PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-24 (24)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Evolutionarily Assembled cis-Regulatory Module at a Human Ciliopathy Locus 
Science (New York, N.Y.)  2012;335(6071):966-969.
Neighboring genes are often coordinately expressed within cis-regulatory modules, but evidence that nonparalogous genes share functions in mammals is lacking. Here, we report that mutation of either TMEM138 or TMEM216 causes a phenotypically indistinguishable human ciliopathy, Joubert syndrome. Despite a lack of sequence homology, the genes are aligned in a head-to-tail configuration and joined by chromosomal rearrangement at the amphibian-to-reptile evolutionary transition. Expression of the two genes is mediated by a conserved regulatory element in the noncoding intergenic region. Coordinated expression is important for their interdependent cellular role in vesicular transport to primary cilia. Hence, during vertebrate evolution of genes involved in ciliogenesis, nonparalogous genes were arranged to a functional gene cluster with shared regulatory elements.
doi:10.1126/science.1213506
PMCID: PMC3671610  PMID: 22282472
2.  Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation 
Nucleic Acids Research  2013;41(6):e67.
As researchers begin probing deep coverage sequencing data for increasingly rare mutations and subclonal events, the fidelity of next generation sequencing (NGS) laboratory methods will become increasingly critical. Although error rates for sequencing and polymerase chain reaction (PCR) are well documented, the effects that DNA extraction and other library preparation steps could have on downstream sequence integrity have not been thoroughly evaluated. Here, we describe the discovery of novel C > A/G > T transversion artifacts found at low allelic fractions in targeted capture data. Characteristics such as sequencer read orientation and presence in both tumor and normal samples strongly indicated a non-biological mechanism. We identified the source as oxidation of DNA during acoustic shearing in samples containing reactive contaminants from the extraction process. We show generation of 8-oxoguanine (8-oxoG) lesions during DNA shearing, present analysis tools to detect oxidation in sequencing data and suggest methods to reduce DNA oxidation through the introduction of antioxidants. Further, informatics methods are presented to confidently filter these artifacts from sequencing data sets. Though only seen in a low percentage of reads in affected samples, such artifacts could have profoundly deleterious effects on the ability to confidently call rare mutations, and eliminating other possible sources of artifacts should become a priority for the research community.
doi:10.1093/nar/gks1443
PMCID: PMC3616734  PMID: 23303777
3.  High-Throughput Detection of Actionable Genomic Alterations in Clinical Tumor Samples by Targeted, Massively Parallel Sequencing 
Cancer Discovery  2011;2(1):82-93.
Knowledge of “actionable” somatic genomic alterations present in each tumor (e.g., point mutations, small insertions/deletions, and copy number alterations that direct therapeutic options) should facilitate individualized approaches to cancer treatment. However, clinical implementation of systematic genomic profiling has rarely been achieved beyond limited numbers of oncogene point mutations. To address this challenge, we utilized a targeted, massively parallel sequencing approach to detect tumor genomic alterations in formalin-fixed, paraffin embedded (FFPE) tumor samples. Nearly 400-fold mean sequence coverage was achieved, and single nucleotide sequence variants, small insertions/deletions, and chromosomal copy number alterations were detected simultaneously with high accuracy compared to other methods in clinical use. Putatively actionable genomic alterations, including those that predict sensitivity or resistance to established and experimental therapies, were detected in each tumor sample tested. Thus, targeted deep sequencing of clinical tumor material may enable mutation-driven clinical trials and, ultimately, ”personalized” cancer treatment.
doi:10.1158/2159-8290.CD-11-0184
PMCID: PMC3353152  PMID: 22585170
4.  Pacific biosciences sequencing technology for genotyping and variation discovery in human data 
BMC Genomics  2012;13:375.
Background
Pacific Biosciences technology provides a fundamentally new data type that provides the potential to overcome some limitations of current next generation sequencing platforms by providing significantly longer reads, single molecule sequencing, low composition bias and an error profile that is orthogonal to other platforms. With these potential advantages in mind, we here evaluate the utility of the Pacific Biosciences RS platform for human medical amplicon resequencing projects.
Results
We evaluated the Pacific Biosciences technology for SNP discovery in medical resequencing projects using the Genome Analysis Toolkit, observing high sensitivity and specificity for calling differences in amplicons containing known true or false SNPs. We assessed data quality: most errors were indels (~14%) with few apparent miscalls (~1%). In this work, we define a custom data processing pipeline for Pacific Biosciences data for human data analysis.
Conclusion
Critically, the error properties were largely free of the context-specific effects that affect other sequencing technologies. These data show excellent utility for follow-up validation and extension studies in human data and medical genetics projects, but can be extended to other organisms with a reference genome.
doi:10.1186/1471-2164-13-375
PMCID: PMC3443046  PMID: 22863213
5.  Exome sequencing reveals a novel mutation for autosomal recessive non-syndromic mental retardation in the TECR gene on chromosome 19p13 
Human Molecular Genetics  2011;20(7):1285-1289.
Exome sequencing is a powerful tool for discovery of the Mendelian disease genes. Previously, we reported a novel locus for autosomal recessive non-syndromic mental retardation (NSMR) in a consanguineous family [Nolan, D.K., Chen, P., Das, S., Ober, C. and Waggoner, D. (2008) Fine mapping of a locus for nonsyndromic mental retardation on chromosome 19p13. Am. J. Med. Genet. A, 146A, 1414–1422]. Using linkage and homozygosity mapping, we previously localized the gene to chromosome 19p13. The parents of this sibship were recently included in an exome sequencing project. Using a series of filters, we narrowed the putative causal mutation to a single variant site that segregated with NSMR: the mutation was homozygous in five affected siblings but in none of eight unaffected siblings. This mutation causes a substitution of a leucine for a highly conserved proline at amino acid 182 in TECR (trans-2,3-enoyl-CoA reductase), a synaptic glycoprotein. Our results reveal the value of massively parallel sequencing for identification of novel disease genes that could not be found using traditional approaches and identifies only the seventh causal mutation for autosomal recessive NSMR.
doi:10.1093/hmg/ddq569
PMCID: PMC3115579  PMID: 21212097
6.  High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency 
Nature genetics  2010;42(10):851-858.
Discovering the molecular basis of mitochondrial respiratory chain disease is challenging given the large number of both mitochondrial and nuclear genes involved. We report a strategy of focused candidate gene prediction, high-throughput sequencing, and experimental validation to uncover the molecular basis of mitochondrial complex I (CI) disorders. We created five pools of DNA from a cohort of 103 patients and then performed deep sequencing of 103 candidate genes to spotlight 151 rare variants predicted to impact protein function. We used confirmatory experiments to establish genetic diagnoses in 22% of previously unsolved cases, and discovered that defects in NUBPL and FOXRED1 can cause CI deficiency. Our study illustrates how large-scale sequencing, coupled with functional prediction and experimental validation, can reveal novel disease-causing mutations in individual patients.
doi:10.1038/ng.659
PMCID: PMC2977978  PMID: 20818383
7.  Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs 
Nature genetics  2008;40(10):1253-1260.
Accurate and complete measurement of single nucleotide (SNP) and copy number (CNV) variants, both common and rare, will be required to understand the role of genetic variation in disease. We present Birdsuite, a four-stage analytical framework instantiated in software for deriving integrated and mutually consistent copy number and SNP genotypes. The method sequentially assigns copy number across regions of common copy number polymorphisms (CNPs), calls genotypes of SNPs, identifies rare CNVs via a hidden Markov model (HMM), and generates an integrated sequence and copy number genotype at every locus (for example, including genotypes such as A-null, AAB and BBB in addition to AA, AB and BB calls). Such genotypes more accurately depict the underlying sequence of each individual, reducing the rate of apparent mendelian inconsistencies. The Birdsuite software is applied here to data from the Affymetrix SNP 6.0 array. Additionally, we describe a method, implemented in PLINK, to utilize these combined SNP and CNV genotypes for association testing with a phenotype.
doi:10.1038/ng.237
PMCID: PMC2756534  PMID: 18776909
8.  Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders 
Neuron  2013;77(2):235-242.
SUMMARY
To characterize the role of rare complete human knockouts in autism spectrum disorders (ASD), we identify genes with homozygous or compound heterozygous loss-of-function (LoF) variants (defined as nonsense and essential splice sites) from exome sequencing of 933 cases and 869 controls. We identify a two-fold increase in complete knockouts of autosomal genes with low rates of LoF variation (≤5% frequency) in cases and estimate a 3% contribution to ASD risk by these events, confirming this observation in an independent set of 563 probands and 4,605 controls. Outside the pseudo-autosomal regions on the X-chromosome, we similarly observe a significant 1.5-fold increase in rare hemizygous knockouts in males, contributing to another 2% of ASDs in males. Taken together these results provide compelling evidence that rare autosomal and X-chromosome complete gene knockouts are important inherited risk factors for ASD.
doi:10.1016/j.neuron.2012.12.029
PMCID: PMC3613849  PMID: 23352160
9.  Exome and whole genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity 
Nature genetics  2013;45(5):10.1038/ng.2591.
The incidence of esophageal adenocarcinoma (EAC) has risen 600% over the last 30 years. With a five-year survival rate of 15%, identification of new therapeutic targets for EAC is greatly important. We analyze the mutation spectra from whole exome sequencing of 149 EAC tumors/normal pairs, 15 of which have also been subjected to whole genome sequencing. We identify a mutational signature defined by a high prevalence of A to C transversions at AA dinucleotides. Statistical analysis of exome data identified significantly mutated 26 genes. Of these genes, four (TP53, CDKN2A, SMAD4, and PIK3CA) have been previously implicated in EAC. The novel significantly mutated genes include chromatin modifying factors and candidate contributors: SPG20, TLR4, ELMO1, and DOCK2. Functional analyses of EAC-derived mutations in ELMO1 reveal increased cellular invasion. Therefore, we suggest a new hypothesis about the potential activation of the RAC1 pathway to be a contributor to EAC tumorigenesis.
doi:10.1038/ng.2591
PMCID: PMC3678719  PMID: 23525077
10.  A Landscape of Driver Mutations in Melanoma 
Cell  2012;150(2):251-263.
SUMMARY
Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic ultraviolet (UV) light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19 and ARID2), three of which - RAC1, PPP6C and STK19 - harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis.
doi:10.1016/j.cell.2012.06.024
PMCID: PMC3600117  PMID: 22817889
11.  Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci 
Nature genetics  2008;40(2):204-210.
Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (λS = ~30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 × 10−7 < Poverall < 1.6 × 10−23; odds ratio 0.82–1.62)in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 × 10−5) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at ≥9 other loci (P < 2 × 10−7). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.
doi:10.1038/ng.81
PMCID: PMC3712260  PMID: 18204446
12.  Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer 
Nature genetics  2012;44(6):685-689.
Prostate cancer is the second most common cancer in men worldwide and causes over 250,000 deaths each year1. Overtreatment of indolent disease also results in significant morbidity2. Common genetic alterations in prostate cancer include losses of NKX3.1 (8p21)3,4 and PTEN (10q23)5,6, gains of the androgen receptor gene (AR)7,8 and fusion of ETS-family transcription factor genes with androgen-responsive promoters9–11. Recurrent somatic base-pair substitutions are believed to be less contributory in prostate tumorigenesis12,13 but have not been systematically analyzed in large cohorts. Here we sequenced the exomes of 112 prostate tumor/normal pairs. Novel recurrent mutations were identified in multiple genes, including MED12 and FOXA1. SPOP was the most frequently mutated gene, with mutations involving the SPOP substrate binding cleft in 6–15% of tumors across multiple independent cohorts. SPOP-mutant prostate cancers lacked ETS rearrangements and exhibited a distinct pattern of genomic alterations. Thus, SPOP mutations may define a new molecular subtype of prostate cancer.
doi:10.1038/ng.2279
PMCID: PMC3673022  PMID: 22610119
14.  MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS 
Nature  2012;488(7409):106-110.
Medulloblastomas are the most common malignant brain tumors in children1. Identifying and understanding the genetic events that drive these tumors is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma based on transcriptional and copy number profiles2–5. Here, we utilized whole exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas exhibit low mutation rates consistent with other pediatric tumors, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR, and LDB1, novel findings in medulloblastoma. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant but not wild type beta-catenin. Together, our study reveals the alteration of Wnt, Hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signaling in medulloblastoma.
doi:10.1038/nature11329
PMCID: PMC3413789  PMID: 22820256
15.  Initial genome sequencing and analysis of multiple myeloma 
Nature  2011;471(7339):467-472.
Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumor genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the dataset. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signaling was suggested by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.
doi:10.1038/nature09837
PMCID: PMC3560292  PMID: 21430775
16.  Melanoma genome sequencing reveals frequent PREX2 mutations 
Nature  2012;485(7399):502-506.
Melanoma is notable for its metastatic propensity, lethality in the advanced setting, and association with ultraviolet (UV) exposure early in life1. To obtain a comprehensive genomic view of melanoma, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-UV exposed hairless skin of the extremities (3 and 14 per Mb genome), intermediate in those originating from hair-bearing skin of the trunk (range = 5 to 55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 - a PTEN-interacting protein and negative regulator of PTEN in breast cancer2 - as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumor formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumors revealed genomic evidence of UV pathogenesis and discovered a new recurrently mutated gene in melanoma.
doi:10.1038/nature11071
PMCID: PMC3367798  PMID: 22622578
17.  The Mutational Landscape of Head and Neck Squamous Cell Carcinoma 
Science (New York, N.Y.)  2011;333(6046):1157-1160.
Head and neck squamous cell carcinoma (HNSCC) is a common, morbid, and frequently lethal malignancy. To uncover its mutational spectrum, we analyzed whole-exome sequencing data from 74 tumor-normal pairs. The majority exhibited a mutational profile consistent with tobacco exposure; human papilloma virus was detectable by sequencing of DNA from infected tumors. In addition to identifying previously known HNSCC genes (TP53, CDKN2A, PTEN, PIK3CA, and HRAS), the analysis revealed many genes not previously implicated in this malignancy. At least 30% of cases harbored mutations in genes that regulate squamous differentiation (e.g., NOTCH1, IRF6, and TP63), implicating its dysregulation as a major driver of HNSCC carcinogenesis. More generally, the results indicate the ability of large-scale sequencing to reveal fundamental tumorigenic mechanisms.
doi:10.1126/science.1208130
PMCID: PMC3415217  PMID: 21798893
18.  Multi-Ethnic Analysis of Lipid-Associated Loci: The NHLBI CARe Project 
PLoS ONE  2012;7(5):e36473.
Background
Whereas it is well established that plasma lipid levels have substantial heritability within populations, it remains unclear how many of the genetic determinants reported in previous studies (largely performed in European American cohorts) are relevant in different ethnicities.
Methodology/Principal Findings
We tested a set of ∼50,000 polymorphisms from ∼2,000 candidate genes and genetic loci from genome-wide association studies (GWAS) for association with low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) in 25,000 European Americans and 9,000 African Americans in the National Heart, Lung, and Blood Institute (NHLBI) Candidate Gene Association Resource (CARe). We replicated associations for a number of genes in one or both ethnicities and identified a novel lipid-associated variant in a locus harboring ICAM1. We compared the architecture of genetic loci associated with lipids in both African Americans and European Americans and found that the same genes were relevant across ethnic groups but the specific associated variants at each gene often differed.
Conclusions/Significance
We identify or provide further evidence for a number of genetic determinants of plasma lipid levels through population association studies. In many loci the determinants appear to differ substantially between African Americans and European Americans.
doi:10.1371/journal.pone.0036473
PMCID: PMC3357427  PMID: 22629316
19.  Whole-Exome Sequencing and Homozygosity Analysis Implicate Depolarization-Regulated Neuronal Genes in Autism 
PLoS Genetics  2012;8(4):e1002635.
Although autism has a clear genetic component, the high genetic heterogeneity of the disorder has been a challenge for the identification of causative genes. We used homozygosity analysis to identify probands from nonconsanguineous families that showed evidence of distant shared ancestry, suggesting potentially recessive mutations. Whole-exome sequencing of 16 probands revealed validated homozygous, potentially pathogenic recessive mutations that segregated perfectly with disease in 4/16 families. The candidate genes (UBE3B, CLTCL1, NCKAP5L, ZNF18) encode proteins involved in proteolysis, GTPase-mediated signaling, cytoskeletal organization, and other pathways. Furthermore, neuronal depolarization regulated the transcription of these genes, suggesting potential activity-dependent roles in neurons. We present a multidimensional strategy for filtering whole-exome sequence data to find candidate recessive mutations in autism, which may have broader applicability to other complex, heterogeneous disorders.
Author Summary
Autism spectrum disorders are neurodevelopmental disorders that are genetically highly heterogeneous, with no single gene accounting for more than 1% of cases. In order to identify recessive mutations, we selected probands from an outbred population based on abundance of homozygosity in their genomes. We interrogated the entire coding sequences of 16 probands that had evidence of parental shared ancestry and identified four candidate autism genes. Furthermore, the expression of these genes was responsive to neuronal activity. We present a strategy for identifying candidate recessive mutations in genetically complex disorders.
doi:10.1371/journal.pgen.1002635
PMCID: PMC3325173  PMID: 22511880
20.  The genomic complexity of primary human prostate cancer 
Nature  2011;470(7333):214-220.
Prostate cancer is the second most common cause of male cancer deaths in the United States. Here we present the complete sequence of seven primary prostate cancers and their paired normal counterparts. Several tumors contained complex chains of balanced rearrangements that occurred within or adjacent to known cancer genes. Rearrangement breakpoints were enriched near open chromatin, androgen receptor and ERG DNA binding sites in the setting of the ETS gene fusion TMPRSS2-ERG, but inversely correlated with these regions in tumors lacking ETS fusions. This observation suggests a link between chromatin or transcriptional regulation and the genesis of genomic aberrations. Three tumors contained rearrangements that disrupted CADM2, and four harbored events disrupting either PTEN (unbalanced events), a prostate tumor suppressor, or MAGI2 (balanced events), a PTEN interacting protein not previously implicated in prostate tumorigenesis. Thus, genomic rearrangements may arise from transcriptional or chromatin aberrancies to engage prostate tumorigenic mechanisms.
doi:10.1038/nature09744
PMCID: PMC3075885  PMID: 21307934
21.  Exome Sequencing, ANGPTL3 Mutations, and Familial Combined Hypolipidemia 
The New England journal of medicine  2010;363(23):2220-2227.
SUMMARY
We sequenced all protein-coding regions of the genome (the “exome”) in two family members with combined hypolipidemia, marked by extremely low plasma levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides. These two participants were compound heterozygotes for two distinct nonsense mutations in ANGPTL3 (encoding the angiopoietin-like 3 protein). ANGPTL3 has been reported to inhibit lipoprotein lipase and endothelial lipase, thereby increasing plasma triglyceride and HDL cholesterol levels in rodents. Our finding of ANGPTL3 mutations highlights a role for the gene in LDL cholesterol metabolism in humans and shows the usefulness of exome sequencing for identification of novel genetic causes of inherited disorders. (Funded by the National Human Genome Research Institute and others.)
doi:10.1056/NEJMoa1002926
PMCID: PMC3008575  PMID: 20942659
22.  Candidate Gene Association Resource (CARe): Design, Methods, and Proof of Concept 
Background
. The National Heart, Lung, and Blood Institute’s Candidate Gene Association Resource (CARe), a planned cross-cohort analysis of genetic variation in cardiovascular, pulmonary, hematological, and sleep-related traits, comprises more than 40,000 participants representing four ethnic groups in nine community-based cohorts. The goals of CARe include the discovery of new variants associated with traits using a candidate gene approach and the discovery of new variants using the genome-wide association mapping approach specifically in African Americans.
Methods and Results
. CARe has assembled DNA samples for more than 40,000 individuals self-identified as European-American, African-American, Hispanic, or Chinese-American, with accompanying data on hundreds of phenotypes that have been standardized and deposited in the CARe Phenotype Database. All participants were genotyped for seven single-nucleotide polymorphisms (SNPs) selected based on prior association evidence. We performed association analyses relating each of these SNPs to lipid traits, stratified by gender and ethnicity and adjusted for age and age2. In at least two of the ethnic groups, SNPs near CETP, LIPC, and LPL strongly replicated for association with high-density lipoprotein cholesterol concentrations, PCSK9 with low-density lipoprotein cholesterol levels, and LPL and APOA5 with serum triglycerides. Notably, some SNPs showed varying effect sizes and significance of association in different ethnic groups.
Conclusions
. The CARe Pilot Study validates the operational framework for phenotype collection, SNP genotyping, and analytical pipeline of the CARe project and validates the planned candidate gene study of ~2,000 biologic candidate loci in all participants and genome-wide association study in ~8,000 African-American participants. CARe will serve as a valuable resource for the scientific community.
doi:10.1161/CIRCGENETICS.109.882696
PMCID: PMC3048024  PMID: 20400780
Genetics; lipids; diabetes; blood pressure; epidemiology
23.  Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder 
Nature genetics  2008;40(9):1056-1058.
To identify susceptibility loci for bipolar disorder, we tested 1.8 million variants in 4,387 cases and 6,209 controls and identified a region of strong association (rs10994336, P = 9.1 × 10-9) in ANK3 (ankyrin G). We also found further support for the previously reported CACNA1C (alpha 1C subunit of the L-type voltage-gated calcium channel; combined P = 7.0 × 10-8, rs1006737). Our results suggest that ion channelopathies may be involved in the pathogenesis of bipolar disorder.
doi:10.1038/ng.209
PMCID: PMC2703780  PMID: 18711365
24.  Two independent alleles at 6q23 associated with risk of rheumatoid arthritis 
Nature genetics  2007;39(12):1477-1482.
To identify susceptibility alleles associated with rheumatoid arthritis, we genotyped 397 individuals with rheumatoid arthritis for 116,204 SNPs and carried out an association analysis in comparison to publicly available genotype data for 1,211 related individuals from the Framingham Heart Study1. After evaluating and adjusting for technical and population biases, we identified a SNP at 6q23 (rs10499194, ∼150 kb from TNFAIP3 and OLIG3) that was reproducibly associated with rheumatoid arthritis both in the genome-wide association (GWA) scan and in 5,541 additional case-control samples (P = 10−3, GWA scan; P < 10−6, replication; P = 10−9, combined). In a concurrent study, the Wellcome Trust Case Control Consortium (WTCCC) has reported strong association of rheumatoid arthritis susceptibility to a different SNP located 3.8 kb from rs10499194 (rs6920220; P = 5 × 10−6 in WTCCC)2. We show that these two SNP associations are statistically independent, are each reproducible in the comparison of our data and WTCCC data, and define risk and protective haplotypes for rheumatoid arthritis at 6q23.
doi:10.1038/ng.2007.27
PMCID: PMC2652744  PMID: 17982456

Results 1-24 (24)