PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Derived Immune and Ancestral Pigmentation Alleles in a 7,000-Year-old Mesolithic European 
Nature  2014;507(7491):225-228.
Ancient genomic sequences have started revealing the origin and the demographic impact of Neolithic farmers spreading into Europe1–3. The adoption of farming, stock breeding and sedentary societies during the Neolithic may have resulted in adaptive changes in genes associated with immunity and diet4. However, the limited data available from earlier hunter-gatherers precludes an understanding of the selective processes associated with this crucial transition to agriculture in recent human evolution. By sequencing a ~7,000-year-old Mesolithic skeleton discovered at the La Braña-Arintero site in León (Spain), we retrieved the first complete pre-agricultural European human genome. Analysis of this genome in the context of other ancient samples suggests the existence of a common ancient genomic signature across Western and Central Eurasia from the Upper Paleolithic to the Mesolithic. The La Braña individual carries ancestral alleles in several skin pigmentation genes, suggesting that the light skin of modern Europeans was not yet ubiquitous in Mesolithic times. Moreover, we provide evidence that a significant number of derived, putatively adaptive variants associated with pathogen resistance in modern Europeans were already present in this hunter-gatherer. Hence, these genomic variants cannot represent novel mutations that occurred during the adaptation to the farming lifestyle.
doi:10.1038/nature12960
PMCID: PMC4269527  PMID: 24463515
2.  Genomic analysis of the blood attributed to Louis XVI (1754–1793), king of France 
Scientific Reports  2014;4:4666.
A pyrographically decorated gourd, dated to the French Revolution period, has been alleged to contain a handkerchief dipped into the blood of the French king Louis XVI (1754–1793) after his beheading but recent analyses of living males from two Bourbon branches cast doubts on its authenticity. We sequenced the complete genome of the DNA contained in the gourd at low coverage (~2.5×) with coding sequences enriched at a higher ~7.3× coverage. We found that the ancestry of the gourd's genome does not seem compatible with Louis XVI's known ancestry. From a functional perspective, we did not find an excess of alleles contributing to height despite being described as the tallest person in Court. In addition, the eye colour prediction supported brown eyes, while Louis XVI had blue eyes. This is the first draft genome generated from a person who lived in a recent historical period; however, our results suggest that this sample may not correspond to the alleged king.
doi:10.1038/srep04666
PMCID: PMC3998215  PMID: 24763138
3.  A Meta-Analysis Identifies New Loci Associated with Body Mass index in Individuals of African Ancestry 
Monda, Keri L. | Chen, Gary K. | Taylor, Kira C. | Palmer, Cameron | Edwards, Todd L. | Lange, Leslie A. | Ng, Maggie C.Y. | Adeyemo, Adebowale A. | Allison, Matthew A. | Bielak, Lawrence F. | Chen, Guanji | Graff, Mariaelisa | Irvin, Marguerite R. | Rhie, Suhn K. | Li, Guo | Liu, Yongmei | Liu, Youfang | Lu, Yingchang | Nalls, Michael A. | Sun, Yan V. | Wojczynski, Mary K. | Yanek, Lisa R. | Aldrich, Melinda C. | Ademola, Adeyinka | Amos, Christopher I. | Bandera, Elisa V. | Bock, Cathryn H. | Britton, Angela | Broeckel, Ulrich | Cai, Quiyin | Caporaso, Neil E. | Carlson, Chris | Carpten, John | Casey, Graham | Chen, Wei-Min | Chen, Fang | Chen, Yii-Der I. | Chiang, Charleston W.K. | Coetzee, Gerhard A. | Demerath, Ellen | Deming-Halverson, Sandra L. | Driver, Ryan W. | Dubbert, Patricia | Feitosa, Mary F. | Freedman, Barry I. | Gillanders, Elizabeth M. | Gottesman, Omri | Guo, Xiuqing | Haritunians, Talin | Harris, Tamara | Harris, Curtis C. | Hennis, Anselm JM | Hernandez, Dena G. | McNeill, Lorna H. | Howard, Timothy D. | Howard, Barbara V. | Howard, Virginia J. | Johnson, Karen C. | Kang, Sun J. | Keating, Brendan J. | Kolb, Suzanne | Kuller, Lewis H. | Kutlar, Abdullah | Langefeld, Carl D. | Lettre, Guillaume | Lohman, Kurt | Lotay, Vaneet | Lyon, Helen | Manson, JoAnn E. | Maixner, William | Meng, Yan A. | Monroe, Kristine R. | Morhason-Bello, Imran | Murphy, Adam B. | Mychaleckyj, Josyf C. | Nadukuru, Rajiv | Nathanson, Katherine L. | Nayak, Uma | N’Diaye, Amidou | Nemesure, Barbara | Wu, Suh-Yuh | Leske, M. Cristina | Neslund-Dudas, Christine | Neuhouser, Marian | Nyante, Sarah | Ochs-Balcom, Heather | Ogunniyi, Adesola | Ogundiran, Temidayo O. | Ojengbede, Oladosu | Olopade, Olufunmilayo I. | Palmer, Julie R. | Ruiz-Narvaez, Edward A. | Palmer, Nicholette D. | Press, Michael F. | Rampersaud, Evandine | Rasmussen-Torvik, Laura J. | Rodriguez-Gil, Jorge L. | Salako, Babatunde | Schadt, Eric E. | Schwartz, Ann G. | Shriner, Daniel A. | Siscovick, David | Smith, Shad B. | Wassertheil-Smoller, Sylvia | Speliotes, Elizabeth K. | Spitz, Margaret R. | Sucheston, Lara | Taylor, Herman | Tayo, Bamidele O. | Tucker, Margaret A. | Van Den Berg, David J. | Velez Edwards, Digna R. | Wang, Zhaoming | Wiencke, John K. | Winkler, Thomas W. | Witte, John S. | Wrensch, Margaret | Wu, Xifeng | Yang, James J. | Levin, Albert M. | Young, Taylor R. | Zakai, Neil A. | Cushman, Mary | Zanetti, Krista A. | Zhao, Jing Hua | Zhao, Wei | Zheng, Yonglan | Zhou, Jie | Ziegler, Regina G. | Zmuda, Joseph M. | Fernandes, Jyotika K. | Gilkeson, Gary S. | Kamen, Diane L. | Hunt, Kelly J. | Spruill, Ida J. | Ambrosone, Christine B. | Ambs, Stefan | Arnett, Donna K. | Atwood, Larry | Becker, Diane M. | Berndt, Sonja I. | Bernstein, Leslie | Blot, William J. | Borecki, Ingrid B. | Bottinger, Erwin P. | Bowden, Donald W. | Burke, Gregory | Chanock, Stephen J. | Cooper, Richard S. | Ding, Jingzhong | Duggan, David | Evans, Michele K. | Fox, Caroline | Garvey, W. Timothy | Bradfield, Jonathan P. | Hakonarson, Hakon | Grant, Struan F.A. | Hsing, Ann | Chu, Lisa | Hu, Jennifer J. | Huo, Dezheng | Ingles, Sue A. | John, Esther M. | Jordan, Joanne M. | Kabagambe, Edmond K. | Kardia, Sharon L.R. | Kittles, Rick A. | Goodman, Phyllis J. | Klein, Eric A. | Kolonel, Laurence N. | Le Marchand, Loic | Liu, Simin | McKnight, Barbara | Millikan, Robert C. | Mosley, Thomas H. | Padhukasahasram, Badri | Williams, L. Keoki | Patel, Sanjay R. | Peters, Ulrike | Pettaway, Curtis A. | Peyser, Patricia A. | Psaty, Bruce M. | Redline, Susan | Rotimi, Charles N. | Rybicki, Benjamin A. | Sale, Michèle M. | Schreiner, Pamela J. | Signorello, Lisa B. | Singleton, Andrew B. | Stanford, Janet L. | Strom, Sara S. | Thun, Michael J. | Vitolins, Mara | Zheng, Wei | Moore, Jason H. | Williams, Scott M. | Zhu, Xiaofeng | Zonderman, Alan B. | Kooperberg, Charles | Papanicolaou, George | Henderson, Brian E. | Reiner, Alex P. | Hirschhorn, Joel N. | Loos, Ruth JF | North, Kari E. | Haiman, Christopher A.
Nature genetics  2013;45(6):690-696.
Genome-wide association studies (GWAS) have identified 36 loci associated with body mass index (BMI), predominantly in populations of European ancestry. We conducted a meta-analysis to examine the association of >3.2 million SNPs with BMI in 39,144 men and women of African ancestry, and followed up the most significant associations in an additional 32,268 individuals of African ancestry. We identified one novel locus at 5q33 (GALNT10, rs7708584, p=3.4×10−11) and another at 7p15 when combined with data from the Giant consortium (MIR148A/NFE2L3, rs10261878, p=1.2×10−10). We also found suggestive evidence of an association at a third locus at 6q16 in the African ancestry sample (KLHL32, rs974417, p=6.9×10−8). Thirty-two of the 36 previously established BMI variants displayed directionally consistent effect estimates in our GWAS (binomial p=9.7×10−7), of which five reached genome-wide significance. These findings provide strong support for shared BMI loci across populations as well as for the utility of studying ancestrally diverse populations.
doi:10.1038/ng.2608
PMCID: PMC3694490  PMID: 23583978
4.  Evidence of widespread selection on standing variation in Europe at height-associated SNPs 
Nature genetics  2012;44(9):1015-1019.
Strong signatures of positive selection at newly arising genetic variants are well-documented in humans1–8, but this form of selection may not be widespread in recent human evolution9. Because many human traits are highly polygenic and partly determined by common, ancient genetic variation, an alternative model for rapid genetic adaptation has been proposed: weak selection acting on many pre-existing (standing) genetic variants, or polygenic adaptation10–12. By studying height, a classic polygenic trait, we demonstrate the first human signature of widespread selection on standing variation. We show that frequencies of alleles associated with increased height, both at known loci and genome-wide, are systematically elevated in Northern Europeans compared with Southern Europeans (p<4.3×10−4). This pattern mirrors intra-European height differences and is not confounded by ancestry or other ascertainment biases. The systematic frequency differences are consistent with the presence of widespread weak selection (selection coefficients ~10−3–10−5 per allele) rather than genetic drift alone (p<10−15).
doi:10.1038/ng.2368
PMCID: PMC3480734  PMID: 22902787
Human Genomics; Population Genetics; Europeans; Height; Selection
5.  The efficacy of detecting variants with small effects on the Affymetrix 6.0 platform using pooled DNA 
Human genetics  2011;130(5):607-621.
Genome-wide genotyping of a cohort using pools rather than individual samples has long been proposed as a cost-saving alternative for performing genome-wide association (GWA) studies. However, successful disease gene mapping using pooled genotyping has thus far been limited to detecting common variants with large effect sizes, which tend not to exist for many complex common diseases or traits. Therefore, for DNA pooling to be a viable strategy for conducting GWA studies, it is important to determine whether commonly used genome-wide SNP array platforms such as the Affymetrix 6.0 array can reliably detect common variants of small effect sizes using pooled DNA. Taking obesity and age at menarche as examples of human complex traits, we assessed the feasibility of genome-wide genotyping of pooled DNA as a single-stage design for phenotype association. By individually genotyping the top associations identified by pooling, we obtained a 14- to 16-fold enrichment of SNPs nominally associated with the phenotype, but we likely missed the top true associations. In addition, we assessed whether genotyping pooled DNA can serve as an inexpensive screen as the second stage of a multi-stage design with a large number of samples by comparing the most cost-effective 3-stage designs with 80% power to detect common variants with genotypic relative risk of 1.1, with and without pooling. Given the current state of the specific technology we employed and the associated genotyping costs, we showed through simulation that a design involving pooling would be 1.07 times more expensive than a design without pooling. Thus, while a significant amount of information exists within the data from pooled DNA, our analysis does not support genotyping pooled DNA as a means to efficiently identify common variants contributing small effects to phenotypes of interest. While our conclusions were based on the specific technology and study design we employed, the approach presented here will be useful for evaluating the utility of other or future genome-wide genotyping platforms in pooled DNA studies.
doi:10.1007/s00439-011-0974-0
PMCID: PMC3474315  PMID: 21424828
6.  Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5p13: contributions from the CARe consortium 
Human Molecular Genetics  2011;20(11):2285-2295.
Admixture mapping based on recently admixed populations is a powerful method to detect disease variants with substantial allele frequency differences in ancestral populations. We performed admixture mapping analysis for systolic blood pressure (SBP) and diastolic blood pressure (DBP), followed by trait-marker association analysis, in 6303 unrelated African-American participants of the Candidate Gene Association Resource (CARe) consortium. We identified five genomic regions (P< 0.001) harboring genetic variants contributing to inter-individual BP variation. In follow-up association analyses, correcting for all tests performed in this study, three loci were significantly associated with SBP and one significantly associated with DBP (P< 10−5). Further analyses suggested that six independent single-nucleotide polymorphisms (SNPs) contributed to the phenotypic variation observed in the admixture mapping analysis. These six SNPs were examined for replication in multiple, large, independent studies of African-Americans [Women's Health Initiative (WHI), Maywood, Genetic Epidemiology Network of Arteriopathy (GENOA) and Howard University Family Study (HUFS)] as well as one native African sample (Nigerian study), with a total replication sample size of 11 882. Meta-analysis of the replication set identified a novel variant (rs7726475) on chromosome 5 between the SUB1 and NPR3 genes, as being associated with SBP and DBP (P< 0.0015 for both); in meta-analyses combining the CARe samples with the replication data, we observed P-values of 4.45 × 10−7 for SBP and 7.52 × 10−7 for DBP for rs7726475 that were significant after accounting for all the tests performed. Our study highlights that admixture mapping analysis can help identify genetic variants missed by genome-wide association studies because of drastically reduced number of tests in the whole genome.
doi:10.1093/hmg/ddr113
PMCID: PMC3090198  PMID: 21422096
7.  Genome-wide association of anthropometric traits in African- and African-derived populations 
Human Molecular Genetics  2010;19(13):2725-2738.
Genome-wide association (GWA) studies have identified common variants that are associated with a variety of traits and diseases, but most studies have been performed in European-derived populations. Here, we describe the first genome-wide analyses of imputed genotype and copy number variants (CNVs) for anthropometric measures in African-derived populations: 1188 Nigerians from Igbo-Ora and Ibadan, Nigeria, and 743 African-Americans from Maywood, IL. To improve the reach of our study, we used imputation to estimate genotypes at ∼2.1 million single-nucleotide polymorphisms (SNPs) and also tested CNVs for association. No SNPs or common CNVs reached a genome-wide significance level for association with height or body mass index (BMI), and the best signals from a meta-analysis of the two cohorts did not replicate in ∼3700 African-Americans and Jamaicans. However, several loci previously confirmed in European populations showed evidence of replication in our GWA panel of African-derived populations, including variants near IHH and DLEU7 for height and MC4R for BMI. Analysis of global burden of rare CNVs suggested that lean individuals possess greater total burden of CNVs, but this finding was not supported in an independent European population. Our results suggest that there are not multiple loci with strong effects on anthropometric traits in African-derived populations and that sample sizes comparable to those needed in European GWA studies will be required to identify replicable associations. Meta-analysis of this data set with additional studies in African-ancestry populations will be helpful to improve power to detect novel associations.
doi:10.1093/hmg/ddq154
PMCID: PMC2883343  PMID: 20400458
8.  Rapid Assessment of Genetic Ancestry in Populations of Unknown Origin by Genome-Wide Genotyping of Pooled Samples 
PLoS Genetics  2010;6(3):e1000866.
As we move forward from the current generation of genome-wide association (GWA) studies, additional cohorts of different ancestries will be studied to increase power, fine map association signals, and generalize association results to additional populations. Knowledge of genetic ancestry as well as population substructure will become increasingly important for GWA studies in populations of unknown ancestry. Here we propose genotyping pooled DNA samples using genome-wide SNP arrays as a viable option to efficiently and inexpensively estimate admixture proportion and identify ancestry informative markers (AIMs) in populations of unknown origin. We constructed DNA pools from African American, Native Hawaiian, Latina, and Jamaican samples and genotyped them using the Affymetrix 6.0 array. Aided by individual genotype data from the African American cohort, we established quality control filters to remove poorly performing SNPs and estimated allele frequencies for the remaining SNPs in each panel. We then applied a regression-based method to estimate the proportion of admixture in each cohort using the allele frequencies estimated from pooling and populations from the International HapMap Consortium as reference panels, and identified AIMs unique to each population. In this study, we demonstrated that genotyping pooled DNA samples yields estimates of admixture proportion that are both consistent with our knowledge of population history and similar to those obtained by genotyping known AIMs. Furthermore, through validation by individual genotyping, we demonstrated that pooling is quite effective for identifying SNPs with large allele frequency differences (i.e., AIMs) and that these AIMs are able to differentiate two closely related populations (HapMap JPT and CHB).
Author Summary
Many association studies have been published looking for genetic variants contributing to a variety of human traits such as obesity, diabetes, and height. Because the frequency of genetic variants can differ across populations, it is important to have estimates of genetic ancestry in the individuals being studied. In this study, we were able to measure genetic ancestry in populations of mixed ancestry by genotyping pooled, rather than individual, DNA samples. This represents a rapid and inexpensive means for modeling genetic ancestry and thus could facilitate future association or population-genetic studies in populations of unknown ancestry for which whole-genome data do not already exist.
doi:10.1371/journal.pgen.1000866
PMCID: PMC2832667  PMID: 20221249
9.  Concept, Design and Implementation of a Cardiovascular Gene-Centric 50 K SNP Array for Large-Scale Genomic Association Studies 
PLoS ONE  2008;3(10):e3583.
A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a “cosmopolitan” tagging approach to capture the genetic diversity across ∼2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.
doi:10.1371/journal.pone.0003583
PMCID: PMC2571995  PMID: 18974833

Results 1-9 (9)