PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-23 (23)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues 
Objective
Aging is a major risk factor for increased ischemic tissue injury. Whether collateral rarefaction and impaired remodeling contribute to this is unknown. We quantified the number and diameter of native collaterals, and their remodeling in 3-, 16-, 24-, and 31-months-old mice.
Methods and Results
Aging caused an “age-dose-dependent” greater drop in perfusion immediately after femoral artery ligation, followed by a diminished recovery of flow and increase in tissue injury. These effects were associated with a decline in collateral number, diameter and remodeling. Angiogenesis was also impaired. Mechanistically, these changes were not accompanied by reduced recruitment of T-cells or macrophages to remodeling collaterals. However, eNOS signaling was dysfunctional, as indicated by increased protein nitrosylation and less phosphorylated eNOS and VASP in collateral wall cells. The cerebral circulation exhibited a similar age-dose-dependent loss of collateral number and diameter and increased tortuosity, resulting in an increase in collateral resistance and infarct volume (e.g., 6- and 3-fold, respectively, in 24-months-old mice) after artery occlusion. This was not associated with rarefaction of similarly-sized arterioles. Collateral remodeling was also reduced.
Conclusions
Our findings demonstrate that aging causes rarefaction and insufficiency of the collateral circulation in multiple tissues, resulting in more severe ischemic tissue injury.
doi:10.1161/ATVBAHA.111.227314
PMCID: PMC3141082  PMID: 21617137
collateral vessels; aging; ischemia; arteriogenesis; angiogenesis
2.  Association Between the Chromosome 9p21 Locus and Angiographic Coronary Artery Disease Burden 
Objectives
This study sought to ascertain the relationship of 9p21 locus with: 1) angiographic coronary artery disease (CAD) burden; and 2) myocardial infarction (MI) in individuals with underlying CAD.
Background
Chromosome 9p21 variants have been robustly associated with coronary heart disease, but questions remain on the mechanism of risk, specifically whether the locus contributes to coronary atheroma burden or plaque instability.
Methods
We established a collaboration of 21 studies consisting of 33,673 subjects with information on both CAD (clinical or angiographic) and MI status along with 9p21 genotype. Tabular data are provided for each cohort on the presence and burden of angiographic CAD, MI cases with underlying CAD, and the diabetic status of all subjects.
Results
We first confirmed an association between 9p21 and CAD with angiographically defined cases and control subjects (pooled odds ratio [OR]: 1.31, 95% confidence interval [CI]: 1.20 to 1.43). Among subjects with angiographic CAD (n = 20,987), random-effects model identified an association with multivessel CAD, compared with those with single-vessel disease (OR: 1.10, 95% CI: 1.04 to 1.17)/copy of risk allele). Genotypic models showed an OR of 1.15, 95% CI: 1.04 to 1.26 for heterozygous carrier and OR: 1.23, 95% CI: 1.08 to 1.39 for homozygous carrier. Finally, there was no significant association between 9p21 and prevalent MI when both cases (n = 17,791) and control subjects (n = 15,882) had underlying CAD (OR: 0.99, 95% CI: 0.95 to 1.03)/risk allele.
Conclusions
The 9p21 locus shows convincing association with greater burden of CAD but not with MI in the presence of underlying CAD. This adds further weight to the hypothesis that 9p21 locus primarily mediates an atherosclerotic phenotype.
doi:10.1016/j.jacc.2012.10.051
PMCID: PMC3653306  PMID: 23352782
9p21; angiography; coronary artery disease; meta-analysis; myocardial infarction; single nucleotide polymorphism
3.  A new murine model of stress-induced complex atherosclerotic lesions 
Disease Models & Mechanisms  2013;6(2):323-331.
SUMMARY
The primary purpose of this investigation was to determine whether ApoE−/− mice, when subjected to chronic stress, exhibit lesions characteristic of human vulnerable plaque and, if so, to determine the time course of such changes. We found that the lesions were remarkably similar to human vulnerable plaque, and that the time course of lesion progression raised interesting insights into the process of plaque development. Lard-fed mixed-background ApoE−/− mice exposed to chronic stress develop lesions with large necrotic core, thin fibrous cap and a high degree of inflammation. Neovascularization and intraplaque hemorrhage are observed in over 80% of stressed animals at 20 weeks of age. Previously described models report a prevalence of only 13% for neovascularization observed at a much later time point, between 36 and 60 weeks of age. Thus, our new stress-induced model of advanced atherosclerotic plaque provides an improvement over what is currently available. This model offers a tool to further investigate progression of plaque phenotype to a more vulnerable phenotype in humans. Our findings also suggest a possible use of this stress-induced model to determine whether therapeutic interventions have effects not only on plaque burden, but also, and importantly, on plaque vulnerability.
doi:10.1242/dmm.009977
PMCID: PMC3597015  PMID: 23324329
4.  Pathway-Wide Association Study Implicates Multiple Sterol Transport and Metabolism Genes in HDL Cholesterol Regulation 
Pathway-based association methods have been proposed to be an effective approach in identifying disease genes, when single-marker association tests do not have sufficient power. The analysis of quantitative traits may be benefited from these approaches, by sampling from two extreme tails of the distribution. Here we tested a pathway association approach on a small genome-wide association study (GWAS) on 653 subjects with extremely high high-density lipoprotein cholesterol (HDL-C) levels and 784 subjects with low HDL-C levels. We identified 102 genes in the sterol transport and metabolism pathways that collectively associate with HDL-C levels, and replicated these association signals in an independent GWAS. Interestingly, the pathways include 18 genes implicated in previous GWAS on lipid traits, suggesting that genuine HDL-C genes are highly enriched in these pathways. Additionally, multiple biologically relevant loci in the pathways were not detected by previous GWAS, including genes implicated in previous candidate gene association studies (such as LEPR, APOA2, HDLBP, SOAT2), genes that cause Mendelian forms of lipid disorders (such as DHCR24), and genes expressing dyslipidemia phenotypes in knockout mice (such as SOAT1, PON1). Our study suggests that sampling from two extreme tails of a quantitative trait and examining genetic pathways may yield biological insights from smaller samples than are generally required using single-marker analysis in large-scale GWAS. Our results also implicate that functionally related genes work together to regulate complex quantitative traits, and that future large-scale studies may benefit from pathway-association approaches to identify novel pathways regulating HDL-C levels.
doi:10.3389/fgene.2011.00041
PMCID: PMC3268595  PMID: 22303337
GWAS; lipid; HDL-C; pathway analysis; cholesterol; sterol transport; sterol metabolism; genetic association
5.  C-Reactive Protein, Insulin Resistance, and Metabolic Syndrome in a Population With a High Burden of Subclinical Infection 
Diabetes Care  2008;31(12):2312-2314.
OBJECTIVE—To explore relationships between C-reactive protein (CRP), subclinical infection, insulin resistance, and metabolic syndrome.
RESEARCH DESIGN AND METHODS—Data from 1,174 Eskimos, aged ≥18 years, from the Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) study were analyzed; 40 participants with diabetes were eliminated. Baseline assessment included interviews, physical exam, and blood and urine sampling. Metabolic syndrome was assessed using Adult Treatment Panel III criteria. CRP and antibodies to common pathogens were measured.
RESULTS—Although CRP was related in univariate analyses to insulin resistance and metabolic syndrome, relations were attenuated or eliminated after adjustment for relevant covariates. CRP was not higher among those with impaired fasting glucose (IFG), and pathogen burden was not related to insulin resistance, metabolic syndrome, or IFG.
CONCLUSIONS—Pathogen burden and inflammation do not seem to be related to insulin resistance, metabolic syndrome, or IFG in this population. The inflammatory process may reflect insulin resistance or its correlates but most likely is not causative.
doi:10.2337/dc08-0815
PMCID: PMC2584187  PMID: 18796618
6.  Comparison of Nitroglycerin-, Nitroprusside-, and Phentolamine-Induced Changes in Coronary Collateral Function in Dogs 
Journal of Clinical Investigation  1977;60(2):295-301.
The recent use of vasodilators to improve ventricular function in acute myocardial infarction led us to investigate the effects of nitroglycerin, nitroprusside, and phentolamine on coronary collateral flow. Dogs were studied 2-4 wk after an ameroid constrictor was placed around the left anterior descending (LAD) coronary artery. Retrograde flow and peripheral coronary pressure were measured from a cannula inserted in the LAD distal to the ameroid. Systemic arterial pressure was held constant by an aortic cuff. When administered intracoronary (i.c.), nitroglycerin, 0.3-100 μg/min, or nitroprusside, 3-100 μg/min, produced quantitatively similar, dose-dependent increases in retrograde flow. Neither drug, i.c., changed peripheral coronary pressure. Nitroglycerin, 3-300 μg/min, intravenous (i.v.), produced dose-dependent increases in retrograde flow; nitroprusside, i.v., increased retrograde flow only in high doses (100-300 μg/min). Nitroglycerin and nitroprusside, i.v., produced similar increases in peripheral coronary pressure. Phentolamine, 1-300 μg/min, i.v., decreased retrograde flow, and did not change peripheral coronary pressure. Nitroprusside was considerably more potent than nitroglycerin in decreasing systemic arterial pressure and in reducing total coronary resistance. Thus, (a) although i.c. nitroglycerin and nitroprusside produce similar effects on collateral function, i.v. nitroglycerin is more effective than i.v. nitroprusside in augmenting collateral flow; (b) phentolamine has deleterious effects on collateral function; and (c) the relative vasodilator potencies of nitroglycerin and nitroprusside vary in different vascular beds; thus, for a given reduction in systemic arterial pressure, nitroprusside is less effective in increasing retrograde flow.
PMCID: PMC372369  PMID: 406277
7.  Potentiation of the contractile effects of norepinephrine by hypoxia 
Journal of Clinical Investigation  1972;51(9):2459-2464.
Hypoxia has been found to depress the concentration response curve of norepinephrine (NE) in isoalted cat papillary muscles. To investigate the effects of hypoxia in intact hearts, a heart-lung preparation was developed and maximum left ventricular dp/dt (max dp/dt) was measured at constant heart rate, preload, and after load. Left main coronary arterial flow (Qe) was measured with an electromagnetic flow probe. As arterial PO2 decreased from 90 mm Hg (96% saturation) to 20-25 mm Hg (40% saturation) at constant PCO2 and pH, no change in max dp/dt occurred and Qe increased 298%. In contrast to cat papillary muscles, the contractile responses to NE were augmented in hypoxia. The NE dose-response curves shifted to the left. No deterioration of contractility occurred after exposure to NE. In contrast, the chronotropic response was unaltered in hypoxia. Dose-response curves to isoproterenol also were shifted to the left in hypoxia, but responses to paired pacing were unchanged. The responses to NE under oxygenated conditions were unaltered by mechanically increased coronary flow or by increased coronary flow with nitroglycerin. Although the mechanisms responsible for these effects are unknown, the results suggest that hypoxia may open previously nonfunctioning vascular channels and thereby allow more extensive exposure of beta adrenergic receptors to circulating catecholamines.
Images
PMCID: PMC292414  PMID: 4629439
8.  Atrial fibrillation in patients with idiopathic hypertrophic subaortic stenosis 
British Heart Journal  1970;32(5):652-659.
Atrial fibrillation occurred in 16 (10%) of 167 patients with idiopathic hypertrophic subaortic stenosis. The clinical and haemodynamic findings in these 16 patients are presented.
Atrial fibrillation appeared late in the course of the disease, and its occurrence did not seem to be related to the severity of left ventricular outflow obstruction or to the amount of associated mitral regurgitation. In each patient the onset of the arrhythmia was accompanied by severe clinical deterioration, which often necessitated urgent medical treatment. Digitalis was administered to all 16 patients with subsequent clinical improvement in 15. Electrical cardioversion was uniformly successful in restoring sinus rhythm, but atrial fibrillation usually recurred. In each of 8 patients catheterized during atrial fibrillation, cardiac output was strikingly low (average, 1.9 l./min./m.2), whereas it was normal in 10 of 13 patients studied in sinus rhythm. The duration of follow-up from the onset of atrial fibrillation has averaged 5 years, and 3 of the 16 patients have died of causes related to their heart disease. Four have suffered cerebral emboli. Only 5 patients are now in stable sinus rhythm; in general, they are less symptomatic than the patients in whom atrial fibrillation has recurred.
The unusually severe clinical deterioration at the onset of atrial fibrillation and the low cardiac output measured during catheterization are thought to be related to the loss of the important contribution to ventricular filling of atrial systole in patients with poorly compliant ventricles, and to the effect of an irregular ventricular rhythm on the variable nature of the outflow obstruction.
Images
PMCID: PMC487387  PMID: 5528380
9.  Effects of experimental heart failure on the capacity of glucagon to augment myocardial contractility and activate adenyl cyclase 
Journal of Clinical Investigation  1970;49(5):999-1006.
Although glucagon exerts positive inotropic effects in patients with no or mild impairment of cardiac function, similar effects are not consistently observed in patients with chronic heart failure. Accordingly, the inotropic effects of glucagon on papillary muscles from normal cats and cats in which right ventricular failure had been produced for 4-145 days by pulmonary artery banding were compared. At the peak of the concentration-response curve, glucagon increased peak isometric tension (T) in normal muscles from 4.4±0.4 to 6.6±0.5 g/mm2 (P <0.001), and maximum rate of tension development (dT/dt) from 16.9±0.9 to 25.1±1.6 g/sec per mm2 (P < 0.001). In contrast, glucagon produced no significant increases in T or dT/dt in failure muscles. The percentage increases in T and dT/dt caused by norepinephrine were the same in muscles from normal and failing hearts. Since the cardiac effects of glucagon and norepinephrine may be mediated by adenyl cyclase, responsiveness of adenyl cyclase was determined in particulate fractions of the right ventricle. Glucagon activated adenyl cyclase in normal, but had no effect in failure preparations. Norepinephrine-induced activation of adenyl cyclase, however, was unaltered by failure. Thus, in contrast to norepinephrine, glucagon loses the capacity to augment myocardial contractility and activate adenyl cyclase in hearts derived from cats in chronic failure.
Images
PMCID: PMC535772  PMID: 5441551
10.  The role of skin and muscle resistance vessels in reflexes mediated by the baroreceptor system 
Journal of Clinical Investigation  1970;49(2):225-231.
The role of skin and muscle vascular beds in baroreceptor-mediated alterations of peripheral vascular resistance was evaluated in six normal subjects in whom the skin circulation in one forearm was temporarily suppressed by epinephrine iontophoresis. Baroreceptor activity was enhanced by application of negative pressure to the neck (neck suction) and inhibited by application of lower body negative pressure. Forearm blood flow was measured simultaneously in both arms with strain gauge plethysmographs. Since blood flow in the treated arm consisted entirely of muscle flow, skin flow was calculated from the difference between total forearm flow in the intact arm and muscle flow in the treated arm. Vascular resistances were calculated as the ratio of mean arterial pressure to the blood flow of each vascular bed. During neck suction, mean arterial pressure decreased from an average of 89 to 75 mm of Hg (P < 0.005), heart rate decreased from an average of 60 to 55 beats/min (P < 0.005), and total skin and muscle flows remained essentially unchanged. Cutaneous vascular resistance decreased from an average of 75 to 49 mm of Hg/ml per 100 g per min (P < 0.05), muscle vascular resistance from 68 to 51 (P < 0.005), and total forearm vascular resistance from 36 to 24 (P < 0.025). During lower body negative pressure, heart rate increased from an average of 59 to 69 beats/min (P < 0.005), mean arterial pressure did not change significantly, and significant decreases occurred in forearm blood flow from 5.4 to 2.7 ml/100 g per min, in skin blood flow from 3.1 to 1.4, and in muscle blood flow from 2.3 to 1.3. Cutaneous vascular resistance increased from an average of 47 to 110 mm of Hg/ml per 100 g per min (P < 0.05), muscle vascular resistance from 43 to 72 (P < 0.005), and total forearm vascular resistance from 20 to 38 (P < 0.001). These results demonstrate that both the skin and muscle resistance vessels participate in reflex changes initiated by alterations in baroreceptor activity.
PMCID: PMC322464  PMID: 5411781
11.  Decreased myocardial adenyl cyclase activity in hypothyroidism 
Journal of Clinical Investigation  1969;48(12):2244-2250.
It has been suggested that hypothyroidism may alter the responsiveness of the heart to sympathetic stimulation. To define more precisely the interrelationship between hypothyroidism and catecholamine responsiveness we: (a) studied the effects of norepinephrine and fluoride on the activation of adenyl cyclase in the particulate fraction of heart homogenates from euthyroid and hypothyroid cats; and (b) assessed the contractile response of isolated right ventricular papillary muscles from the same cats to increasing concentrations of norepinephrine. It was found that maximal accumulation of cyclic 3′,5′-adenosine monophosphate (3′,5′-AMP) was significantly lower at peak norepinephrine concentrations in the hypothyroid (284 ±5 pmoles) than in the euthyroid group (326 ±10 pmoles) (P < 0.02). However, the Km for norepinephrine was similar in both groups (1-2 × 10-5 moles/liter), and there was no apparent change in the threshold concentration. Fluoride-mediated increases in Cyclic 3′,5′-AMP accumulation were also significantly lower in the hypothyroid (585 ±25 pmoles) as compared to the euthyroid group (790 ±20 pmoles) (P < 0.02). In contrast, norepinephrine produced a similar augmentation of contractility in isolated papillary muscles from the hypothyroid and euthyroid cats. It thus appears that although the hypothyroid state is associated with a decrease in the total amount of myocardial adenyl cyclase per milligram of tissue capable of being activated by norepinephrine or fluoride, there is no change in the sensitivity of the enzyme to norepinephrine stimulation. Moreover, the finding that the inotropic response to norepinephrine is unaltered in hypothyroidism is compatible with the hypothesis that only a fraction of the total intracellular cyclic 3′,5′-AMP produced by norepinephrine activation of adenyl cyclase is required to elicit the inotropic response.
PMCID: PMC297481  PMID: 4311237
12.  Reflex Cardiovascular Depression Produced By Stimulation Of Pulmonary Stretch Receptors In The Dog 
Journal of Clinical Investigation  1969;48(3):467-473.
To study the possible reflex effects of stimulation of pulmonary stretch receptors on the cardiovascular system, experiments were designed that would allow separate assessment of the responses of the heart, the total peripheral vascular resistance, and the resistance of the innervated hindlimb that was perfused at a constant flow rate. In every experiment, inflation of the lungs to a positive pressure of 20 mm Hg produced significant negative inotropic and chronotropic effects. Heart rate fell an average of 22.3±3.8% (SEM) (P < 0.01), pressure recorded from within an isovolumic balloon in animals on total cardiopulmonary bypass fell an average of 14.3±4.6% (P < 0.05), dp/dt recorded from within the balloon declined an average of 31.4 ± 6.0% (P < 0.01), and contractile force measured with a Walton-Brodie strain gauge arch fell an average of 18.6 ±2.2% (P < 0.01). Similarly, a depressor response to inflation of the lungs was noted in the periphery as manifested by an average decrease in total peripheral vascular resistance of 21.9±2.5% in the animals on total cardiopulmonary bypass (P < 0.01), and by an average decrease in perfusion pressure in the isolated hindlimb of 26.0 ±3.8% (P < 0.01). After bilateral cervical vagotomy, the cardiovascular responses to inflation of the lungs were either abolished or markedly lessened. Thus, sudden expansion of the lungs activates the afferent arm of a depressor reflex, which produces negative inotropic and chronotropic responses, in addition to arterial vasodilation. The receptors are sensitive to stretch and the afferent pathway runs predominantly in the vagus nerves.
Images
PMCID: PMC535711  PMID: 5773085
13.  Mechanisms of reflex vasodilation: assessment of the role of neural reuptake of norepinephrine and release of histamine 
Journal of Clinical Investigation  1968;47(3):511-520.
The mechanisms of reflex vasodilation were studied in an innervated canine hindlimb preparation which was perfused at a constant rate. Reflex vasodilation was produced by suddenly increasing the pressure in the trunk by the intravenous injection of norepinephrine, with consequent stimulation of the baroreceptors. When the basal vasoconstrictor tone exerted by the sympathetic nervous system on the systemic arterial bed was minimized, either by pretreatment with the alpha adrenergic blocking agent phenoxybenzamine or with reserpine, which depletes endogenous catecholamine stores, reflex vasodilation was virtually abolished. Administration of cocaine, a drug which blocks reuptake of norepinephrine by the nerve terminals, significantly reduced reflex vasodilation, the response after cocaine averaging 47% of the vasodilator response in the control period. Cocaine also potentiated the vasoconstriction caused by intra-arterially administered norepinephrine but attenuated the vasoconstriction induced by tyramine. The antihistamine, tripelennamine, had effects similar to those of cocaine. It is suggested, therefore, that reflex vasodilation results from a sudden decrease in the level of norepinephrine at the neuroeffector junction, which is a consequence of the cessation of norepinephrine secretion, together with continued and possibly augmented uptake. When the uptake mechanism is impaired, either by the administration of cocaine or tripelennamine, the magnitude of reflex vasodilation is diminished. It does not appear necessary to postulate active secretion of a vasodilator substance to account for reflex vasodilation.
Images
PMCID: PMC297197  PMID: 4170148
14.  Role of the venous system in baroreceptor-mediated reflexes in man 
Journal of Clinical Investigation  1968;47(1):139-152.
Although baroreceptor stimulation produced by marked alterations in arterial pressure has been shown to produce reflex changes in venous tone in animals, the effects on venous tone in man of altering arterial pressure within the physiologic range have not been clear. In six subjects, venous tone did not change when mean arterial pressure was raised by 25-40 mm Hg, although heart rate fell reflexly by 40%. Venous tone remained constant in 10 subjects when arterial pressure was lowered. This contrasted to the sustained rise in forearm vascular resistance and the persistent tachycardia that occurred. However, 12 subjects continued to respond to these interventions by transient venoconstriction. To eliminate possible emotional influences on venous tone due to the experimental intervention, venous responses were studied before and during general anesthesia in five of these subjects. In contrast to the response before anesthesia, an equivalent fall in arterial pressure during anesthesia no longer evoked a venoconstrictor response. Venous reactivity and the baroreceptor reflex arc remained intact during anesthesia, since venous tone always rose after a deep inspiration, and tachycardia always accompanied the fall in arterial pressure. It is concluded that changes in arterial pressure in the physiologic range in man do not induce measurable reflex alterations in venous tone, and that the increases sometimes seen with decreases in arterial pressure appear to be due to extraneous psychic factors.
Images
PMCID: PMC297155  PMID: 16695936
15.  Aging-Induced Collateral Dysfunction: Impaired Responsiveness of Collaterals and Susceptibility to Apoptosis via Dysfunctional eNOS signaling 
Despite positive animal studies, clinical angiogenesis trials have been disappointing, possibly due to risk factors present in humans but usually unexplored in animals. We recently demonstrated aging causes impaired collateral remodeling and collateral dropout; here, we investigate potential mechanisms responsible for these findings. Four-, 10-, and 18-month-C57BL/6J mice were subjected to femoral artery ligation; flow was measured using laser Doppler perfusion imaging. Endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS were measured in calf muscle. Apoptosis was assessed in endothelial (EC) and smooth muscle (SMC) cells isolated from young and old mice. Angiogenesis was measured using a Matrigel plug assay. Lethally irradiated young and old mice received bone marrow cells (BMC) from either young or old donors and were subjected to femoral artery ligation (FAL). BMC mobilization and homing were assessed. Flow recovery was impaired and less eNOS and phosphorylated eNOS was present in older vs. young mice (p<0.001 and p=0.015, respectively). ECs and SMCs from older mice were more sensitive to an apoptotic stimulus, but were rescued by NO-enhancing drugs. In older mice, angiogenesis (Matrigel plug assay) was impaired, as was mobilization and homing of BM progenitor cells following FAL. Although both mobilization and homing improved when older mice received BMC transplantation from young donors, flow recovery failed to improve. Aging impairs BMC mobilization and homing, collateral responsiveness to angiogenic stimuli, and increases EC and SMC susceptibility to apoptosis via dysfunctional eNOS signaling. The latter could contribute to impaired remodeling and collateral dropout. These finding identify potential obstacles to therapeutic interventions in elderly patients.
doi:10.1007/s12265-011-9280-4
PMCID: PMC3756560  PMID: 21538183
Aging; Progenitor cell; Angiogenesis; Collateral; eNOS; Apoptosis
16.  Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study 
Voight, Benjamin F | Peloso, Gina M | Orho-Melander, Marju | Frikke-Schmidt, Ruth | Barbalic, Maja | Jensen, Majken K | Hindy, George | Hólm, Hilma | Ding, Eric L | Johnson, Toby | Schunkert, Heribert | Samani, Nilesh J | Clarke, Robert | Hopewell, Jemma C | Thompson, John F | Li, Mingyao | Thorleifsson, Gudmar | Newton-Cheh, Christopher | Musunuru, Kiran | Pirruccello, James P | Saleheen, Danish | Chen, Li | Stewart, Alexandre FR | Schillert, Arne | Thorsteinsdottir, Unnur | Thorgeirsson, Gudmundur | Anand, Sonia | Engert, James C | Morgan, Thomas | Spertus, John | Stoll, Monika | Berger, Klaus | Martinelli, Nicola | Girelli, Domenico | McKeown, Pascal P | Patterson, Christopher C | Epstein, Stephen E | Devaney, Joseph | Burnett, Mary-Susan | Mooser, Vincent | Ripatti, Samuli | Surakka, Ida | Nieminen, Markku S | Sinisalo, Juha | Lokki, Marja-Liisa | Perola, Markus | Havulinna, Aki | de Faire, Ulf | Gigante, Bruna | Ingelsson, Erik | Zeller, Tanja | Wild, Philipp | de Bakker, Paul I W | Klungel, Olaf H | Maitland-van der Zee, Anke-Hilse | Peters, Bas J M | de Boer, Anthonius | Grobbee, Diederick E | Kamphuisen, Pieter W | Deneer, Vera H M | Elbers, Clara C | Onland-Moret, N Charlotte | Hofker, Marten H | Wijmenga, Cisca | Verschuren, WM Monique | Boer, Jolanda MA | van der Schouw, Yvonne T | Rasheed, Asif | Frossard, Philippe | Demissie, Serkalem | Willer, Cristen | Do, Ron | Ordovas, Jose M | Abecasis, Gonçalo R | Boehnke, Michael | Mohlke, Karen L | Daly, Mark J | Guiducci, Candace | Burtt, Noël P | Surti, Aarti | Gonzalez, Elena | Purcell, Shaun | Gabriel, Stacey | Marrugat, Jaume | Peden, John | Erdmann, Jeanette | Diemert, Patrick | Willenborg, Christina | König, Inke R | Fischer, Marcus | Hengstenberg, Christian | Ziegler, Andreas | Buysschaert, Ian | Lambrechts, Diether | Van de Werf, Frans | Fox, Keith A | El Mokhtari, Nour Eddine | Rubin, Diana | Schrezenmeir, Jürgen | Schreiber, Stefan | Schäfer, Arne | Danesh, John | Blankenberg, Stefan | Roberts, Robert | McPherson, Ruth | Watkins, Hugh | Hall, Alistair S | Overvad, Kim | Rimm, Eric | Boerwinkle, Eric | Tybjaerg-Hansen, Anne | Cupples, L Adrienne | Reilly, Muredach P | Melander, Olle | Mannucci, Pier M | Ardissino, Diego | Siscovick, David | Elosua, Roberto | Stefansson, Kari | O'Donnell, Christopher J | Salomaa, Veikko | Rader, Daniel J | Peltonen, Leena | Schwartz, Stephen M | Altshuler, David | Kathiresan, Sekar
Lancet  2012;380(9841):572-580.
Summary
Background
High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal.
Methods
We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20 913 myocardial infarction cases, 95 407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12 482 cases of myocardial infarction and 41 331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol.
Findings
Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10−13) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84–0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88–1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58–0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68–1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45–1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·69–2·69, p=2×10−10).
Interpretation
Some genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction.
Funding
US National Institutes of Health, The Wellcome Trust, European Union, British Heart Foundation, and the German Federal Ministry of Education and Research.
doi:10.1016/S0140-6736(12)60312-2
PMCID: PMC3419820  PMID: 22607825
17.  A Genome-wide Association Study Identifies LIPA as a Susceptibility Gene for Coronary Artery Disease 
Wild, Philipp S | Zeller, Tanja | Schillert, Arne | Szymczak, Silke | Sinning, Christoph R | Deiseroth, Arne | Schnabel, Renate B | Lubos, Edith | Keller, Till | Eleftheriadis, Medea S | Bickel, Christoph | Rupprecht, Hans J | Wilde, Sandra | Rossmann, Heidi | Diemert, Patrick | Cupples, L Adrienne | Perret, Claire | Erdmann, Jeanette | Stark, Klaus | Kleber, Marcus E | Epstein, Stephen E | Voight, Benjamin F | Kuulasmaa, Kari | Li, Mingyao | Schäfer, Arne S | Klopp, Norman | Braund, Peter S | Sager, Hendrik B | Demissie, Serkalem | Proust, Carole | König, Inke R | Wichmann, Heinz-Erich | Reinhard, Wibke | Hoffmann, Michael M | Virtamo, Jarmo | Burnett, Mary Susan | Siscovick, David | Wiklund, Per Gunnar | Qu, Liming | El Mokthari, Nour Eddine | Thompson, John R | Peters, Annette | Smith, Albert V | Yon, Emmanuelle | Baumert, Jens | Hengstenberg, Christian | März, Winfried | Amouyel, Philippe | Devaney, Joseph | Schwartz, Stephen M | Saarela, Olli | Mehta, Nehal N | Rubin, Diana | Silander, Kaisa | Hall, Alistair S | Ferrieres, Jean | Harris, Tamara B | Melander, Olle | Kee, Frank | Hakonarson, Hakon | Schrezenmeir, Juergen | Gudnason, Vilmundur | Elosua, Roberto | Arveiler, Dominique | Evans, Alun | Rader, Daniel J | Illig, Thomas | Schreiber, Stefan | Bis, Joshua C | Altshuler, David | Kavousi, Maryam | Witteman, Jaqueline CM | Uitterlinden, Andre G | Hofman, Albert | Folsom, Aaron R | Barbalic, Maja | Boerwinkle, Eric | Kathiresan, Sekar | Reilly, Muredach P | O'Donnell, Christopher J | Samani, Nilesh J | Schunkert, Heribert | Cambien, Francois | Lackner, Karl J | Tiret, Laurence | Salomaa, Veikko | Munzel, Thomas | Ziegler, Andreas | Blankenberg, Stefan
Background
eQTL analyses are important to improve the understanding of genetic association results. Here, we performed a genome-wide association and global gene expression study to identify functionally relevant variants affecting the risk of coronary artery disease (CAD).
Methods and Results
In a genome-wide association analysis of 2,078 CAD cases and 2,953 controls, we identified 950 single nucleotide polymorphisms (SNPs) that were associated with CAD at P<10-3. Subsequent in silico and wet-lab replication stages and a final meta-analysis of 21,428 CAD cases and 38,361 controls revealed a novel association signal at chromosome 10q23.31 within the LIPA (Lysosomal Acid Lipase A) gene (P=3.7×10-8; OR 1.1; 95% CI: 1.07-1.14). The association of this locus with global gene expression was assessed by genome-wide expression analyses in the monocyte transcriptome of 1,494 individuals. The results showed a strong association of this locus with expression of the LIPA transcript (P=1.3×10-96). An assessment of LIPA SNPs and transcript with cardiovascular phenotypes revealed an association of LIPA transcript levels with impaired endothelial function (P=4.4×10-3).
Conclusions
The use of data on genetic variants and the addition of data on global monocytic gene expression led to the identification of the novel functional CAD susceptibility locus LIPA, located on chromosome 10q23.31. The respective eSNPs associated with CAD strongly affect LIPA gene expression level, which itself was related to endothelial dysfunction, a precursor of CAD.
doi:10.1161/CIRCGENETICS.110.958728
PMCID: PMC3157552  PMID: 21606135
coronary artery disease; genome-wide association studies; gene expression; genetic variation; genomics; eQTL; eSNP; LIPA
18.  A Genome Wide Association Study for Coronary Artery Disease Identifies a Novel Susceptibility Locus in the Major Histocompatibility Complex 
Background
Recent genome-wide association studies (GWAS) have identified several novel loci that reproducibly associate with CAD and/or MI risk. However, known common CAD risk variants explain only 10% of the predicted genetic heritability of the disease, suggesting that important genetic signals remain to be discovered.
Methods and Results
We performed a discovery meta-analysis of 5 GWASs involving 13,949 subjects (7123 cases, 6826 controls) imputed at approximately 5 million SNPs using pilot 1000 Genomes based haplotypes. Promising loci were followed up in an additional 5 studies with 11,032 subjects (5211 cases, 5821 controls). A novel CAD locus on chromosome 6p21.3 in the major histocompatibility complex (MHC) between HCG27 and HLA-C was identified and achieved genome wide significance in the combined analysis (rs3869109; pdiscovery=3.3×10−7, preplication=5.3×10−4 pcombined=1.12×10−9). A sub-analysis combining discovery GWASs showed an attenuation of significance when stringent corrections for European population structure were employed (p=4.1×10-10 versus 3.2×10-7) suggesting the observed signal is partly confounded due to population stratification. This gene dense region plays an important role in inflammation, immunity and self cell recognition. To determine whether the underlying association was driven by MHC class I alleles, we statistically imputed common HLA alleles into the discovery subjects; however, no single common HLA type contributed significantly or fully explained the observed association.
Conclusions
We have identified a novel locus in the MHC associated with CAD. MHC genes regulate inflammation and T cell responses that contribute importantly to the initiation and propagation of atherosclerosis. Further laboratory studies will be required to understand the biological basis of this association and identify the causative allele(s).
doi:10.1161/CIRCGENETICS.111.961243
PMCID: PMC3335297  PMID: 22319020
coronary artery disease; myocardial infarction; meta-analysis; genetics
19.  A Genome Wide Association Study for Coronary Artery Disease Identifies a Novel Susceptibility Locus in the Major Histocompatibility Complex 
Background
Recent genome-wide association studies (GWAS) have identified several novel loci that reproducibly associate with CAD and/or MI risk. However, known common CAD risk variants explain only 10% of the predicted genetic heritability of the disease, suggesting that important genetic signals remain to be discovered.
Methods and Results
We performed a discovery meta-analysis of 5 GWASs involving 13,949 subjects (7123 cases, 6826 controls) imputed at approximately 5 million SNPs using pilot 1000 Genomes based haplotypes. Promising loci were followed up in an additional 5 studies with 11,032 subjects (5211 cases, 5821 controls). A novel CAD locus on chromosome 6p21.3 in the major histocompatibility complex (MHC) between HCG27 and HLA-C was identified and achieved genome wide significance in the combined analysis (rs3869109; pdiscovery=3.3×10−7, preplication=5.3×10−4 pcombined=1.12×10−9). A sub-analysis combining discovery GWASs showed an attenuation of significance when stringent corrections for European population structure were employed (p=4.1×10−10 versus 3.2×10−7) suggesting the observed signal is partly confounded due to population stratification. This gene dense region plays an important role in inflammation, immunity and self cell recognition. To determine whether the underlying association was driven by MHC class I alleles, we statistically imputed common HLA alleles into the discovery subjects; however, no single common HLA type contributed significantly or fully explained the observed association.
Conclusion
We have identified a novel locus in the MHC associated with CAD. MHC genes regulate inflammation and T cell responses that contribute importantly to the initiation and propagation of atherosclerosis. Further laboratory studies will be required to understand the biological basis of this association and identify the causative allele(s).
doi:10.1161/CIRCGENETICS.111.961243
PMCID: PMC3335297  PMID: 22319020
Coronary Artery Disease; Myocardial Infarction; Meta-Analysis; Genetics
20.  Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies 
Lancet  2011;377(9763):383-392.
Summary
Background
We tested whether genetic factors distinctly contribute to either development of coronary atherosclerosis or, specifically, to myocardial infarction in existing coronary atherosclerosis.
Methods
We did two genome-wide association studies (GWAS) with coronary angiographic phenotyping in participants of European ancestry. To identify loci that predispose to angiographic coronary artery disease (CAD), we compared individuals who had this disorder (n=12 393) with those who did not (controls, n=7383). To identify loci that predispose to myocardial infarction, we compared patients who had angiographic CAD and myocardial infarction (n=5783) with those who had angiographic CAD but no myocardial infarction (n=3644).
Findings
In the comparison of patients with angiographic CAD versus controls, we identified a novel locus, ADAMTS7 (p=4·98×10−13). In the comparison of patients with angiographic CAD who had myocardial infarction versus those with angiographic CAD but no myocardial infarction, we identified a novel association at the ABO locus (p=7·62×10−9). The ABO association was attributable to the glycotransferase-deficient enzyme that encodes the ABO blood group O phenotype previously proposed to protect against myocardial infarction.
Interpretation
Our findings indicate that specific genetic predispositions promote the development of coronary atherosclerosis whereas others lead to myocardial infarction in the presence of coronary atherosclerosis. The relation to specific CAD phenotypes might modify how novel loci are applied in personalised risk assessment and used in the development of novel therapies for CAD.
Funding
The PennCath and MedStar studies were supported by the Cardiovascular Institute of the University of Pennsylvania, by the MedStar Health Research Institute at Washington Hospital Center and by a research grant from GlaxoSmithKline. The funding and support for the other cohorts contributing to the paper are described in the webappendix.
doi:10.1016/S0140-6736(10)61996-4
PMCID: PMC3297116  PMID: 21239051
21.  Prospective study of insulin-like growth factor-I, insulin-like growth factor-binding protein 3, genetic variants in the IGF1 and IGFBP3 genes and risk of coronary artery disease 
Although experimental studies have suggested that insulin-like growth factor I (IGF-I) and its binding protein IGFBP-3 might have a role in the aetiology of coronary artery disease (CAD), the relevance of circulating IGFs and their binding proteins in the development of CAD in human populations is unclear. We conducted a nested case-control study, with a mean follow-up of six years, within the EPIC-Norfolk cohort to assess the association between circulating levels of IGF-I and IGFBP-3 and risk of CAD in up to 1,013 cases and 2,055 controls matched for age, sex and study enrolment date. After adjustment for cardiovascular risk factors, we found no association between circulating levels of IGF-I or IGFBP-3 and risk of CAD (odds ratio: 0.98 (95% Cl 0.90-1.06) per 1 SD increase in circulating IGF-I; odds ratio: 1.02 (95% Cl 0.94-1.12) for IGFBP-3). We examined associations between tagging single nucleotide polymorphisms (tSNPs) at the IGF1 and IGFBP3 loci and circulating IGF-I and IGFBP-3 levels in up to 1,133 cases and 2,223 controls and identified three tSNPs (rs1520220, rs3730204, rs2132571) that showed independent association with either circulating IGF-I or IGFBP-3 levels. In an assessment of 31 SNPs spanning the IGF1 or IGFBP3 loci, none were associated with risk of CAD in a meta-analysis that included EPIC-Norfolk and eight additional studies comprising up to 9,319 cases and 19,964 controls. Our results indicate that IGF-I and IGFBP-3 are unlikely to be importantly involved in the aetiology of CAD in human populations.
PMCID: PMC3166154  PMID: 21915365
Epidemiology; Genetics of cardiovascular disease; Risk factors; IGF1; IGFBP3
22.  Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Study 
Background
Recent genome-wide association studies (GWAS) of myocardial infarction (MI) and other forms of coronary artery disease (CAD) have led to the discovery of at least 13 genetic loci. In addition to the effect size, power to detect associations is largely driven by sample size. Therefore, to maximize the chance of finding novel susceptibility loci for CAD and MI, the Coronary ARtery DIsease Genome-wide Replication And Meta-analysis (CARDIoGRAM) consortium was formed.
Methods and Results
CARDIoGRAM combines data from all published and several unpublished GWAS in individuals with European ancestry; includes >22 000 cases with CAD, MI, or both and >60 000 controls; and unifies samples from the Atherosclerotic Disease VAscular functioN and genetiC Epidemiology study, CADomics, Cohorts for Heart and Aging Research in Genomic Epidemiology, deCODE, the German Myocardial Infarction Family Studies I, II, and III, Ludwigshafen Risk and Cardiovascular Heath Study/AtheroRemo, MedStar, Myocardial Infarction Genetics Consortium, Ottawa Heart Genomics Study, PennCath, and the Wellcome Trust Case Control Consortium. Genotyping was carried out on Affymetrix or Illumina platforms followed by imputation of genotypes in most studies. On average, 2.2 million single nucleotide polymorphisms were generated per study. The results from each study are combined using meta-analysis. As proof of principle, we meta-analyzed risk variants at 9p21 and found that rs1333049 confers a 29% increase in risk for MI per copy (P=2×10−20).
Conclusion
CARDIoGRAM is poised to contribute to our understanding of the role of common genetic variation on risk for CAD and MI.
doi:10.1161/CIRCGENETICS.109.899443
PMCID: PMC3070269  PMID: 20923989
coronary artery disease; myocardial infarction; meta-analysis; genetics
23.  Myocardial adenyl cyclase: activation by thyroid hormones and evidence for two adenyl cyclase systems 
Journal of Clinical Investigation  1969;48(9):1663-1669.
The mechanism responsible for the hyperdynamic circulatory state in hyperthyroidism has not been defined. Although certain cardiac manifestations resemble those caused by excessive adrenergic stimulation, recent evidence suggests that thyroid hormone exerts an effect on the heart that is independent of the adrenergic system. Since the inotropic and chronotropic effects of norepinephrine appear to be mediated by activation of adenyl cyclase, the possibility that thyroxine and triiodothyronine are also capable of activating adenyl cyclase was examined in the particulate fraction of cat heart homogenates.
L-thyroxine and L-triiodothyronine increased the conversion of adenosine triphosphate-32P (ATP-32P) to cyclic 3′,5′-adenosine monophosphate-32P (3′,5′-AMP-32P) by 60 and 45% respectively (P < 0.01). A variety of compounds structurally related to the thyroid hormones, but devoid of thyromimetic activity did not activate adenyl cyclase: these included 3,5-diiodo-L-thyronine, L-thyronine, 3,5-diiodotyrosine, monoiodotyrosine, and tyrosine. D-thyroxine activated adenyl cyclase and half maximal activity was identical to that of the L-isomer. Although the beta adrenergic blocking agent propranolol abolished norepinephrine-induced activation of adenyl cyclase, it failed to alter activation caused by thyroxine. When maximal concentrations of L-thyroxine (5 × 10-6 moles/liter) and norepinephrine (5 × 10-5 moles/liter) were incubated together, an additive effect on cyclic 3′,5′-AMP production resulted.
This investigation demonstrates: (a) thyroid hormone is capable of activating myocardial adenyl cyclase in vitro and (b) this effect is not mediated by the beta adrenergic receptor. Moreover, the additive effects of norepinephrine and thyroxine suggest that at least two separate adenyl cyclase systems are present in the heart, one responsive to norepinephrine, the other to thyroid hormone.
These findings are compatible with the hypothesis that the cardiac manifestations of the hyperthyroid state may, in part, be caused by the direct activation of myocardial adenyl cyclase by thyroid hormone.
PMCID: PMC535737  PMID: 4309800

Results 1-23 (23)