Search tips
Search criteria

Results 1-25 (81)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Psychiatric gene discoveries shape evidence on ADHD’s biology 
Molecular psychiatry  2015;21(9):1202-1207.
A strong motivation for undertaking psychiatric gene discovery studies is to provide novel insights into unknown biology. Although attention deficit hyperactivity disorder (ADHD) is highly heritable, and large, rare copy number variants (CNVs) contribute to risk, little is known about its pathogenesis and it remains commonly misunderstood. We assembled and pooled five ADHD and control CNV data sets from the UK, Ireland, USA, Northern Europe and Canada. Our aim was to test for enrichment of neurodevelopmental gene sets, implicated by recent exome sequencing studies of a) schizophrenia and b) autism as a means of testing the hypothesis that common pathogenic mechanisms underlie ADHD and these other neurodevelopmental disorders. We also undertook hypothesis-free testing of all biological pathways. We observed significant enrichment of individual genes previously found to harbour schizophrenia de novo non-synonymous single nucleotide variants (SNVs; p=5.4×10−4) and targets of the Fragile X mental retardation protein FMRP (p=0.0018). No enrichment was observed for ARC (p=0.23) or NMDAR (p=0.74) post-synaptic signalling gene sets previously implicated in schizophrenia. Enrichment of ADHD CNV hits for genes impacted by autism de novo SNVs (p=0.019 for non-synonymous SNV genes) did not survive Bonferroni correction. Hypothesis-free testing yielded several highly significantly enriched biological pathways, including ion channel pathways. Enrichment findings were robust to multiple testing corrections and to sensitivity analyses that excluded the most significant sample. The findings reveal that CNVs in ADHD converge on biologically meaningful gene clusters, including ones now established as conferring risk of other neurodevelopmental disorders.
PMCID: PMC4820035  PMID: 26573769
2.  Rare variants at 16p11.2 are associated with common variable immunodeficiency 
Common variable immunodeficiency (CVID) is characterized clinically by inadequate quantity and quality of serum immunoglobulins with increased susceptibility to infections resulting in significant morbidity and mortality. Only a few genes have been uncovered and the genetic background of CVID remains elusive to date for the majority of patients.
To seek novel associations of genes and genetic variants with CVID.
We performed association analyses in a discovery cohort of 164 CVID cases and 19,542 healthy control subjects genotyped on the Immuno BeadChip from Illumina (iCHIP); replication of findings were examined in an independent cohort of 135 CVID cases and 2,066 healthy control subjects, followed by meta-analysis.
We identified 11 SNPs at the 16p11.2 locus associated with CVID at genome-wide significant level in the discovery cohort. The most significant SNP, rs929867 (p = 6.21×10−9) is in the gene FUS (fused-in-sarcoma) with four other SNPs mapping to ITGAM (integrin CD11b). Results were confirmed in our replication cohort. Conditional association analysis suggests a single association signal at the 16p11.2 locus. A strong trend of association was also seen by 38 SNPs (p < 5×10−5) in the MHC region, supporting that this is a genuine CVID locus. Interestingly we found that 80% of patients with the rare ITGAM variants have reduced counts of switched-memory B-cells.
We report a novel association of CVID with rare variants at the FUS/ITGAM (CD11b) locus on 16p11.2. The association signal is enriched for promoter/enhancer markers in the ITGAM gene. ITGAM encodes the integrin CD11b, a part of complement receptor 3 (CR3/Mac-1), a novel candidate gene implicated here for the first time in the pathogenesis of CVID.
PMCID: PMC4461447  PMID: 25678086
immunodeficiency; immunogenetics; genome-wide association study; ITGAM; rare variants
4.  Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases 
Nature medicine  2015;21(9):1018-1027.
Genome-wide association studies (GWASs) have identified hundreds of susceptibility genes, including shared associations across clinically distinct autoimmune diseases. We performed an inverse χ2 meta-analysis across ten pediatric-age-of-onset autoimmune diseases (pAIDs) in a case-control study including more than 6,035 cases and 10,718 shared population-based controls. We identified 27 genome-wide significant loci associated with one or more pAIDs, mapping to in silico–replicated autoimmune-associated genes (including IL2RA) and new candidate loci with established immunoregulatory functions such as ADGRL2, TENM3, ANKRD30A, ADCY7 and CD40LG. The pAID-associated single-nucleotide polymorphisms (SNPs) were functionally enriched for deoxyribonuclease (DNase)-hypersensitivity sites, expression quantitative trait loci (eQTLs), microRNA (miRNA)-binding sites and coding variants. We also identified biologically correlated, pAID-associated candidate gene sets on the basis of immune cell expression profiling and found evidence of genetic sharing. Network and protein-interaction analyses demonstrated converging roles for the signaling pathways of type 1, 2 and 17 helper T cells (TH1, TH2 and TH17), JAK-STAT, interferon and interleukin in multiple autoimmune diseases.
PMCID: PMC4863040  PMID: 26301688
5.  Variants in CXCR4 associate with juvenile idiopathic arthritis susceptibility 
BMC Medical Genetics  2016;17:24.
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease among children, the etiology of which involves a strong genetic component, but much of the underlying genetic determinants still remain unknown. Our aim was to identify novel genetic variants that predispose to JIA.
We performed a genome-wide association study (GWAS) and replication in a total of 1166 JIA cases and 9500 unrelated controls of European ancestry. Correlation of SNP genotype and gene expression was investigated. Then we conducted targeted resequencing of a candidate locus, among a subset of 480 cases and 480 controls. SUM test was performed to evaluate the association of the identified rare functional variants.
The CXCR4 locus on 2q22.1 was found to be significantly associated with JIA, peaking at SNP rs953387. However, this result is subjected to subpopulation stratification within the subjects of European ancestry. After adjusting for principal components, nominal significant association remained (p < 10−4). Because of its interesting known function in immune regulation, we carried out further analyses to assess its relationship with JIA. Expression of CXCR4 was correlated with CXCR4 rs953387 genotypes in lymphoblastoid cell lines (p = 0.014) and T-cells (p = 0.0054). In addition, rare non-synonymous and stop-gain sequence variants in CXCR4, putatively damaging for CXCR4 function, were significantly enriched in JIA cases (p = 0.015).
Our results suggest the association of CXCR4 variants with JIA, implicating that this gene may be involved in the pathogenesis of autoimmune disease. However, because this locus is subjected to population stratification within the subjects of European ancestry, additional replication is still necessary for this locus to be considered a true risk locus for JIA. This cell-surface chemokine receptor has already been targeted in other diseases and may serve as a tractable therapeutic target for a specific subset of pediatric arthritis patients with additional replication and functional validation of the locus.
Electronic supplementary material
The online version of this article (doi:10.1186/s12881-016-0285-3) contains supplementary material, which is available to authorized users.
PMCID: PMC4804485  PMID: 27005825
Juvenile idiopathic arthritis; Genome-wide association study; CXCR4; Targeted resequencing
6.  An integrative approach to investigate the respective roles of single-nucleotide variants and copy-number variants in Attention-Deficit/Hyperactivity Disorder 
Scientific Reports  2016;6:22851.
Many studies have attempted to investigate the genetic susceptibility of Attention-Deficit/Hyperactivity Disorder (ADHD), but without much success. The present study aimed to analyze both single-nucleotide and copy-number variants contributing to the genetic architecture of ADHD. We generated exome data from 30 Brazilian trios with sporadic ADHD. We also analyzed a Brazilian sample of 503 children/adolescent controls from a High Risk Cohort Study for the Development of Childhood Psychiatric Disorders, and also previously published results of five CNV studies and one GWAS meta-analysis of ADHD involving children/adolescents. The results from the Brazilian trios showed that cases with de novo SNVs tend not to have de novo CNVs and vice-versa. Although the sample size is small, we could also see that various comorbidities are more frequent in cases with only inherited variants. Moreover, using only genes expressed in brain, we constructed two “in silico” protein-protein interaction networks, one with genes from any analysis, and other with genes with hits in two analyses. Topological and functional analyses of genes in this network uncovered genes related to synapse, cell adhesion, glutamatergic and serotoninergic pathways, both confirming findings of previous studies and capturing new genes and genetic variants in these pathways.
PMCID: PMC4780010  PMID: 26947246
Recent studies on copy number variation (CNV) have suggested that an increasing burden of CNVs is associated with susceptibility or resistance to disease. A large number of genes or genomic loci contribute to complex diseases such as autism. Thus, total genomic copy number burden, as an accumulation of copy number change, is a meaningful measure of genomic instability to identify the association between global genetic effects and phenotypes of interest. However, no systematic annotation pipeline has been developed to interpret biological meaning based on the accumulation of copy number change across the genome associated with a phenotype of interest. In this study, we develop a comprehensive and systematic pipeline for annotating copy number variants into genes/genomic regions and subsequently pathways and other gene groups using Biofilter – a bioinformatics tool that aggregates over a dozen publicly available databases of prior biological knowledge. Next we conduct enrichment tests of biologically defined groupings of CNVs including genes, pathways, Gene Ontology, or protein families. We applied the proposed pipeline to a CNV dataset from the Marshfield Clinic Personalized Medicine Research Project (PMRP) in a quantitative trait phenotype derived from the electronic health record – total cholesterol. We identified several significant pathways such as toll-like receptor signaling pathway and hepatitis C pathway, gene ontologies (GOs) of nucleoside triphosphatase activity (NTPase) and response to virus, and protein families such as cell morphogenesis that are associated with the total cholesterol phenotype based on CNV profiles (permutation p-value < 0.01). Based on the copy number burden analysis, it follows that the more and larger the copy number changes, the more likely that one or more target genes that influence disease risk and phenotypic severity will be affected. Thus, our study suggests the proposed enrichment pipeline could improve the interpretability of copy number burden analysis where hundreds of loci or genes contribute toward disease susceptibility via biological knowledge groups such as pathways. This CNV annotation pipeline with Biofilter can be used for CNV data from any genotyping or sequencing platform and to explore CNV enrichment for any traits or phenotypes. Biofilter continues to be a powerful bioinformatics tool for annotating, filtering, and constructing biologically informed models for association analysis – now including copy number variants.
PMCID: PMC4722964  PMID: 26776200
Copy number burden; functional annotation; electronic medical record; precision medicine
9.  Genome-wide association study of maternal and inherited effects on left-sided cardiac malformations 
Human Molecular Genetics  2014;24(1):265-273.
Congenital left-sided lesions (LSLs) are serious, heritable malformations of the heart. However, little is known about the genetic causes of LSLs. This study was undertaken to identify common variants acting through the genotype of the affected individual (i.e. case) or the mother (e.g. via an in utero effect) that influence the risk of LSLs. A genome-wide association study (GWAS) was performed using data from 377 LSL case-parent triads, with follow-up studies in an independent sample of 224 triads and analysis of the combined data. Associations with both the case and maternal genotypes were assessed using log-linear analyses under an additive model. An association between LSLs and the case genotype for one intergenic SNP on chromosome 16 achieved genome-wide significance in the combined data (rs8061121, combined P = 4.0 × 10−9; relative risk to heterozygote: 2.6, 95% CI: 1.9–3.7). In the combined data, there was also suggestive evidence of association between LSLs and the case genotype for a variant in the synaptoporin gene (rs1975649, combined P = 3.4 × 10−7; relative risk to heterozygote: 1.6, 95% CI: 1.4–2.0) and between LSLs and the maternal genotype for an intergenic SNP on chromosome 10 (rs11008222, combined P = 6.3 × 10−7; relative risk to heterozygote: 1.6, 95% CI: 1.4–2.0). This is the first GWAS of LSLs to evaluate associations with both the case and maternal genotypes. The results of this study identify three candidate LSL susceptibility loci, including one that appears to be associated with the risk of LSLs via the maternal genotype.
PMCID: PMC4326325  PMID: 25138779
10.  Genome-wide association study reveals two loci for serum magnesium concentrations in European-American children 
Scientific Reports  2015;5:18792.
Magnesium ions are essential to the basic metabolic processes in the human body. Previous genetic studies indicate that serum magnesium levels are highly heritable, and a few genetic loci have been reported involving regulation of serum magnesium in adults. In this study, we examined if additional loci influence serum magnesium levels in children. We performed a genome-wide association study (GWAS) on 2,267 European-American children genotyped on the Illumina HumanHap550 or Quad610 arrays, sharing over 500,000 markers, as the discovery cohort and 257 European-American children genotyped on the Illumina Human OmniExpress arrays as the replication cohort. After genotype imputation, the strongest associations uncovered were with imputed SNPs residing within the FGFR2 (rs1219515, P = 1.1 × 10−5) and PAPSS2 (rs1969821, P = 7.2 × 10−6) loci in the discovery cohort, both of which were robustly replicated in our independent patient cohort (rs1219515, P = 3.5 × 10−3; rs1969821, P = 1.2 × 10−2). The associations at the FGFR2 locus were also weakly replicated in a dataset from a previous GWAS of serum magnesium in European adults. Our results indicate that FGFR2 and PAPSS2 may play an important role in the regulation of magnesium homeostasis in children of European-American ancestry.
PMCID: PMC4685389  PMID: 26685716
11.  Copy number variation in CEP57L1 predisposes to congenital absence of bilateral ACL and PCL ligaments 
Human Genomics  2015;9:31.
Absence of the anterior (ACL) or posterior cruciate ligament (PCL) are rare congenital malformations that result in knee joint instability, with a prevalence of 1.7 per 100,000 live births and can be associated with other lower-limb abnormalities such as ACL agnesia and absence of the menisci of the knee. While a few cases of absence of ACL/PCL are reported in the literature, a number of large familial case series of related conditions such as ACL agnesia suggest a potential underlying monogenic etiology. We performed whole exome sequencing of a family with two individuals affected by ACL/PCL.
We identified copy number variation (CNV) deletion impacting the exon sequences of CEP57L1, present in the affected mother and her affected daughter based on the exome sequencing data. The deletion was validated using quantitative PCR (qPCR), and the gene was confirmed to be expressed in ACL ligament tissue. Interestingly, we detected reduced expression of CEP57L1 in Epstein–Barr virus (EBV) cells from the two patients in comparison with healthy controls. Evaluation of 3D protein structure showed that the helix-binding sites of the protein remain intact with the deletion, but other functional binding sites related to microtubule attachment are missing. The specificity of the CNV deletion was confirmed by showing that it was absent in ~700 exome sequencing samples as well as in the database of genomic variations (DGV), a database containing large numbers of annotated CNVs from previous scientific reports.
We identified a novel CNV deletion that was inherited through an autosomal dominant transmission from an affected mother to her affected daughter, both of whom suffered from the absence of the anterior and posterior cruciate ligaments of the knees.
Electronic supplementary material
The online version of this article (doi:10.1186/s40246-015-0053-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4642759  PMID: 26561035
Copy number variation; Rare disease; Whole exome sequencing
12.  Genetic sharing and heritability of paediatric age of onset autoimmune diseases 
Nature Communications  2015;6:8442.
Autoimmune diseases (AIDs) are polygenic diseases affecting 7–10% of the population in the Western Hemisphere with few effective therapies. Here, we quantify the heritability of paediatric AIDs (pAIDs), including JIA, SLE, CEL, T1D, UC, CD, PS, SPA and CVID, attributable to common genomic variations (SNP-h2). SNP-h2 estimates are most significant for T1D (0.863±s.e. 0.07) and JIA (0.727±s.e. 0.037), more modest for UC (0.386±s.e. 0.04) and CD (0.454±0.025), largely consistent with population estimates and are generally greater than that previously reported by adult GWAS. On pairwise analysis, we observed that the diseases UC-CD (0.69±s.e. 0.07) and JIA-CVID (0.343±s.e. 0.13) are the most strongly correlated. Variations across the MHC strongly contribute to SNP-h2 in T1D and JIA, but does not significantly contribute to the pairwise rG. Together, our results partition contributions of shared versus disease-specific genomic variations to pAID heritability, identifying pAIDs with unexpected risk sharing, while recapitulating known associations between autoimmune diseases previously reported in adult cohorts.
Autoimmune diseases are genetically complex disorders that affect up to 10% of the Western population. Here Li et al. quantify the heritability of a range of autoimmune diseases in the largest paediatric cohort examined to date, illustrating that genetic and non-genetic components variably contribute to the susceptibility of each disease.
PMCID: PMC4633631  PMID: 26450413
13.  Increased Frequency of De Novo Copy Number Variations in Congenital Heart Disease by Integrative Analysis of SNP Array and Exome Sequence Data 
Circulation research  2014;115(10):884-896.
Congenital heart disease (CHD) is among the most common birth defects. Most cases are of unknown etiology.
To determine the contribution of de novo copy number variants (CNVs) in the etiology of sporadic CHD.
Methods and Results
We studied 538 CHD trios using genome-wide dense single nucleotide polymorphism (SNP) arrays and/or whole exome sequencing (WES). Results were experimentally validated using digital droplet PCR. We compared validated CNVs in CHD cases to CNVs in 1,301 healthy control trios. The two complementary high-resolution technologies identified 63 validated de novo CNVs in 51 CHD cases. A significant increase in CNV burden was observed when comparing CHD trios with healthy trios, using either SNP array (p=7x10−5, Odds Ratio (OR)=4.6) or WES data (p=6x10−4, OR=3.5) and remained after removing 16% of de novo CNV loci previously reported as pathogenic (p=0.02, OR=2.7). We observed recurrent de novo CNVs on 15q11.2 encompassing CYFIP1, NIPA1, and NIPA2 and single de novo CNVs encompassing DUSP1, JUN, JUP, MED15, MED9, PTPRE SREBF1, TOP2A, and ZEB2, genes that interact with established CHD proteins NKX2-5 and GATA4. Integrating de novo variants in WES and CNV data suggests that ETS1 is the pathogenic gene altered by 11q24.2-q25 deletions in Jacobsen syndrome and that CTBP2 is the pathogenic gene in 10q sub-telomeric deletions.
We demonstrate a significantly increased frequency of rare de novo CNVs in CHD patients compared with healthy controls and suggest several novel genetic loci for CHD.
PMCID: PMC4209190  PMID: 25205790
De novo copy number variation; congenital heart disease; SNP-array; whole exome sequencing; CNV burden; congenital cardiac defect; microarray; genomics
14.  Association of CLEC16A with human common variable immunodeficiency disorder and role in murine B cells 
Nature communications  2015;6:6804.
Common variable immunodeficiency disorder (CVID) is the most common symptomatic primary immunodeficiency in adults, characterized by B cell abnormalities and inadequate antibody response. CVID patients have considerable autoimmune comorbidity and we therefore hypothesized that genetic susceptibility to CVID may overlap with autoimmune disorders. Here, in the largest genetic study performed in CVID to date, we compare 778 CVID cases with 10,999 controls across 123,127 single nucleotide polymorphisms (SNPs) on the Immunochip. We identify the first non-HLA genome-wide significant risk locus at CLEC16A (rs17806056, P=2.0×10−9) and confirm the previously reported human leukocyte antigen (HLA) associations on chromosome 6p21 (rs1049225, P =4.8×10−16). Clec16a knock down (KD) mice showed reduced number of B cells and elevated IgM levels compared to controls, suggesting that CLEC16A may be involved in immune regulatory pathways of relevance to CVID. In conclusion, the CLEC16A associations in CVID represent the first robust evidence of non-HLA associations in this immunodeficiency condition.
PMCID: PMC4444044  PMID: 25891430
15.  Microdeletions and Microduplications in Patients with Congenital Heart Disease and Multiple Congenital Anomalies 
Congenital heart disease  2011;6(6):592-602.
Multiple genetic syndromes are caused by recurrent chromosomal microdeletions or microduplications. The increasing use of high-resolution microarrays in clinical analysis has allowed the identification of previously undetectable submicroscopic copy number variants (CNVs) associated with genetic disorders. We hypothesized that patients with congenital heart disease and additional dysmorphic features or other anomalies would be likely to harbor previously undetected CNVs, which might identify new disease loci or disease-related genes for various cardiac defects.
Copy number analysis with single nucleotide polymorphism-based, oligonucleotide microarrays was performed on 58 patients with congenital heart disease and other dysmorphic features and/or other anomalies. The observed CNVs were validated using independent techniques and validated CNVs were further analyzed using computational algorithms and comparison with available control CNV datasets in order to assess their pathogenic potential.
Potentially pathogenic CNVs were detected in twelve of 58 patients (20.7%), ranging in size from 240 Kb to 9.6 Mb. These CNVs contained between 1 and 55 genes, including NRP1, NTRK3, MESP1, ADAM19, and HAND1, all of which are known to participate in cardiac development.
Genome-wide analysis in patients with congenital heart disease and additional phenotypes has identified potentially pathogenic CNVs affecting genes involved in cardiac development. The identified variant loci and the genes within them warrant further evaluation in similarly syndromic and nonsyndromic cardiac cohorts.
PMCID: PMC4575121  PMID: 22010865
Microdeletion; Microduplication; Copy Number Variant; Congenital Heart Disease
16.  The Role of ARF6 in Biliary Atresia 
PLoS ONE  2015;10(9):e0138381.
Background & Aims
Altered extrahepatic bile ducts, gut, and cardiovascular anomalies constitute the variable phenotype of biliary atresia (BA).
To identify potential susceptibility loci, Caucasian children, normal (controls) and with BA (cases) at two US centers were compared at >550000 SNP loci. Systems biology analysis was carried out on the data. In order to validate a key gene identified in the analysis, biliary morphogenesis was evaluated in 2-5-day post-fertilization zebrafish embryos after morpholino-antisense oligonucleotide knockdown of the candidate gene ADP ribosylation factor-6 (ARF6, Mo-arf6).
Among 39 and 24 cases at centers 1 and 2, respectively, and 1907 controls, which clustered together on principal component analysis, the SNPs rs3126184 and rs10140366 in a 3’ flanking enhancer region for ARF6 demonstrated higher minor allele frequencies (MAF) in each cohort, and 63 combined cases, compared with controls (0.286 vs. 0.131, P = 5.94x10-7, OR 2.66; 0.286 vs. 0.13, P = 5.57x10-7, OR 2.66). Significance was enhanced in 77 total cases, which included 14 additional BA genotyped at rs3126184 only (p = 1.58x10-2, OR = 2.66). Pathway analysis of the 1000 top-ranked SNPs in CHP cases revealed enrichment of genes for EGF regulators (p<1 x10-7), ERK/MAPK and CREB canonical pathways (p<1 x10-34), and functional networks for cellular development and proliferation (p<1 x10-45), further supporting the role of EGFR-ARF6 signaling in BA. In zebrafish embryos, Mo-arf6 injection resulted in a sparse intrahepatic biliary network, several biliary epithelial cell defects, and poor bile excretion to the gall bladder compared with uninjected embryos. Biliary defects were reproduced with the EGFR-blocker AG1478 alone or with Mo-arf6 at lower doses of each agent and rescued with arf6 mRNA.
The BA-associated SNPs identify a chromosome 14q21.3 susceptibility locus encompassing the ARF6 gene. arf6 knockdown in zebrafish implicates early biliary dysgenesis as a basis for BA, and also suggests a role for EGFR signaling in BA pathogenesis.
PMCID: PMC4574480  PMID: 26379158
17.  CNV Analysis Associates AKNAD1 with Type-2 Diabetes in Jordan Subpopulations 
Scientific Reports  2015;5:13391.
Previous studies have identified a number of single nucleotide polymorphisms (SNPs) associated with type-2 diabetes (T2D), but copy number variation (CNV) association has rarely been addressed, especially in populations from Jordan. To investigate CNV associations for T2D in populations in Jordan, we conducted a CNV analysis based on intensity data from genome-wide SNP array, including 34 T2D cases and 110 healthy controls of Chechen ethnicity, as well as 34 T2D cases and 106 healthy controls of Circassian ethnicity. We found a CNV region in protein tyrosine phosphatase receptor type D (PTPRD) with significant association with T2D. PTPRD has been reported to be associated with T2D in genome-wide association studies (GWAS). We additionally identified 16 CNV regions associated with T2D which overlapped with gene exons. Of particular interest, a CNV region in the gene AKNA Domain Containing 1 (AKNAD1) surpassed the experiment-wide significance threshold. Endoplasmic reticulum (ER)-related pathways were significantly enriched among genes which are predicted to be functionally associated with human or mouse homologues of AKNAD1. This is the first CNV analysis of a complex disease in populations of Jordan. We identified and experimentally validated a significant CNVR in gene AKNAD1 associated with T2D.
PMCID: PMC4543987  PMID: 26292654
18.  Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder 
Nature genetics  2011;44(1):78-84.
Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10−9). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10−6). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ~10% of the cases (P = 4.38 × 10−10) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts.
PMCID: PMC4310555  PMID: 22138692
19.  Association of variants of the interleukin-23 receptor (IL23R) gene with susceptibility to pediatric Crohn’s disease 
Background & Aims
Recently an association was demonstrated between the single nucleotide polymorphism (SNP), rs11209026, within the interleukin-23 receptor (IL23R) locus and Crohn’s disease (CD) as a consequence of a genome wide association study of this disease in adults. We examined the effects of this and other previously reported SNPs at this locus with respect to CD in children.
Utilizing data from our ongoing genome-wide association study in our cohort of 142 pediatric CD cases and 281 matched controls, we investigated the association of the previously reported SNPs at the IL23R locus with the childhood form of this disease.
Using a Fisher’s exact test, the minor allele frequency (MAF) of rs1120902 in the cases was 1.75% while it was 6.61% in controls, yielding a protective odds ratio (OR) of 0.25 (95% CI 0.10 – 0.65; one-sided P = 9.2×10−4). Furthermore, of all the SNPs previously reported, rs11209026 was the most strongly associated. A subsequent family-based association test (which is more resistant to population stratification) with 65 sets of trios derived from our initial patient cohort yielded significant association with rs11209026 in a transmission disequilibrium test (one-sided P=0.0017). In contrast, no association was detected to the CARD15 gene for the IBD phenotype.
The OR of the IL23R variant in our pediatric study is highly comparable with that reported previously in a non-Jewish adult IBD case-control cohort (OR=0.26). As such, variants in IL23R gene confer a similar magnitude of risk of CD to children as for their adult counterparts.
PMCID: PMC4287202  PMID: 17618837
IL23R; gene; association; Crohn’s Disease
20.  PECONPI: A Novel Software for Uncovering Pathogenic Copy Number Variations in Non-Syndromic Sensorineural Hearing Loss and Other Genetically Heterogeneous Disorders 
This report describes an algorithm developed to predict the pathogenicity of copy number variants (CNVs) in large sample cohorts. CNVs (genomic deletions and duplications) are found in healthy individuals and in individuals with genetic diagnoses, and differentiation of these two classes of CNVs can be challenging and usually requires extensive manual curation. We have developed PECONPI, an algorithm to assess the pathogenicity of CNVs based on gene content and CNV frequency. This software was applied to a large cohort of patients with genetically heterogeneous non-syndromic hearing loss to score and rank each CNV based on its relative pathogenicity. Of 636 individuals tested, we identified the likely underlying etiology of the hearing loss in 14 (2%) of the patients (1 with a homozygous deletion, 7 with a deletion of a known hearing loss gene and a point mutation on the trans allele and 6 with a deletion larger than 1 Mb). We also identified two probands with smaller deletions encompassing genes that may be functionally related to their hearing loss. The ability of PECONPI to determine the pathogenicity of CNVs was tested on a second genetically heterogenous cohort with congenital heart defects (CHDs). It successfully identified a likely etiology in 6 of 355 individuals (2%). We believe this tool is useful for researchers with large genetically heterogeneous cohorts to help identify known pathogenic causes and novel disease genes.
PMCID: PMC3745548  PMID: 23897863
Copy number variation; genetic heterogeneity
21.  The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism 
Nature Communications  2014;5:4074.
Although multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E−09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E−23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E−04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions.
The autism spectrum disorders are complex genetic traits characterized by various neurodevelopmental deficits. Here, the authors analyse defective gene family interaction networks in autism cases and healthy controls and identify potential gene family interactions that may contribute to autism aetiology.
PMCID: PMC4059929  PMID: 24927284
22.  Genome-Wide Association Study of Maternal and Inherited Loci for Conotruncal Heart Defects 
PLoS ONE  2014;9(5):e96057.
Conotruncal and related heart defects (CTDs) are a group of serious and relatively common birth defects. Although both maternal and inherited genotypes are thought to play a role in the etiology of CTDs, few specific genetic risk factors have been identified. To determine whether common variants acting through the genotype of the mother (e.g. via an in utero effect) or the case are associated with CTDs, we conducted a genome-wide association study of 750 CTD case-parent triads, with follow-up analyses in 358 independent triads. Log-linear analyses were used to assess the association of CTDs with the genotypes of both the mother and case. No association achieved genomewide significance in either the discovery or combined (discovery+follow-up) samples. However, three loci with p-values suggestive of association (p<10−5) in the discovery sample had p-values <0.05 in the follow-up sample and p-values in the combined data that were lower than in the discovery sample. These included suggestive association with an inherited intergenic variant at 20p12.3 (rs6140038, combined p = 1.0×10−5) and an inherited intronic variant in KCNJ4 at 22q13.1 (rs2267386, combined p = 9.8×10−6), as well as with a maternal variant in SLC22A24 at 11q12.3 (rs11231379, combined p = 4.2×10−6). These observations suggest novel candidate loci for CTDs, including loci that appear to be associated with the risk of CTDs via the maternal genotype, but further studies are needed to confirm these associations.
PMCID: PMC4011736  PMID: 24800985
23.  Evidence From Human and Zebrafish That GPC1 Is a Biliary Atresia Susceptibility Gene 
Gastroenterology  2013;144(5):1107-1115.e3.
Biliary atresia (BA) is a progressive fibroinflammatory disorder of infants involving the extrahepatic and intrahepatic biliary tree. Its etiology is unclear but is believed to involve exposure of a genetically susceptible individual to certain environmental factors. BA occurs exclusively in the neonatal liver, so variants of genes expressed during hepatobiliary development could affect susceptibility. Genome-wide association studies previously identified a potential region of interest at 2q37. We continued these studies to narrow the region and identify BA susceptibility genes.
We searched for copy number variants that were increased among patients with BA (n = 61) compared with healthy individuals (controls; n = 5088). After identifying a candidate gene, we investigated expression patterns of orthologues in zebrafish liver and the effects of reducing expression, with morpholino antisense oligonucleotides, on biliary development, gene expression, and signal transduction.
We observed a statistically significant increase in deletions at 2q37.3 in patients with BA that resulted in deletion of one copy of GPC1, which encodes glypican 1, a heparan sulfate proteoglycan that regulates Hedgehog signaling and inflammation. Knockdown of gpc1 in zebrafish led to developmental biliary defects. Exposure of the gpc1 morphants to cyclopamine, a Hedgehog antagonist, partially rescued the gpc1-knockdown phenotype. Injection of zebrafish with recombinant Sonic Hedgehog led to biliary defects similar to those of the gpc1 morphants. Liver samples from patients with BA had reduced levels of apical GPC1 in cholangiocytes compared with samples from controls.
Based on genetic analysis of patients with BA and zebrafish, GPC1 appears to be a BA susceptibility gene. These findings also support a role for Hedgehog signaling in the pathogenesis of BA.
PMCID: PMC3736559  PMID: 23336978
GWA; Susceptibility Loci; Animal Model; Bile Duct Growth and Development
24.  GWAS of blood cell traits identifies novel associated loci and epistatic interactions in Caucasian and African-American children 
Human Molecular Genetics  2012;22(7):1457-1464.
Hematological traits are important clinical indicators, the genetic determinants of which have not been fully investigated. Common measures of hematological traits include red blood cell (RBC) count, hemoglobin concentration (HGB), hematocrit (HCT), mean corpuscular hemoglobin (MCH), MCH concentration (MCHC), mean corpuscular volume (MCV), platelet count (PLT) and white blood cell (WBC) count. We carried out a genome-wide association study of the eight common hematological traits among 7943 African-American children and 6234 Caucasian children. In African Americans, we report five novel associations of HBE1 variants with HCT and MCHC, the alpha-globin gene cluster variants with RBC and MCHC, and a variant at the ARHGEF3 locus with PLT, as well as replication of four previously reported loci at genome-wide significance. In Caucasians, we report a novel association of variants at the COPZ1 locus with PLT as well as replication of four previously reported loci at genome-wide significance. Extended analysis of an association observed between MCH and the alpha-globin gene cluster variants demonstrated independent effects and epistatic interaction at the locus, impacting the risk of iron deficiency anemia in African Americans with specific genotype states. In summary, we extend the understanding of genetic variants underlying hematological traits based on analyses in African-American children.
PMCID: PMC3657475  PMID: 23263863
25.  Copy number variation analysis in the context of electronic medical records and large-scale genomics consortium efforts 
The goal of this paper is to review recent research on copy number variations (CNVs) and their association with complex and rare diseases. In the latter part of this paper, we focus on how large biorepositories such as the electronic medical record and genomics (eMERGE) consortium may be best leveraged to systematically mine for potentially pathogenic CNVs, and we end with a discussion of how such variants might be reported back for inclusion in electronic medical records as part of medical history.
PMCID: PMC3957100  PMID: 24672537
CNV; copy number; structural variation; eMERGE; review

Results 1-25 (81)