Search tips
Search criteria

Results 1-16 (16)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Dual CDK4/CDK6 Inhibition Induces Cell Cycle Arrest and Senescence in Neuroblastoma 
Neuroblastoma is a pediatric cancer that continues to exact significant morbidity and mortality. Recently, a number of cell cycle proteins, particularly those within the Cyclin D/CDK4/CDK6/RB network, have been shown to exert oncogenic roles in neuroblastoma, suggesting that their therapeutic exploitation might improve patient outcomes.
Experimental Procedures
We evaluated the effect of dual CDK4/CDK6 inhibition on neuroblastoma viability using LEE011, a highly specific CDK4/6 inhibitor.
Treatment with LEE011 significantly reduced proliferation in 12 of 17 human neuroblastoma-derived cell lines by inducing cytostasis at nanomolar concentrations (mean IC50 = 307 ± 68 nM in sensitive lines). LEE011 caused cell cycle arrest and cellular senescence that was attributed to dose-dependent decreases in phosphorylated RB and FOXM1, respectively. In addition, responsiveness of neuroblastoma xenografts to LEE011 translated to the in vivo setting in that there was a direct correlation of in vitro IC50 values with degree of subcutaneous xenograft growth delay. While our data indicate that neuroblastomas sensitive to LEE011 were more likely to contain genomic amplification of MYCN (p = 0.01), the identification of additional clinically accessible biomarkers is of high importance.
Taken together, our data show that LEE011 is active in a large subset of neuroblastoma cell line and xenograft models, and supports the clinical development of this CDK4/6 inhibitor as a therapy for patients with this disease.
PMCID: PMC3844928  PMID: 24045179
Neuroblastoma; CDK4; CDK6; LEE011; MYCN
2.  A Functional Screen Identifies miR-34a as a Candidate Neuroblastoma Tumor Suppressor Gene 
Molecular cancer research : MCR  2008;6(5):735-742.
MicroRNAs are small noncoding RNAs that have critical roles in regulating a number of cellular functions through transcriptional silencing. They have been implicated as oncogenes and tumor suppressor genes (oncomirs) in several human neoplasms. We used an integrated genomics and functional screening strategy to identify potential oncomirs in the pediatric neoplasm neuroblastoma. We first identified microRNAs that map within chromosomal regions that we and others have defined as frequently deleted (1p36, 3p22, and 11q23-24) or gained (17q23) in high-risk neuroblastoma. We then transiently transfected microRNA precursor mimics or inhibitors into a panel of six neuroblastoma cell lines that we characterized for these genomic aberrations. The majority of transfections showed no phenotypic effect, but the miR-34a (1p36) and miR-34c (11q23) mimics showed dramatic growth inhibition in cell lines with 1p36 hemizygous deletion. In contrast, there was no growth inhibition by these mimics in cell lines without 1p36 deletions. Quantitative reverse transcription-PCR showed a perfect correlation of absent miR-34a expression in cell lines with a 1p36 aberration and phenotypic effect after mimetic add-back. Expression of miR-34a was also decreased in primary tumors (n = 54) with 1p36 deletion (P = 0.009), but no mutations were discovered in resequencing of the miR-34a locus in 30 neuroblastoma cell lines. Flow cytometric time series analyses showed that the likely mechanism of miR-34a growth inhibition is through cell cycle arrest followed by apoptosis. BCL2 and MYCN were identified as miR-34a targets and likely mediators of the tumor suppressor phenotypic effect. These data support miR-34a as a tumor suppressor gene in human neuroblastoma.
PMCID: PMC3760152  PMID: 18505919
3.  The genetic landscape of high-risk neuroblastoma 
Nature genetics  2013;45(3):279-284.
Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%1. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 cases using a combination of whole exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per megabase (0.48 non-silent), and remarkably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, an additional 7.1% had focal deletions), MYCN (1.7%, a recurrent p.Pro44Leu alteration), and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1, and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies reliant upon frequently altered oncogenic drivers.
PMCID: PMC3682833  PMID: 23334666
4.  Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma 
Nature genetics  2012;44(10):1126-1130.
Neuroblastoma is a cancer of the sympathetic nervous system that accounts for approximately 10% of all pediatric oncology deaths1. Here we report on a genome-wide association study of 2,817 neuroblastoma cases and 7,473 controls. We identified two new associations at 6q16, the first within HACE1 (rs4336470; combined P = 2.7 × 10−11, odds ratio 1.26, 95% CI: 1.18–1.35) and the second within LIN28B (rs17065417; combined P = 1.2 × 10−8, odds ratio 1.38, 95% CI: 1.23–1.54). Expression of LIN28B and let-7 miRNA correlated with rs17065417 genotype in neuroblastoma cell lines, and we observed significant growth inhibition upon depletion of LIN28B specifically in neuroblastoma cells homozygous for the risk allele. Low HACE1 and high LIN28B expression in diagnostic primary neuroblastomas were associated with worse overall survival (P = 0.008 and 0.014, respectively). Taken together, we show that common variants in HACE1 and LIN28B influence neuroblastoma susceptibility and that both genes likely play a role in disease progression.
PMCID: PMC3459292  PMID: 22941191
5.  Cell culture and Drosophila model systems define three classes of anaplastic lymphoma kinase mutations in neuroblastoma 
Disease Models & Mechanisms  2012;6(2):373-382.
Neuroblastoma is a childhood extracranial solid tumour that is associated with a number of genetic changes. Included in these genetic alterations are mutations in the kinase domain of the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK), which have been found in both somatic and familial neuroblastoma. In order to treat patients accordingly requires characterisation of these mutations in terms of their response to ALK tyrosine kinase inhibitors (TKIs). Here, we report the identification and characterisation of two novel neuroblastoma ALK mutations (A1099T and R1464STOP), which we have investigated together with several previously reported but uncharacterised ALK mutations (T1087I, D1091N, T1151M, M1166R, F1174I and A1234T). In order to understand the potential role of these ALK mutations in neuroblastoma progression, we have employed cell culture-based systems together with the model organism Drosophila as a readout for ligand-independent activity. Mutation of ALK at position 1174 (F1174I) generates a gain-of-function receptor capable of activating intracellular targets such as ERK (extracellular signal regulated kinase) and STAT3 (signal transducer and activator of transcription 3) in a ligand-independent manner. Analysis of these previously uncharacterised ALK mutants and comparison with ALKF1174 mutants suggests that ALK mutations observed in neuroblastoma fall into three classes. These classes are: (i) gain-of-function ligand-independent mutations such as ALKF1174l, (ii) kinase-dead ALK mutants, e.g. ALKI1250T (Schönherr et al., 2011a) and (iii) ALK mutations that are ligand-dependent in nature. Irrespective of the nature of the observed ALK mutants, in every case the activity of the mutant ALK receptors could be abrogated by the ALK inhibitor crizotinib (Xalkori/PF-02341066), albeit with differing levels of sensitivity.
PMCID: PMC3597019  PMID: 23104988
6.  Common Variation at BARD1 Results in the Expression of an Oncogenic Isoform that Influences Neuroblastoma Susceptibility and Oncogenicity 
Cancer Research  2012;72(8):2068-2078.
The mechanisms underlying genetic susceptibility at loci discovered by genome-wide association study (GWAS) approaches in human cancer remain largely undefined. In this study we characterized the high-risk neuroblastoma association at the BRCA1-related locus, BARD1, showing that disease-associated variations correlate with increased expression of the oncogenically activated isoform, BARD1β. In neuroblastoma cells, silencing of BARD1β showed genotype-specific cytotoxic effects, including decreased substrate-adherent, anchorage-independent, and foci growth. In established murine fibroblasts, overexpression of BARD1β was sufficient for neoplastic transformation. BARD1β stabilized the Aurora family of kinases in neuroblastoma cells, suggesting both a mechanism for the observed effect and a potential therapeutic strategy. Together, our findings identify BARD1β as an oncogenic driver of high-risk neuroblastoma tumorigenesis, and more generally, they illustrate how robust GWAS signals offer genomic landmarks to identify molecular mechanisms involved in both tumor initiation and malignant progression. The interaction of BARD1β with the Aurora family of kinases lends strong support to the ongoing work to develop Aurora kinase inhibitors for clinically aggressive neuroblastoma.
PMCID: PMC3328617  PMID: 22350409
genome-wide association; neuroblastoma; BARD1; cancer susceptibility genes; functional genomics; oncogenes; genotype-phenotype correlations
7.  Integrative genomic analyses of sporadic clear cell Renal Cell Carcinoma define disease subtypes and potential new therapeutic targets 
Cancer research  2011;72(1):112-121.
Sporadic clear cell Renal Cell Carcinoma (ccRCC), the most common type of adult kidney cancer, is often associated with genomic copy number aberrations on chromosomes 3p and 5q. Aberrations on chromosome 3p are associated with inactivation of the tumor suppressor gene von-Hippel Lindau (VHL), which activates the hypoxia inducible factors HIF1α and HIF2α. In contrast, ccRCC genes on chromosome 5q remain to be defined. In this study, we performed an integrated analysis of high-density copy number and gene expression data for 54 sporadic ccRCC tumors that identified the secreted glycoprotein STC2 (stanniocalcin 2) and the proteoglycan VCAN (versican) as potential 5q oncogenes in ccRCC. In functional assays, STC2 and VCAN each promoted tumorigenesis by inhibiting cell death. Using the same approach, we also investigated the two VHL-deficient subtypes of ccRCC, which express both HIF1α and HIF2α (H1H2) or only HIF2α (H2). This analysis revealed a distinct pattern of genomic aberrations in each group, with the H1H2 group displaying, on average, a more aberrant genome than the H2 group. Together our findings provide a significant advance in understanding ccRCC by offering a molecular definition of two subtypes with distinct characteristics as well as two potential chromosome 5q oncogenes, the overexpression of which is sufficient to promote tumorigenesis by limiting cell death.
PMCID: PMC3251639  PMID: 22094876
Renal cancer; SNP arrays; DNA copy number; gene expression; DNA damage
8.  Integrative genomics identifies LMO1 as a neuroblastoma oncogene 
Nature  2010;469(7329):216-220.
Neuroblastoma is a childhood cancer of the sympathetic nervous system that accounts for approximately 10% of all paediatric oncology deaths1,2. To identify genetic risk factors for neuroblastoma, we performed a genome-wide association study (GWAS) on 2,251 patients and 6,097 control subjects of European ancestry from four case series. Here we report a significant association within LIM domain only 1 (LMO1) at 11p15.4 (rs110419, combined P = 5.2 × 10−16, odds ratio of risk allele = 1.34 (95% confidence interval 1.25–1.44)). The signal was enriched in the subset of patients with the most aggressive form of the disease. LMO1 encodes a cysteine-rich transcriptional regulator, and its paralogues (LMO2, LMO3 and LMO4) have each been previously implicated in cancer. In parallel, we analysed genome-wide DNA copy number alterations in 701 primary tumours. We found that the LMO1 locus was aberrant in 12.4% through a duplication event, and that this event was associated with more advanced disease (P < 0.0001) and survival (P = 0.041). The germline single nucleotide polymorphism (SNP) risk alleles and somatic copy number gains were associated with increased LMO1 expression in neuroblastoma cell lines and primary tumours, consistent with a gain-of-function role in tumorigenesis. Short hairpin RNA (shRNA)-mediated depletion of LMO1 inhibited growth of neuroblastoma cells with high LMO1 expression, whereas forced expression of LMO1 in neuroblastoma cells with low LMO1 expression enhanced proliferation. These data show that common polymorphisms at the LMO1 locus are strongly associated with susceptibility to developing neuroblastoma, but also may influence the likelihood of further somatic alterations at this locus, leading to malignant progression.
PMCID: PMC3320515  PMID: 21124317
9.  Phenotype Restricted Genome-Wide Association Study Using a Gene-Centric Approach Identifies Three Low-Risk Neuroblastoma Susceptibility Loci 
PLoS Genetics  2011;7(3):e1002026.
Neuroblastoma is a malignant neoplasm of the developing sympathetic nervous system that is notable for its phenotypic diversity. High-risk patients typically have widely disseminated disease at diagnosis and a poor survival probability, but low-risk patients frequently have localized tumors that are almost always cured with little or no chemotherapy. Our genome-wide association study (GWAS) has identified common variants within FLJ22536, BARD1, and LMO1 as significantly associated with neuroblastoma and more robustly associated with high-risk disease. Here we show that a GWAS focused on low-risk cases identified SNPs within DUSP12 at 1q23.3 (P = 2.07×10−6), DDX4 and IL31RA both at 5q11.2 (P = 2.94×10−6 and 6.54×10−7 respectively), and HSD17B12 at 11p11.2 (P = 4.20×10−7) as being associated with the less aggressive form of the disease. These data demonstrate the importance of robust phenotypic data in GWAS analyses and identify additional susceptibility variants for neuroblastoma.
Author Summary
Neuroblastoma is the most common solid tumor outside the central nervous system and is accountable for 10% of the mortality rate of all children's cancers. It has distinctive clinical behaviors and is categorized into different risk groups: high-risk, intermediate-risk, and low-risk. Genome-wide association studies have reported a number of genetic variations predisposing to high-risk neuroblastoma. This study focuses on the low-risk neuroblastoma group and identifies four novel genes (DUSP12, DDX4, IL31RA, and HSD17B12) at three distinct genomic positions that harbor disease-causing variants. This study also reports several gene sets that are enriched in overall neuroblastoma as well as in both high-risk and low-risk groups. Also of importance is that this study adopts a new computational method that identifies genes, instead of only one single nucleotide polymorphism, as disease-causing variants. Shown to have superior power of detection genome-wide association signals for neuroblastoma, the methodology presented in this study has great potential applications in case-control association studies in other diseases.
PMCID: PMC3060064  PMID: 21436895
10.  Comparison of Primary Neuroblastoma Tumors and Derivative Early-Passage Cell Lines Using Genome-Wide Single Nucleotide Polymorphism Array Analysis 
Cancer research  2009;69(10):4143-4149.
Stromal contamination is one of the major confounding factors in the analysis of solid tumor samples by single nucleotide polymorphism (SNP) arrays. As we propose to use genome-wide SNP microarray analysis as a diagnostic platform for neuroblastoma, the sensitivity, specificity, and accuracy of these studies must be optimized. To investigate the effects of stromal contamination, we derived early-passage cell lines from nine primary tumors and compared their genomic signature with that of the primary tumors using 100K SNP arrays. The average concordance between tumor and cell line for raw loss of heterozygosity (LOH) calls was 96% (range, 91–99%) and for raw copy number alterations, 71% (range, 43–87%). In general, there were a larger number of LOH events identified in the cell lines compared with the matched tumor samples (mean increase, 3.2% ± 1.9%). We have developed an algorithm that shows that the presence of stroma contributes to under-reporting of LOH and copy number loss. Notable findings in this sample set were uniparental disomy of chromosome arms 11p, 1q, 14q, and 15q and a novel area of amplification on chromosome band 11p15. Our analysis shows that LOH was identified significantly more often in derived cell lines compared with the original tumor samples. Although these may in part be due to clonal selection during adaptation to tissue culture, our study indicates that stromal contamination may be a major contributing factor in underestimation of LOH and copy number loss events.
PMCID: PMC2739280  PMID: 19435921
11.  Common variations in BARD1 influence susceptibility to high-risk neuroblastoma 
Nature genetics  2009;41(6):718-723.
We conducted a SNP-based genome-wide association study (GWAS) focused on the high-risk subset of neuroblastoma1. As our previous unbiased GWAS showed strong association of common 6p22 SNP alleles with aggressive neuroblastoma2, we now restricted our analysis to 397 high-risk cases compared to 2,043 controls. We detected new significant association of six SNPs at 2q35 within the BARD1 gene locus (Pallelic = 2.35×10−9 − 2.25×10−8). Each SNP association was confirmed in a second series of 189 high-risk cases and 1,178 controls (Pallelic = 7.90×10−7 − 2.77×10−4). The two most significant SNPs (rs6435862, rs3768716) were also tested in two additional independent high-risk neuroblastoma case series, yielding combined allelic odds-ratios of 1.68 each (P = 8.65×10−18 and 2.74×10−16, respectively). Significant association was also found with known BARD1 nsSNPs. These data show that common variation in BARD1 contributes to the etiology of the aggressive and most clinically relevant subset of human neuroblastoma.
PMCID: PMC2753610  PMID: 19412175
12.  Copy number variation at 1q21.1 associated with neuroblastoma 
Nature  2009;459(7249):987-991.
Common copy number variations (CNVs) represent a significant source of genetic diversity, yet their influence on phenotypic variability, including disease susceptibility, remains poorly understood. To address this problem in cancer, we performed a genome-wide association study (GWAS) of CNVs in the childhood cancer neuroblastoma, a disease where SNP variations are known to influence susceptibility1,2. We first genotyped 846 Caucasian neuroblastoma patients and 803 healthy Caucasian controls at 550,000 single nucleotide polymorphisms, and performed a CNV-based test for association. We then replicated significant observations in two independent sample sets comprised of a total of 595 cases and 3,357 controls. We identified a common CNV at 1q21.1 associated with neuroblastoma in the discovery set, which was confirmed in both replication sets (Pcombined = 2.97 × 10−17; OR = 2.49, 95% CI: 2.02 to 3.05). This CNV was validated by quantitative PCR, fluorescent in situ hybridization, and analysis of matched tumor specimens, and was shown to be heritable in an independent set of 713 cancer-free trios. We identified a novel transcript within the CNV which showed high sequence similarity to several “Neuroblastoma breakpoint family” (NBPF) genes3,4 and represents a new member of this gene family (NBPFX). This transcript was preferentially expressed in fetal brain and fetal sympathetic nervous tissues, and expression level was strictly correlated with CNV state in neuroblastoma cells. These data demonstrate that inherited copy number variation at 1q21.1 is associated with neuroblastoma and implicate a novel NBPF gene in early tumorigenesis of this childhood cancer.
PMCID: PMC2755253  PMID: 19536264
13.  A genome-wide association study identifies a susceptibility locus to clinically aggressive neuroblastoma at 6p22 
The New England journal of medicine  2008;358(24):2585-2593.
Neuroblastoma is a malignancy of the developing sympathetic nervous system that most commonly affects young children and is often lethal. The etiology of this embryonal cancer is not known.
We performed a genome-wide association study by first genotyping 1,032 neuroblastoma patients and 2,043 controls of European descent using the Illumina HumanHap550 BeadChip. Three independent groups of neuroblastoma cases (N=720) and controls (N=2128) were then genotyped to replicate significant associations.
We observed highly significant association between neuroblastoma and the common minor alleles of three single nucleotide polymorphisms (SNPs) within a 94.2 kilobase (Kb) linkage disequilibrium block at chromosome band 6p22 containing the predicted genes FLJ22536 and FLJ44180 (P-value range = 1.71×10-9-7.01×10-10; allelic odds ratio range 1.39-1.40). Homozygosity for the at-risk G allele of the most significantly associated SNP, rs6939340, resulted in an increased likelihood of developing neuroblastoma of 1.97 (95% CI 1.58-2.44). Subsequent genotyping of these 6p22 SNPs in the three independent case series confirmed our observation of association (P=9.33×10-15 at rs6939340 for joint analysis). Furthermore, neuroblastoma patients homozygous for the risk alleles at 6p22 were more likely to develop metastatic (Stage 4) disease (P=0.02), show amplification of the MYCN oncogene in the tumor cells (P=0.006), and to have disease relapse (P=0.01).
Common genetic variation at chromosome band 6p22 is associated with susceptibility to neuroblastoma.
PMCID: PMC2742373  PMID: 18463370
14.  Outcome of High-Risk Stage 3 Neuroblastoma with Myeloablative Therapy and 13-cis-Retinoic Acid: A Report from the Children’s Oncology Group 
Pediatric blood & cancer  2009;52(1):44-50.
The components of therapy required for patients with INSS Stage 3 neuroblastoma and high risk features remain controversial.
A retrospective cohort design was used to determine if intensive chemoradiotherapy with purged autologous bone marrow rescue (ABMT) and/or 13-cis-retinoic acid (13-cis-RA) improved outcome for patients with high-risk neuroblastoma that was not metastatic to distant sites. We identified 72 patients with INSS Stage 3 neuroblastoma enrolled between 1991 and 1996 on the Phase III CCG 3891 randomized trial. Patients were analyzed on an intent-to-treat basis using a log-rank test.
The 5-year event-free survival (EFS) and overall survival (OS) rates for patients with Stage 3 neuroblastoma were 55 +/- 6% and 59% +/- 6%, respectively (n=72). Patients randomized to ABMT (n=20) had 5-year EFS of 65% +/- 11% and OS of 65% +/- 11% compared to 41% +/- 11 (p=0.21) and 46% +/- 11% (p=0.23) for patients randomized to CC (n=23), respectively. Patients randomized to 13-cis-RA (n=23) had 5-year EFS of 70% +/- 10% and OS of 78% +/- 9% compared to 63% +/- 12% (p=0.67) and 67% +/- 12% (p=0.55) for those receiving no further therapy (n=16), respectively. Patients randomized to both ABMT and 13-cis-RA (n=6) had a 5-year EFS of 80% ± 11% and OS of 100%.
Patients with high-risk Stage 3 neuroblastoma have an overall poor prognosis despite aggressive chemoradiotherapy. Further studies are warranted to determine if myeloablative consolidation followed by 13-cis-RA maintenance therapy statistically significantly improves outcome.
PMCID: PMC2731719  PMID: 18937318
Neuroblastoma; Hematopoietic Stem Cell Transplant
15.  Identification of ALK as the Major Familial Neuroblastoma Predisposition Gene 
Nature  2008;455(7215):930-935.
Survival rates for the childhood cancer neuroblastoma have not substantively improved despite dramatic escalation in chemotherapy intensity. Like most human cancers, this embryonal malignancy can be inherited, but the genetic etiology of familial and sporadically occurring neuroblastoma was largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase gene (ALK) explain the majority of hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at the short arm of chromosome 2 (maximum nonparametric LOD=4.23 at rs1344063) using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate missense mutations in the tyrosine kinase domain of ALK (G1128A, R1192P and R1275Q) that segregated with the disease in eight separate families. Examination of 491 sporadically occurring human neuroblastoma samples showed that the ALK locus was gained in 22.8%, and highly amplified in an additional 3.3%, and that these aberrations were highly associated with death from disease (P=0.0003). Resequencing of 194 high-risk neuroblastoma samples showed somatically acquired mutations within the tyrosine kinase domain in 12.4%. Nine of the ten mutations map to critical regions of the kinase domain and were predicted to be oncogenic drivers with high probability. Mutations resulted in constitutive phosphorylation consistent with activation, and targeted knockdown of ALK mRNA resulted in profound growth inhibition of 4 of 4 cell lines harboring mutant or amplified ALK, as well as 2 of 6 wild type for ALK. Our results demonstrate that heritable mutations of ALK are the major cause of familial neuroblastoma, and that germline or acquired activation of this cell surface kinase is a tractable therapeutic target for this lethal pediatric malignancy.
PMCID: PMC2672043  PMID: 18724359
16.  Genome-Wide Analysis of Neuroblastomas using High-Density Single Nucleotide Polymorphism Arrays 
PLoS ONE  2007;2(2):e255.
Neuroblastomas are characterized by chromosomal alterations with biological and clinical significance. We analyzed paired blood and primary tumor samples from 22 children with high-risk neuroblastoma for loss of heterozygosity (LOH) and DNA copy number change using the Affymetrix 10K single nucleotide polymorphism (SNP) array.
Multiple areas of LOH and copy number gain were seen. The most commonly observed area of LOH was on chromosome arm 11q (15/22 samples; 68%). Chromosome 11q LOH was highly associated with occurrence of chromosome 3p LOH: 9 of the 15 samples with 11q LOH had concomitant 3p LOH (P = 0.016). Chromosome 1p LOH was seen in one-third of cases. LOH events on chromosomes 11q and 1p were generally accompanied by copy number loss, indicating hemizygous deletion within these regions. The one exception was on chromosome 11p, where LOH in all four cases was accompanied by normal copy number or diploidy, implying uniparental disomy. Gain of copy number was most frequently observed on chromosome arm 17q (21/22 samples; 95%) and was associated with allelic imbalance in six samples. Amplification of MYCN was also noted, and also amplification of a second gene, ALK, in a single case.
This analysis demonstrates the power of SNP arrays for high-resolution determination of LOH and DNA copy number change in neuroblastoma, a tumor in which specific allelic changes drive clinical outcome and selection of therapy.
PMCID: PMC1797488  PMID: 17327916

Results 1-16 (16)