913 myocardial infarction cases, 95 407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12 482 cases of myocardial infarction and 41 331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol.
Findings
Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10−13) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84–0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88–1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58–0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68–1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45–1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·69–2·69, p=2×10−10).
Interpretation
Some genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction.
Funding
US National Institutes of Health, The Wellcome Trust, European Union, British Heart Foundation, and the German Federal Ministry of Education and Research.
doi:10.1016/S0140-6736(12)60312-2
PMCID: PMC3419820  PMID: 22607825
18.  A Genome-wide Association Study Identifies LIPA as a Susceptibility Gene for Coronary Artery Disease 
Wild, Philipp S | Zeller, Tanja | Schillert, Arne | Szymczak, Silke | Sinning, Christoph R | Deiseroth, Arne | Schnabel, Renate B | Lubos, Edith | Keller, Till | Eleftheriadis, Medea S | Bickel, Christoph | Rupprecht, Hans J | Wilde, Sandra | Rossmann, Heidi | Diemert, Patrick | Cupples, L Adrienne | Perret, Claire | Erdmann, Jeanette | Stark, Klaus | Kleber, Marcus E | Epstein, Stephen E | Voight, Benjamin F | Kuulasmaa, Kari | Li, Mingyao | Schäfer, Arne S | Klopp, Norman | Braund, Peter S | Sager, Hendrik B | Demissie, Serkalem | Proust, Carole | König, Inke R | Wichmann, Heinz-Erich | Reinhard, Wibke | Hoffmann, Michael M | Virtamo, Jarmo | Burnett, Mary Susan | Siscovick, David | Wiklund, Per Gunnar | Qu, Liming | El Mokthari, Nour Eddine | Thompson, John R | Peters, Annette | Smith, Albert V | Yon, Emmanuelle | Baumert, Jens | Hengstenberg, Christian | März, Winfried | Amouyel, Philippe | Devaney, Joseph | Schwartz, Stephen M | Saarela, Olli | Mehta, Nehal N | Rubin, Diana | Silander, Kaisa | Hall, Alistair S | Ferrieres, Jean | Harris, Tamara B | Melander, Olle | Kee, Frank | Hakonarson, Hakon | Schrezenmeir, Juergen | Gudnason, Vilmundur | Elosua, Roberto | Arveiler, Dominique | Evans, Alun | Rader, Daniel J | Illig, Thomas | Schreiber, Stefan | Bis, Joshua C | Altshuler, David | Kavousi, Maryam | Witteman, Jaqueline CM | Uitterlinden, Andre G | Hofman, Albert | Folsom, Aaron R | Barbalic, Maja | Boerwinkle, Eric | Kathiresan, Sekar | Reilly, Muredach P | O'Donnell, Christopher J | Samani, Nilesh J | Schunkert, Heribert | Cambien, Francois | Lackner, Karl J | Tiret, Laurence | Salomaa, Veikko | Munzel, Thomas | Ziegler, Andreas | Blankenberg, Stefan
Background
eQTL analyses are important to improve the understanding of genetic association results. Here, we performed a genome-wide association and global gene expression study to identify functionally relevant variants affecting the risk of coronary artery disease (CAD).
Methods and Results
In a genome-wide association analysis of 2,078 CAD cases and 2,953 controls, we identified 950 single nucleotide polymorphisms (SNPs) that were associated with CAD at P<10-3. Subsequent in silico and wet-lab replication stages and a final meta-analysis of 21,428 CAD cases and 38,361 controls revealed a novel association signal at chromosome 10q23.31 within the LIPA (Lysosomal Acid Lipase A) gene (P=3.7×10-8; OR 1.1; 95% CI: 1.07-1.14). The association of this locus with global gene expression was assessed by genome-wide expression analyses in the monocyte transcriptome of 1,494 individuals. The results showed a strong association of this locus with expression of the LIPA transcript (P=1.3×10-96). An assessment of LIPA SNPs and transcript with cardiovascular phenotypes revealed an association of LIPA transcript levels with impaired endothelial function (P=4.4×10-3).
Conclusions
The use of data on genetic variants and the addition of data on global monocytic gene expression led to the identification of the novel functional CAD susceptibility locus LIPA, located on chromosome 10q23.31. The respective eSNPs associated with CAD strongly affect LIPA gene expression level, which itself was related to endothelial dysfunction, a precursor of CAD.
doi:10.1161/CIRCGENETICS.110.958728
PMCID: PMC3157552  PMID: 21606135
coronary artery disease; genome-wide association studies; gene expression; genetic variation; genomics; eQTL; eSNP; LIPA
19.  A Genome Wide Association Study for Coronary Artery Disease Identifies a Novel Susceptibility Locus in the Major Histocompatibility Complex 
Background
Recent genome-wide association studies (GWAS) have identified several novel loci that reproducibly associate with CAD and/or MI risk. However, known common CAD risk variants explain only 10% of the predicted genetic heritability of the disease, suggesting that important genetic signals remain to be discovered.
Methods and Results
We performed a discovery meta-analysis of 5 GWASs involving 13,949 subjects (7123 cases, 6826 controls) imputed at approximately 5 million SNPs using pilot 1000 Genomes based haplotypes. Promising loci were followed up in an additional 5 studies with 11,032 subjects (5211 cases, 5821 controls). A novel CAD locus on chromosome 6p21.3 in the major histocompatibility complex (MHC) between HCG27 and HLA-C was identified and achieved genome wide significance in the combined analysis (rs3869109; pdiscovery=3.3×10−7, preplication=5.3×10−4 pcombined=1.12×10−9). A sub-analysis combining discovery GWASs showed an attenuation of significance when stringent corrections for European population structure were employed (p=4.1×10-10 versus 3.2×10-7) suggesting the observed signal is partly confounded due to population stratification. This gene dense region plays an important role in inflammation, immunity and self cell recognition. To determine whether the underlying association was driven by MHC class I alleles, we statistically imputed common HLA alleles into the discovery subjects; however, no single common HLA type contributed significantly or fully explained the observed association.
Conclusions
We have identified a novel locus in the MHC associated with CAD. MHC genes regulate inflammation and T cell responses that contribute importantly to the initiation and propagation of atherosclerosis. Further laboratory studies will be required to understand the biological basis of this association and identify the causative allele(s).
doi:10.1161/CIRCGENETICS.111.961243
PMCID: PMC3335297  PMID: 22319020
coronary artery disease; myocardial infarction; meta-analysis; genetics
20.  A Genome Wide Association Study for Coronary Artery Disease Identifies a Novel Susceptibility Locus in the Major Histocompatibility Complex 
Background
Recent genome-wide association studies (GWAS) have identified several novel loci that reproducibly associate with CAD and/or MI risk. However, known common CAD risk variants explain only 10% of the predicted genetic heritability of the disease, suggesting that important genetic signals remain to be discovered.
Methods and Results
We performed a discovery meta-analysis of 5 GWASs involving 13,949 subjects (7123 cases, 6826 controls) imputed at approximately 5 million SNPs using pilot 1000 Genomes based haplotypes. Promising loci were followed up in an additional 5 studies with 11,032 subjects (5211 cases, 5821 controls). A novel CAD locus on chromosome 6p21.3 in the major histocompatibility complex (MHC) between HCG27 and HLA-C was identified and achieved genome wide significance in the combined analysis (rs3869109; pdiscovery=3.3×10−7, preplication=5.3×10−4 pcombined=1.12×10−9). A sub-analysis combining discovery GWASs showed an attenuation of significance when stringent corrections for European population structure were employed (p=4.1×10−10 versus 3.2×10−7) suggesting the observed signal is partly confounded due to population stratification. This gene dense region plays an important role in inflammation, immunity and self cell recognition. To determine whether the underlying association was driven by MHC class I alleles, we statistically imputed common HLA alleles into the discovery subjects; however, no single common HLA type contributed significantly or fully explained the observed association.
Conclusion
We have identified a novel locus in the MHC associated with CAD. MHC genes regulate inflammation and T cell responses that contribute importantly to the initiation and propagation of atherosclerosis. Further laboratory studies will be required to understand the biological basis of this association and identify the causative allele(s).
doi:10.1161/CIRCGENETICS.111.961243
PMCID: PMC3335297  PMID: 22319020
Coronary Artery Disease; Myocardial Infarction; Meta-Analysis; Genetics
21.  R1: The relationship between plasma Angiopoietin-like protein 4 (Angptl4) levels, ANGPTL4 genotype and coronary heart disease risk 
Objective
To investigate the relationship between Angiopoietin-like protein 4 (Angptl4) levels, CHD biomarkers and ANGPTL4 variants.
Methods and Results
Plasma Angptl4 was quantified in 666 subjects of the Northwick Park Heart Study II using a validated ELISA. Seven ANGPTL4 SNPs were genotyped and CHD biomarkers assessed in the whole cohort (n=2775). Weighted mean (±SD) plasma Angptl4 levels were 10.0(±11.0) ng/ml. Plasma Angptl4 concentration correlated positively with age (r=0.15, P<0.001), body fat mass (r=0.19, P=0.003) but negatively with plasma HDL-cholesterol (r=−0.13, P=0.01). No correlation with triglycerides was observed. T266M was independently associated with plasma Angptl4 levels (P<0.001), but not associated with triglycerides or with CHD risk in the meta-analysis of five studies (4,061 cases/15,395 controls). E40K showed no independent association with plasma Angptl4 levels. In HEK293 and Huh7 cells compared to wild-type, E40K and T266M showed significantly altered synthesis and secretion, respectively.
Conclusions
These data suggest that circulating Angptl4 levels do not influence triglyceride levels or CHD risk since (1) Angptl4 levels were not correlated with triglycerides, (2) T266M, although associated with Angptl4 levels, showed no association with plasma triglycerides (3) Triglyceride-lowering E40K did not influence Angptl4 levels. These results provide new insights into the role of Angptl4 in triglyceride metabolism.
doi:10.1161/ATVBAHA.110.212209
PMCID: PMC3319296  PMID: 20829508
Angplt4; E40K; T266M; cardiovascular disease; LPL
22.  Ischaemic heart disease in women: are there sex differences in pathophysiology and risk factors? 
Cardiovascular Research  2010;90(1):9-17.
Cardiovascular disease (CVD) is the leading cause of death in women, and knowledge of the clinical consequences of atherosclerosis and CVD in women has grown tremendously over the past 20 years. Research efforts have increased and many reports on various aspects of ischaemic heart disease (IHD) in women have been published highlighting sex differences in pathophysiology, presentation, and treatment of IHD. Data, however, remain limited. A description of the state of the science, with recognition of the shortcomings of current data, is necessary to guide future research and move the field forward. In this report, we identify gaps in existing literature and make recommendations for future research. Women largely share similar cardiovascular risk factors for IHD with men; however, women with suspected or confirmed IHD have less coronary atherosclerosis than men, even though they are older and have more cardiovascular risk factors than men. Coronary endothelial dysfunction and microvascular disease have been proposed as important determinants in the aetiology and prognosis of IHD in women, but research is limited on whether sex differences in these mechanisms truly exist. Differences in the epidemiology of IHD between women and men remain largely unexplained, as we are still unable to explain why women are protected towards IHD until older age compared with men. Eventually, a better understanding of these processes and mechanisms may improve the prevention and the clinical management of IHD in women.
doi:10.1093/cvr/cvq394
PMCID: PMC3058737  PMID: 21159671
Gender; Ischaemia; Epidemiology; Risk factors; Microcirculation
23.  Inheritance of coronary artery disease in men: an analysis of the role of the Y chromosome 
Lancet  2012;379(9819):915-922.
Summary
Background
A sexual dimorphism exists in the incidence and prevalence of coronary artery disease—men are more commonly affected than are age-matched women. We explored the role of the Y chromosome in coronary artery disease in the context of this sexual inequity.
Methods
We genotyped 11 markers of the male-specific region of the Y chromosome in 3233 biologically unrelated British men from three cohorts: the British Heart Foundation Family Heart Study (BHF-FHS), West of Scotland Coronary Prevention Study (WOSCOPS), and Cardiogenics Study. On the basis of this information, each Y chromosome was tracked back into one of 13 ancient lineages defined as haplogroups. We then examined associations between common Y chromosome haplogroups and the risk of coronary artery disease in cross-sectional BHF-FHS and prospective WOSCOPS. Finally, we undertook functional analysis of Y chromosome effects on monocyte and macrophage transcriptome in British men from the Cardiogenics Study.
Findings
Of nine haplogroups identified, two (R1b1b2 and I) accounted for roughly 90% of the Y chromosome variants among British men. Carriers of haplogroup I had about a 50% higher age-adjusted risk of coronary artery disease than did men with other Y chromosome lineages in BHF-FHS (odds ratio 1·75, 95% CI 1·20–2·54, p=0·004), WOSCOPS (1·45, 1·08–1·95, p=0·012), and joint analysis of both populations (1·56, 1·24–1·97, p=0·0002). The association between haplogroup I and increased risk of coronary artery disease was independent of traditional cardiovascular and socioeconomic risk factors. Analysis of macrophage transcriptome in the Cardiogenics Study revealed that 19 molecular pathways showing strong differential expression between men with haplogroup I and other lineages of the Y chromosome were interconnected by common genes related to inflammation and immunity, and that some of them have a strong relevance to atherosclerosis.
Interpretation
The human Y chromosome is associated with risk of coronary artery disease in men of European ancestry, possibly through interactions of immunity and inflammation.
Funding
British Heart Foundation; UK National Institute for Health Research; LEW Carty Charitable Fund; National Health and Medical Research Council of Australia; European Union 6th Framework Programme; Wellcome Trust.
doi:10.1016/S0140-6736(11)61453-0
PMCID: PMC3314981  PMID: 22325189
24.  Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies 
Lancet  2011;377(9763):383-392.
Summary
Background
We tested whether genetic factors distinctly contribute to either development of coronary atherosclerosis or, specifically, to myocardial infarction in existing coronary atherosclerosis.
Methods
We did two genome-wide association studies (GWAS) with coronary angiographic phenotyping in participants of European ancestry. To identify loci that predispose to angiographic coronary artery disease (CAD), we compared individuals who had this disorder (n=12 393) with those who did not (controls, n=7383). To identify loci that predispose to myocardial infarction, we compared patients who had angiographic CAD and myocardial infarction (n=5783) with those who had angiographic CAD but no myocardial infarction (n=3644).
Findings
In the comparison of patients with angiographic CAD versus controls, we identified a novel locus, ADAMTS7 (p=4·98×10−13). In the comparison of patients with angiographic CAD who had myocardial infarction versus those with angiographic CAD but no myocardial infarction, we identified a novel association at the ABO locus (p=7·62×10−9). The ABO association was attributable to the glycotransferase-deficient enzyme that encodes the ABO blood group O phenotype previously proposed to protect against myocardial infarction.
Interpretation
Our findings indicate that specific genetic predispositions promote the development of coronary atherosclerosis whereas others lead to myocardial infarction in the presence of coronary atherosclerosis. The relation to specific CAD phenotypes might modify how novel loci are applied in personalised risk assessment and used in the development of novel therapies for CAD.
Funding
The PennCath and MedStar studies were supported by the Cardiovascular Institute of the University of Pennsylvania, by the MedStar Health Research Institute at Washington Hospital Center and by a research grant from GlaxoSmithKline. The funding and support for the other cohorts contributing to the paper are described in the webappendix.
doi:10.1016/S0140-6736(10)61996-4
PMCID: PMC3297116  PMID: 21239051
25.  An Evidence-Based Approach to the Assessment of Heart-Type Fatty Acid Binding Protein in Acute Coronary Syndrome 
Cardiac troponins have been the biomarkers of choice for the diagnosis of acute coronary syndrome (ACS) for over a decade. There has, however, been considerable interest over the last two decades for newer biomarkers that would bring added value to the measurement of troponin such as the provision of prognosis and assistance in the choice of therapeutic interventions. In this manuscript, we review the development of heart-type fatty acid binding protein (H-FABP) in patients with ACS using the evidence-based laboratory medicine format.
Phase I studies have established that H-FABP reference intervals and pre-analytical factors influencing H-FABP. Phase II studies have confirmed a) that H-FABP is elevated in patients with established myocardial infarction; b) that its serum concentration is related to the extent of infarction using survival as a surrogate; and c) that its use in chest pain patients can identify ACS patients and also provide prognostic information on survival. Furthermore, it is an independent prognostic marker for patients with suspected ACS who are troponin negative. Phase III studies involving randomised control trials for diagnosis and prognosis have not yet been performed and Phase IV studies await uptake of H-FABP in a routine service.
PMCID: PMC3284342  PMID: 22363093

Results 1-25 (55)