Search tips
Search criteria

Results 1-25 (34)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Interaction between Loop Diuretic Associated Mortality and Blood Urea Nitrogen Concentration in Chronic Heart Failure 
The purpose of this study was to investigate if a surrogate for renal neurohormonal activation, blood urea nitrogen (BUN), could identify patients destined to experience adverse outcomes associated with the use of high dose loop diuretics (HDLD).
Loop diuretics are commonly used to control congestive symptoms in heart failure; however, these agents cause neurohormonal activation and are associated with worsened survival.
Subjects in the Beta-Blocker Evaluation of Survival Trial receiving loop diuretics at baseline were analyzed (n=2456). The primary outcome was the interaction between BUN and HDLD associated mortality.
In the overall cohort, HDLD use (≥160 mg/day) was associated with increased mortality (HR=1.56, 95% CI 1.35 to 1.80). However, after extensively controlling for baseline characteristics, this association did not persist (HR=1.06, 95% CI 0.89 to 1.25). In subjects with BUN levels above the median (21.0 mg/dl), both the unadjusted (HR=1.59, 95% CI 1.34 to 1.88) and adjusted (HR=1.29, 95% CI 1.07 to 1.60) risk for death was higher in the HDLD group. In patients with BUN levels below the median, there was no associated risk with HDLD (HR=0.99, 95% CI 0.75 to 1.34) and after controlling for baseline characteristics, the HDLD group had significantly improved survival (HR=0.71, 95% CI 0.49 to 0.96) (p interaction=0.018).
The risk associated with HDLD use is strongly dependent on BUN concentrations with reduced survival in patients with elevated BUN and improved survival in patients with normal BUN. These data suggest a role for neurohormonal activation in loop diuretic associated mortality.
PMCID: PMC3980479  PMID: 21757114
Congestive heart failure; Loop diuretics; Kidney; Mortality
2.  Low Dose Dopamine or Low Dose Nesiritide in Acute Heart Failure with Renal Dysfunction: The ROSE Acute Heart Failure Randomized Trial 
Small studies suggest low dose dopamine or low dose nesiritide may enhance decongestion and preserve renal function in patients with acute heart failure and renal dysfunction; however, neither strategy has been rigorously tested.
To test the two independent hypotheses that when compared to placebo, addition of: (1) low dose dopamine (2 ug/kg/min); or (2) low dose nesiritide (0.005 ug/kg/min without bolus) to diuretic therapy will enhance decongestion and preserve renal function in patients with acute heart failure and renal dysfunction.
Design, Setting and Participants
Multicenter, double-blind, placebo-controlled randomized clinical trial (Renal Optimization Strategies Evaluation) of 360 hospitalized participants with acute heart failure and renal dysfunction (estimated glomerular filtration rate of 15–60 ml/min/1.73m2), randomized within 24 hours of admission. Participants were randomized from September 2010 to March 2013 across 26 sites in the United States and Canada.
Participants were randomized in an open, 1:1 allocation ratio to the dopamine or nesiritide strategies. Within each strategy, participants were randomized in a double-blind, 2:1 ratio to active treatment or placebo. The dopamine (n=122) and nesiritide (n=119) groups were independently compared to the pooled placebo group (n=119).
Main outcome measures
Co-primary endpoints included 72-hour cumulative urine volume (decongestion endpoint) and the change in serum cystatin-C from enrollment to 72 hours (renal function endpoint).
Compared to placebo, low dose dopamine had no significant effect on 72-hour cumulative urine volume (8524 ml [95% CI 7917 to 9131 ml] with dopamine vs. 8296 ml [95% CI 7762 to 8830 ml] with placebo, p=0.59) or on the change in cystatin-C (0.12 mg/L [95% CI 0.06 to 0.18 mg/L] with dopamine vs. 0.11 mg/L [95% CI 0.06 to 0.16 mg/L] with placebo, p=0.72). Similarly, low dose nesiritide had no significant effect on 72-hour cumulative urine volume (8574 ml [95% CI 8014 to 9134 ml] with nesiritide vs. 8296 ml [95% CI 7762 to 8830 ml] with placebo, p=0.49) or on the change in cystatin-C (0.07 mg/L [95% CI 0.01 to 0.13 mg/L] with nesiritide vs. 0.11 mg/L [95% CI 0.06 to 0.16 mg/L] with placebo, p=0.36). Compared to placebo, there was no effect of low dose dopamine or low dose nesiritide on secondary endpoints reflective of decongestion, renal function, or clinical outcomes.
In participants with acute heart failure and renal dysfunction, neither low dose dopamine nor low dose nesiritide enhanced decongestion or improved renal function when added to diuretic therapy.
PMCID: PMC3934929  PMID: 24247300
3.  Genome-Wide Association Study of Cardiac Structure and Systolic Function in African Americans: The Candidate Gene Association Resource (CARe) Study 
Using data from four community-based cohorts of African Americans (AA), we tested the association between genome-wide markers (SNPs) and cardiac phenotypes in the Candidate-gene Association REsource (CARe) study.
Methods and Results
Among 6,765 AA, we related age, sex, height and weight-adjusted residuals for nine cardiac phenotypes (assessed by echocardiogram or MRI) to 2.5 million SNPs genotyped using Genome-Wide Affymetrix Human SNP Array 6.0 (Affy6.0) and the remainder imputed. Within cohort genome-wide association analysis was conducted followed by meta-analysis across cohorts using inverse variance weights (genome-wide significance threshold=4.0 ×10−07). Supplementary pathway analysis was performed. We attempted replication in 3 smaller cohorts of African ancestry and tested look-ups in one consortium of European ancestry (EchoGEN). Across the 9 phenotypes, variants in 4 genetic loci reached genome-wide significance: rs4552931 in UBE2V2 (p=1.43 × 10−07) for left ventricular mass (LVM); rs7213314 in WIPI1 (p=1.68 × 10−07) for LV internal diastolic diameter (LVIDD); rs1571099 in PPAPDC1A (p= 2.57 × 10−08) for interventricular septal wall thickness (IVST); and rs9530176 in KLF5 (p=4.02 × 10−07) for ejection fraction (EF). Associated variants were enriched in three signaling pathways involved in cardiac remodeling. None of the 4 loci replicated in cohorts of African ancestry were confirmed in look-ups in EchoGEN.
In the largest GWAS of cardiac structure and function to date in AA, we identified 4 genetic loci related to LVM, IVST, LVIDD and EF that reached genome-wide significance. Replication results suggest that these loci may represent unique to individuals of African ancestry. Additional large-scale studies are warranted for these complex phenotypes.
PMCID: PMC3591479  PMID: 23275298
echocardiography; ethnic; genome-wide association studies; Left atrium genetics; left ventricular mass genetics
4.  Strain Improves Risk Prediction Beyond Ejection Fraction in Chronic Systolic Heart Failure 
The utility of longitudinal, circumferential, and radial strain and strain rate in determining prognosis in chronic heart failure is not well established.
Methods and Results
In 416 patients with chronic systolic heart failure, we performed speckle‐tracking analyses of left ventricular longitudinal, circumferential, and radial strain and strain rate on archived echocardiography images (30 frames per second). Cox regression models were used to determine the associations between strain and strain rate and risk of all‐cause mortality, cardiac transplantation, and ventricular‐assist device placement. The area under the time‐dependent ROC curve (AUC) was also calculated at 1 year and 5 years. Over a maximum follow‐up of 8.9 years, there were 138 events (33.2%). In unadjusted models, all strain and strain rate parameters were associated with adverse outcomes (P<0.001). In multivariable models, all parameters with the exception of radial strain rate (P=0.11) remained independently associated, with patients in the lowest tertile of strain or strain rate parameter having a ≈2‐fold increased risk of adverse outcomes compared with the reference group (P<0.05). Addition of strain to ejection fraction (EF) led to a significantly improved AUC at 1 year (0.697 versus 0.633, P=0.032) and 5 years (0.700 versus 0.638, P=0.001). In contrast, strain rate did not provide incremental prognostic value to EF alone.
Longitudinal and circumferential strain and strain rate, and radial strain are associated with chronic heart failure prognosis. Strain provides incremental value to EF in the prediction of adverse outcomes, and with additional study may be a clinically relevant prognostic tool.
PMCID: PMC3959676  PMID: 24419736
echocardiography; heart failure; strain
5.  Development and evaluation of multi-marker risk scores for clinical prognosis 
Statistical methods in medical research  2012;10.1177/0962280212451881.
Heart failure research suggests that multiple biomarkers could be combined with relevant clinical information to more accurately quantify individual risk and to guide patient-specific treatment strategies. Therefore, statistical methodology is required to determine multi-marker risk scores that yield improved prognostic performance. Development of a prognostic score that combines biomarkers with clinical variables requires specification of an appropriate statistical model and is most frequently achieved using standard regression methods such as Cox regression. We demonstrate that care is needed in model specification and that maximal use of marker information requires consideration of potential non-linear effects and interactions. The derived multi-marker score can be evaluated using time-dependent ROC methods, or risk reclassification methods adapted for survival outcomes. We compare the performance of alternative model accuracy methods using simulations, both to evaluate power and to quantify the potential loss in accuracy associated with use of a sub-optimal regression model to develop the multi-marker score. We illustrate development and evaluation strategies using data from the Penn Heart Failure Study. Based on our results, we recommend that analysts carefully examine the functional form for component markers and consider plausible forms for effect modification to maximize the prognostic potential of a model-derived multi-marker score.
PMCID: PMC3467353  PMID: 22767865
Cox regression; predictive accuracy; ROC curve; risk reclassification; survival analysis
6.  Multiple Biomarkers for Risk Prediction in Chronic Heart Failure 
Circulation. Heart Failure  2012;5(2):183-190.
Prior studies have suggested using a panel of biomarkers that measure diverse biological processes as a prognostic tool in chronic heart failure. Whether this approach improves risk prediction beyond clinical evaluation is unknown.
Methods and Results
In a multi-center cohort of 1513 chronic systolic heart failure patients, we measured a contemporary biomarker panel consisting of: high-sensitivity C-reactive protein (hsCRP), myeloperoxidase (MPO), B-type natriuretic peptide (BNP), soluble fms-like tyrosine kinase receptor-1 (sFlt-1), troponin I (TnI), soluble toll-like receptor-2 (ST2), creatinine, and uric acid. From this panel, we calculated a parsimonious multimarker score and assessed its performance in predicting risk of death, cardiac transplantation, or ventricular assist device (VAD) placement in comparison to an established clinical risk score, the Seattle Heart Failure Model (SHFM). During a median followup of 2.5 years, there were a total of 317 outcomes: 187 patients died; 99 were transplanted; and 31 had a VAD placed. In unadjusted Cox models, patients in the highest tertile of the multimarker score had a 13.7-fold increased risk of adverse outcomes compared to the lowest tertile (95%CI 8.75-21.5). These effects were independent of the SHFM (adjusted HR 6.80,95%CI 4.18-11.1). Addition of the multimarker score to the SHFM led to a significantly improved AUC of 0.803 versus 0.756 (p=0.003) and appropriately reclassified a significant number of patients who experienced the outcome into a higher risk category (NRI 25.2%,95%CI 14.2-36.2%,p<0.001).
In ambulatory chronic heart failure patients, a score derived from multiple biomarkers integrating diverse biologic pathways substantially improves prediction of adverse events beyond current metrics.
PMCID: PMC3387487  PMID: 22361079
biomarkers; chronic heart failure
7.  The Vascular Marker Soluble Fms-like Tyrosine Kinase 1 is Associated with Disease Severity and Adverse Outcomes in Chronic Heart Failure 
We sought to evaluate placental growth factor (PlGF) and soluble fms-like tyrosine kinase 1 (sFlt-1) as clinical biomarkers in chronic heart failure (HF).
Vascular remodeling is a crucial compensatory mechanism in chronic HF. The angiogenic ligand PlGF and its target receptor fms-like tyrosine kinase 1 (Flt-1) modulate vascular growth and function, but their relevance in human HF is undefined.
We measured plasma PlGF and sFlt-1 in 1,403 patients from the Penn Heart Failure Study, a multi-center cohort of chronic systolic HF. Subjects were followed for death, cardiac transplantation, or ventricular assist device placement over a median follow-up of 2 years.
sFlt-1 was independently associated with measures of HF severity, including NYHA Class (p<0.01) and BNP (p<0.01). Patients in the 4th quartile of sFlt-1 (>379pg/ml) had a 6.17-fold increased risk of adverse outcomes (p<0.01). This association was robust, even after adjustment for the Seattle Failure Model (HR 2.54, 95%CI 1.76–2.27, p<0.01) and clinical confounders including heart failure etiology (HR 1.67, 95%CI 1.06–2.63, p=0.03). Combined assessment of sFlt-1 and BNP exhibited high predictive accuracy at 1-year (AUC 0.791, 95%CI 0.752–0.831), that was greater than either marker alone (p<0.01 and p=0.03, respectively). In contrast, PlGF was not an independent marker of disease severity or outcomes.
Our findings support a role for sFlt-1 in the biology of human heart failure. With additional study, circulating sFlt-1 may emerge as a clinically useful biomarker to assess the influence of vascular remodeling on clinical outcomes.
PMCID: PMC3193932  PMID: 21757116
heart failure; soluble Flt-1; placental growth factor
8.  Functional Genomics Applied to Cardiovascular Medicine 
Circulation  2011;124(1):87-94.
PMCID: PMC3138215  PMID: 21730321
9.  High-Sensitivity ST2 for Prediction of Adverse Outcomes in Chronic Heart Failure 
Circulation. Heart failure  2010;4(2):180-187.
Soluble ST2 reflects activity of an IL-33 dependent cardioprotective signaling axis and is a diagnostic and prognostic marker in acute heart failure. The use of ST2 in chronic heart failure has not been well defined. Our objective was to determine whether plasma ST2 levels predict adverse outcomes in chronic heart failure in the context of current approaches.
Methods and Results
We determined the association between ST2 level and risk of death or transplantation in a multi-center prospective cohort of 1,141 chronic heart failure outpatients. Adjusted Cox models, receiver operating characteristic (ROC) analyses, and risk reclassification metrics were used to assess the value of ST2 in predicting risk beyond currently used factors. After a median of 2.8 years, 267 patients (23%) died or underwent heart transplantation. Patients in the highest ST2 tertile (ST2>36.3ng/ml) had a markedly increased risk of adverse outcomes compared to the lowest tertile (ST2≤22.3ng/ml), with an unadjusted hazard ratio (HR) of 3.2 (95%CI:2.2-4.7;p<0.0001) that remained significant after multivariable adjustment (adjusted HR 1.9[95%CI:1.3-2.9];p=0.002). In ROC analyses, the area under the curve (AUC) for ST2 was 0.75 (95%CI:0.69-0.79), which was similar to NT-proBNP (AUC 0.77 [95%CI:0.72-0.81];p=0.24 versus ST2), but lower than the Seattle Heart Failure Model (SHFM; AUC 0.81 ([95%CI:0.77-0.85];p=0.014 versus ST2). Addition of ST2 and NT-proBNP to the SHFM reclassified 14.9% of patients into more appropriate risk categories (p=0.017).
ST2 is a potent marker of risk in chronic heart failure and when used in combination with NT-proBNP offers moderate improvement in assessing prognosis beyond clinical risk scores.
PMCID: PMC3163169  PMID: 21178018
ST2; chronic heart failure; cardiomyopathy
10.  Differential Expression of PDE5 in Failing and Non-Failing Human Myocardium 
Circulation. Heart Failure  2011;5(1):79-86.
Recognizing that inhibitors of phosphodiesterase type 5 (PDE5) are increasingly employed in patients with pulmonary hypertension and right ventricular failure, we examined PDE5 expression in the human right ventricle (RV) and its impact on myocardial contractility.
Methods and Results
Tissue extracts from the RV of 20 patients were assayed for PDE5 expression using immunoblot and immunohistochemical (IHC) staining. Tissues were selected from groups of non-failing (NF) organ donors and transplant recipients with end-stage ischemic cardiomyopathy (ICM) or idiopathic dilated cardiomyopathy (DCM). Among DCM patients, subgroups with mild or severe RV dysfunction (RVD) and prior LV assist devices (LVAD) were analyzed separately. Our results showed that PDE5 abundance increased more than four-fold in the RVs of the ICM compared to NF group. In DCM, PDE5 up-regulation was more moderate and varied with the severity of RV dysfunction. IHC confirmed that cardiac myocytes contributed to the up-regulation in the failing hearts. In functional studies, PDE5 inhibition produced little change in developed force (DF) in RV trabeculae from NF hearts, but produced a moderate increase in RV trabeculae from failing hearts.
Our results showed the etiology- and severity-dependent up-regulation of myocyte PDE5 expression in the RV and the impact of this up-regulation on myocardial contractility. These findings suggest that RV PDE5 expression could contribute to the pathogenesis of RV failure and direct myocardial responses to PDE5 inhibition may modulate the indirect responses mediated by RV afterload reduction.
PMCID: PMC3261338  PMID: 22135403
PDE5; cGMP; heart failure; myocardium; contractility
11.  Clinical Considerations of Heritable Factors in Common Heart Failure 
PMCID: PMC3244682  PMID: 22187448
12.  Clinical characteristics and outcomes of patients with improvement in renal function during the treatment of decompensated heart failure 
Journal of cardiac failure  2011;17(12):993-1000.
In the setting of acute decompensated heart failure, worsening renal function (WRF) and improved renal function (IRF) have been associated with similar hemodynamic derangements and poor prognosis. Our aim was to further characterize IRF and its associated mortality risk.
Methods and Results
Consecutive patients with a discharge diagnosis of congestive heart failure at the Hospital of the University of Pennsylvania were reviewed. IRF was defined as a ≥20% improvement and WRF as a ≥20% deterioration in glomerular filtration rate. Overall, 903 patients met eligibility criteria, 31.4% experiencing IRF. Baseline venous congestion/right sided cardiac dysfunction was more common (p≤0.04) and volume of diuresis (p=0.003) was greater in patients with IRF. IRF was associated with a greater incidence of pre-admission (OR=4.2, 95% CI 2.6–6.7, p<0.0001) and post-discharge (OR=1.8, 95% CI 1.2–2.7 p=0.006) WRF. IRF was associated with increased mortality (adjusted HR=1.3, 95% CI 1.1–1.7, p=0.011), a finding largely restricted to patients with post-discharge recurrence of renal dysfunction (p interaction=0.038).
IRF is associated with significantly worsened survival and may represent the resolution of venous congestion induced pre-admission WRF. Unlike WRF, the renal dysfunction in IRF patients occurs independent of the confounding effects of acute decongestion and may provide incremental information for the study of cardio-renal interactions.
PMCID: PMC3248245  PMID: 22123361
Cardio-renal syndrome; Worsening renal function; Venous congestion
13.  Influence of renal dysfunction phenotype on mortality in the setting of cardiac dysfunction: analysis of three randomized controlled trials 
European Journal of Heart Failure  2011;13(11):1224-1230.
Renal neurohormonal activation leading to a reduction in glomerular filtration rate (GFR) has been suggested as a mechanism for renal insufficiency (RI) in the setting of heart failure. We hypothesized that RI occurring in the presence of renal neurohormonal activation may be prognostically more important than RI in the absence of renal neurohormonal activation.
Methods and results
Subjects in the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) trial (n = 429), Beta-Blocker Evaluation of Survival Trial (BEST) (n = 2691), and Studies Of Left Ventricular Dysfunction (SOLVD) trial (n = 6782) limited datasets were studied. The blood urea nitrogen to creatinine ratio (BUN/Creatinine) was employed as a surrogate for renal neurohormonal activation and the primary outcome was the interaction between BUN/Creatinine and RI associated mortality. Baseline RI (GFR < 60 mL/min/1.73 m²) was associated with mortality in all study populations (P < 0.001). In patients with higher BUN/Creatinine, the risk of mortality was consistently greater in patients with RI [adjusted hazard ratio (HR) ESCAPE = 2.8, 95% confidence interval (CI) 1.3–14.3, P = 0.019; BEST = 1.6, 95% CI 1.2–2.2, P = 0.002; SOLVD = 1.6, 95% CI 1.3–2.0, P = 0.001]. However, in patients with lower BUN/Creatinine, the risk of mortality was not elevated in patients with RI (adjusted HR ESCAPE = 0.94, 95% CI 0.35–2.4, P = 0.90, P interaction = 0.005; BEST = 0.97, 95% CI 0.64–1.4, P = 0.90, P interaction = 0.02; SOLVD = 1.0, 95% CI 0.8–1.3, P = 0.71, P interaction = 0.005).
The association between RI and poor survival observed in heart failure populations appears to be contingent not simply on the presence of a reduced GFR, but possibly on the mechanism by which GFR is reduced.
PMCID: PMC3200208  PMID: 21926073
Cardio-renal syndrome; Heart Failure; Chronic kidney disease; Neurohormonal activation; Mortality
14.  Reciprocal Transcriptional Regulation of Metabolic and Signaling Pathways Correlates with Disease Severity in Heart Failure 
Systolic heart failure (HF) is a complex systemic syndrome that can result from a wide variety of clinical conditions and gene mutations. Despite phenotypic similarities, characterized by ventricular dilatation and reduced contractility, the extent of common and divergent gene expression between different forms of HF remains a matter of intense debate.
Methods and Results
Using a meta-analysis of 28 experimental (mouse, rat, dog) and human HF microarray studies, we demonstrate that gene expression changes are characterized by a coordinated and reciprocal regulation of major metabolic and signaling pathways. In response to a wide variety of stressors in animal models of HF, including ischemia, pressure overload, tachypacing, chronic isoproterenol infusion, Chagas disease, and transgenic mouse models, major metabolic pathways are invariably downregulated, while cell signaling pathways are upregulated. In contrast to this uniform transcriptional pattern observed in experimental animal models which recapitulates a fetal gene expression program, human HF microarray studies displayed a greater heterogeneity, with some studies even showing upregulation of metabolic and downregulation of signaling pathways in end-stage human hearts. These discrepant results between animal and human studies are due to a number of factors, prominently cardiac disease and variable exposure to cold cardioplegic solution in non-failing human samples which can downregulate transcripts involved in oxidative phosphorylation (OXPHOS) within the first 6h, thus mimicking gene expression patterns observed in failing samples. Additionally, beta-blockers and ACE-inhibitor use in end-stage human HF was associated with higher levels of myocardial OXPHOS transcripts, thus partially reversing the fetal gene expression pattern. In human failing samples, downregulation of metabolism was associated with hemodynamic markers of disease severity.
Irrespective of the etiology, gene expression in failing myocardium is characterized by downregulation of metabolic transcripts and concomitant upregulation of cell signaling pathways. Gene expression changes along this metabolic-signaling axis in mammalian myocardium are a consistent feature in the heterogeneous transcriptional response observed in phenotypically similar models of HF.
PMCID: PMC3398805  PMID: 21828333
Heart Failure; Fetal Gene Program; Oxidative Phosphorylation
15.  Myocardin regulates BMP10 expression and is required for heart development 
The Journal of Clinical Investigation  2012;122(10):3678-3691.
Myocardin is a muscle lineage–restricted transcriptional coactivator that has been shown to transduce extracellular signals to the nucleus required for SMC differentiation. We now report the discovery of a myocardin/BMP10 (where BMP10 indicates bone morphogenetic protein 10) signaling pathway required for cardiac growth, chamber maturation, and embryonic survival. Myocardin-null (Myocd) embryos and embryos harboring a cardiomyocyte-restricted mutation in the Myocd gene exhibited myocardial hypoplasia, defective atrial and ventricular chamber maturation, heart failure, and embryonic lethality. Cardiac hypoplasia was caused by decreased cardiomyocyte proliferation accompanied by a dramatic increase in programmed cell death. Defective chamber maturation and the block in cardiomyocyte proliferation were caused in part by a block in BMP10 signaling. Myocardin transactivated the Bmp10 gene via binding of a serum response factor–myocardin protein complex to a nonconsensus CArG element in the Bmp10 promoter. Expression of p57kip2, a BMP10-regulated cyclin-dependent kinase inhibitor, was induced in Myocd–/– hearts, while BMP10-activated cardiogenic transcription factors, including NKX2.5 and MEF2c, were repressed. Remarkably, when embryonic Myocd–/– hearts were cultured ex vivo in BMP10-conditioned medium, the defects in cardiomyocyte proliferation and p57kip2 expression were rescued. Taken together, these data identify a heretofore undescribed myocardin/BMP10 signaling pathway that regulates cardiomyocyte proliferation and apoptosis in the embryonic heart.
PMCID: PMC3461917  PMID: 22996691
16.  Common variants in HSPB7 and FRMD4B associated with advanced heart failure 
Heart failure results from abnormalities in multiple biological processes that contribute to cardiac dysfunction. We tested the hypothesis that inherited variation in genes of known importance to cardiovascular biology would thus contribute to heart failure risk.
Methods and Results
We utilized the ITMAT/Broad/CARe (IBC) cardiovascular SNP-array to screen referral populations of advanced heart failure patients for variants in ~2,000 genes of predicted importance to cardiovascular biology. Our design was a two-stage case-control study. In Stage 1, genotypes in Caucasian heart failure patients (n=1,590; ejection fraction 32±16%) were compared to those in unaffected controls (n=577; ejection fraction 67±8%) recruited from the same referral centers. Associations were tested for independent replication in Stage 2 (n=308 cases, 2,314 controls). Two intronic SNPs showed replicated associations with all-cause heart failure: rs1739843 in HSPB7 (combined P=3.09×10−6) and rs6787362 in FRMD4B (P=6.09×10−6). For both SNPs the minor allele was protective. In subgroup analyses, rs1739843 associated with both ischemic and nonischemic heart failure, whereas rs6787362 associated principally with ischemic heart failure. Linkage disequilibrium surrounding rs1739843 suggested that the causal variant resides in a region containing HSPB7 and a neighboring gene, CLCNKA, whereas the causal variant near rs6787362 is probably within FRMD4B. Allele frequencies for these SNPs were substantially different in African Americans (n=635 cases, 714 controls) and showed no association with heart failure in this population.
Our findings identify regions containing HSPB7 and FRMD4B as novel susceptibility loci for advanced heart failure. More broadly, in an era of genome-wide association studies, we demonstrate how knowledge of candidate genes can be leveraged as a complementary strategy to discern the genetics of complex disorders.
PMCID: PMC2957840  PMID: 20124441
cardiomyopathy; genetics; heart failure
17.  Non-Iterative, Regression-Based Estimation of Haplotype Associations with Censored Survival Outcomes 
The general availability of reliable and affordable genotyping technology has enabled genetic association studies to move beyond small case-control studies to large prospective studies. For prospective studies, genetic information can be integrated into the analysis via haplotypes, with focus on their association with a censored survival outcome. We develop non-iterative, regression-based methods to estimate associations between common haplotypes and a censored survival outcome in large cohort studies. Our non-iterative methods—weighted estimation and weighted haplotype combination—are both based on the Cox regression model, but differ in how the imputed haplotypes are integrated into the model. Our approaches enable haplotype imputation to be performed once as a simple data-processing step, and thus avoid implementation based on sophisticated algorithms that iterate between haplotype imputation and risk estimation. We show that non-iterative weighted estimation and weighted haplotype combination provide valid tests for genetic associations and reliable estimates of moderate associations between common haplotypes and a censored survival outcome, and are straightforward to implement in standard statistical software. We apply the methods to an analysis of HSPB7-CLCNKA haplotypes and risk of adverse outcomes in a prospective cohort study of outpatients with chronic heart failure.
PMCID: PMC3395231  PMID: 22499703
Cox regression; phase ambiguity; prospective study; unphased genotypes
18.  Neuregulin-1β is Associated with Disease Severity and Adverse Outcomes in Chronic Heart Failure 
Circulation  2009;120(4):310-317.
Neuregulin-1 (NRG-1) is a paracrine factor released by microvascular endothelial cells that has cardioprotective effects in animal models of heart failure. However, circulating NRG-1 has not been studied in human heart disease. We used a novel immunoassay to test whether circulating neuregulin-1β (NRG-1β) is associated with disease severity and clinical outcome in chronic heart failure.
Methods and Results
Serum NRG-1β was quantified in 899 outpatients in the Penn Heart Failure Study, a referral cohort representing a broad spectrum of systolic heart failure. Circulating NRG-1β was significantly elevated in patients with worse disease severity (NYHA Class IV median 6.2 versus 4.4ng/ml for Class I, p=0.002). In adjusted models, NRG-1β was independently associated with an increased risk of death or cardiac transplantation over a median follow-up of 2.4 years (adjusted HR 1.58 [95% CI 1.04–2.39, p=0.03] comparing 4th versus 1st NRG-1β quartile). Associations with outcome differed by heart failure etiology and symptom severity, with the strongest associations observed in patients with ischemic cardiomyopathy (interaction p=0.008) and NYHA Class III/IV symptoms (interaction p=0.01). These findings were all independent of BNP, and assessment of NRG-1β and BNP jointly provided better risk stratification than each biomarker individually in patients with ischemic or NYHA Class III/IV heart failure.
Circulating NRG-1β is independently associated with heart failure severity and risk of death or cardiac transplantation. These findings support a role for NRG-1/ErbB signaling in human heart failure and identify serum NRG-1β as a novel biomarker that may have clinical applications.
PMCID: PMC2741393  PMID: 19597049
Neuregulin; Heart Failure; Cardiomyopathy
19.  Homeodomain Only Protein X is down-regulated in human heart failure 
Homeodomain only protein x (Hopx) is an unusual homeodomain protein that has diverse effects on cardiac growth. Manipulation of Hopx function in murine models is associated with cardiac hypertrophy, dilation and fibrosis. In the present study, we examined the expression profile of Hopx in various models of pathologic cardiac hypertrophy and failure. Hopx expression is significantly reduced in neonatal rat cardiac myocytes after α/β adrenergic receptor agonist treatment. Cardiac hypertrophy and failure induced by transaortic constriction in mice causes marked down-regulation of Hopx expression. Interestingly, HOPX expression was significantly reduced in hearts of humans with end stage heart failure when compared to non-failing control hearts, and HOPX levels remains low after LVAD support. Our findings suggest that HOPX/Hopx expression is reduced in multiple examples of human and murine cardiac hypertrophy and failure.
PMCID: PMC3114304  PMID: 21382376
Hopx; hypertrophy; myocyte; heart failure; LVAD
20.  Impact of Worsening Renal Function during the Treatment of Decompensated Heart Failure on Changes in Renal Function during Subsequent Hospitalization 
American heart journal  2011;161(5):944-949.
Worsening renal function (WRF) commonly complicates the treatment of acute decompensated heart failure. Despite considerable investigation in this area, it remains unclear to what degree WRF is a reflection of treatment versus patient related factors. We hypothesized that if WRF is significantly influenced by factors intrinsic to the patient than WRF during an index hospitalization should predict WRF during subsequent hospitalization.
Consecutive admissions to the Hospital of the University of Pennsylvania with a discharge diagnosis of congestive heart failure were reviewed. Patients with >1 hospitalization were retained for analysis.
In total 181 hospitalization pairs met the inclusion criteria. Baseline patient characteristics demonstrated significant correlation between hospitalizations (p≤0.002 for all) but minimal association with WRF. In contrast, variables related to the aggressiveness of diuresis were weakly correlated between hospitalizations but significantly associated with WRF (p≤0.024 for all). Consistent with the primary hypothesis, WRF during the index hospitalization was strongly associated with WRF during subsequent hospitalization (OR=2.7, p=0.003). This association was minimally altered after controlling for traditional baseline characteristics (OR=2.5, p=0.006) and in-hospital treatment related parameters (OR=2.8, p=0.005).
A prior history of WRF is strongly associated with subsequent episodes of WRF, independent of in-hospital treatment received. These results suggest that baseline factors intrinsic to the patient’s cardiorenal pathophysiology have substantial influence on the subsequent development of WRF.
PMCID: PMC3095914  PMID: 21570527
21.  Gene Coexpression Network Topology of Cardiac Development, Hypertrophy, and Failure 
Network analysis techniques allow a more accurate reflection of underlying systems biology to be realized than traditional unidimensional molecular biology approaches. Here, using gene coexpression network analysis, we define the gene expression network topology of cardiac hypertrophy and failure and the extent of recapitulation of fetal gene expression programs in failing and hypertrophied adult myocardium.
Methods and Results
We assembled all myocardial transcript data in the Gene Expression Omnibus (n = 1617). Since hierarchical analysis revealed species had primacy over disease clustering, we focused this analysis on the most complete (murine) dataset (n = 478). Using gene coexpression network analysis, we derived functional modules, regulatory mediators and higher order topological relationships between genes and identified 50 gene co-expression modules in developing myocardium that were not present in normal adult tissue. We found that known gene expression markers of myocardial adaptation were members of upregulated modules but not hub genes. We identified ZIC2 as a novel transcription factor associated with coexpression modules common to developing and failing myocardium. Of 50 fetal gene co-expression modules, three (6%) were reproduced in hypertrophied myocardium and seven (14%) were reproduced in failing myocardium. One fetal module was common to both failing and hypertrophied myocardium.
Network modeling allows systems analysis of cardiovascular development and disease. While we did not find evidence for a global coordinated program of fetal gene expression in adult myocardial adaptation, our analysis revealed specific gene expression modules active during both development and disease and specific candidates for their regulation.
PMCID: PMC3324316  PMID: 21127201
fetal; gene expression; heart failure; hypertrophy; myocardium
22.  Comparison of MMP-9 and BNP as clinical biomarkers in chronic heart failure 
American heart journal  2008;155(6):992-997.
Matrix-metalloproteinase-9 (MMP-9) may serve as a biomarker of ventricular remodeling in selected populations, but few studies have assessed its performance in clinical practice. We tested MMP-9 as a biomarker of remodeling and predictor of outcomes in a systolic heart failure cohort derived from clinical practice, and compared its performance to brain natriuretic peptide (BNP).
Plasma MMP-9 and BNP levels were measured in 395 outpatients with systolic heart failure who participated in the Penn Heart Failure Study. We tested for 1) cross-sectional associations between biomarker levels, left ventricular end-diastolic dimension index (LVEDDI), and ejection fraction (EF), and 2) associations between baseline biomarker levels and risk of subsequent cardiac hospitalization or death over 3 years of follow-up.
MMP-9 had no significant correlation with LVEDDI (rho=0.04, P=NS) or EF (rho=−0.06, P=NS), whereas BNP showed highly significant correlations (LVEDDI: rho= 0.27, P<0.0001; EF: rho=−0.35, P<0.0001). In multivariate linear regression models, MMP-9 again showed no significant associations with LVEDDI (P=0.6) or EF (P=0.14), whereas BNP showed strong independent associations (LVEDDI: P<0.001; EF: P=0.002). Kaplan-Meier analyses showed no difference in hospital-free survival by baseline MMP-9 tertile (P=0.7), whereas higher BNP tertile predicted worse survival (P<0.0001). In multivariate Cox models, baseline MMP-9 level did not predict risk of adverse outcome (hazard ratio for log increase [HR log] 0.98, P = 0.9), whereas BNP was a significant independent predictor (HRlog 1.15, P= 0.02).
Compared to BNP, MMP-9 is a poor clinical biomarker of remodeling and outcome in patients with systolic heart failure derived from clinical practice.
PMCID: PMC2587293  PMID: 18513509
matrix metalloproteinase; biomarker; heart failure; ventricular remodeling; epidemiology
24.  Evidence for co-regulation of myocardial gene expression by MEF2 and NFAT in human heart failure 
Pathologic stresses induce heart failure in animal models through activation of multiple cardiac transcription factors (TFs) working cooperatively. However, interactions among TFs in human heart failure are less well understood. Here we use genomic data to examine the evidence that five candidate TF families co-regulate gene expression in human heart failure.
Methods and Results
RNA isolates from failing (n=86) and non-failing (n=16) human hearts were hybridized with Affymetrix HU133A arrays. For each gene on the array, we determined conserved MEF2, NFAT, NKX, GATA, and FOX binding motifs within the −1 kb promoter region using human-murine sequence alignments and the TRANSFAC database. Across 9,076 genes expressed in the heart, TF binding motifs tended to cluster together in nonrandom patterns within promoters of specific genes (P-values ranging from 10−2 to 10−21), suggesting co-regulation. We then modeled differential expression as a function of TF combinations present in promoter regions. Several combinations predicted increased odds of differential expression in the failing heart, with highest odds ratios noted for genes containing both MEF2 and NFAT bindings motifs together in the same promoter (peak OR 3.47, P=0.005).
These findings provide genomic evidence for co-regulation of myocardial gene expression by MEF2 and NFAT in human heart failure. In doing so, they extend the paradigm of combinatorial regulation of gene expression to the human heart and identify new target genes for mechanistic study. More broadly, we demonstrate how integrating diverse sources of genomic data yields novel insights into human cardiovascular disorders.
PMCID: PMC3157251  PMID: 20031589
heart failure; hypertrophy; remodeling; genes; transcription factors
25.  Association of an Intronic, but not any Exonic, FRMD4B Sequence Variant and Heart Failure 
Common forms of heart failure (HF) exhibit familial clustering, but specific genetic risk factors have been challenging to identify. A recent single nucleotide polymorphism (SNP) microarray study implicated a locus within an intron of FRMD4B in Caucasian HF. Here, we used next generation resequencing of pooled DNA and individual Sequenom genotyping to test for associations between FRMD4B SNPs and ischemic and/or non-ischemic cardiomyopathy in two independent populations. Exonic resequencing of Caucasians and African-Americans identified 32 FRMD4B SNPs, thirteen of which had allele frequencies greater than 1%. None of these common FRMD4B SNPs were significantly associated with ischemic, non-ischemic, or all-cause HF in either of the study populations. We individually genotyped the seminal intronic rs6787362 FRMD4B SNP in the primary study population and compared genotypes between HF cases and controls. The rs6787362 variant allele was more frequent in Caucasians with ischemic cardiomyopathy, and carriers (heterozygous or homozygous) of the variant allele had increased risk of HF (OR=1.437, CI=1.085-1.904; P=0.0118). No such association was seen for African-American HF These results confirm an association between the intronic rs6787362 FRMD4B SNP and ischemic cardiomyopathy in a European-derived population, but do not support the proposition that coding FRMD4B variants are susceptibility factors in common HF.
PMCID: PMC2925316  PMID: 20718813

Results 1-25 (34)