PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-19 (19)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Molecular Epidemiology of Leptospira borgpetersenii Serovar Arborea, Queensland, Australia, 1998–2005 
Leptospira borgpetersenii serovar Arborea is an emerging cause of leptospirosis in Australia. It was not previously recognized as an endemic serovar before the 1990s, but at that point, human infections with the serovar increased significantly. Using fluorescent-amplified fragment-length polymorphism (FAFLP) molecular typing, human and rodent isolates were compared genetically. Typing revealed 11 unique profiles among the 23 isolates examined; however, there was no clonality revealed between the human and rodent isolates. There was clonality among rodent isolates from geographically related areas. This study highlights the utility of Leptospira culture combined with FAFLP for the examination of the epidemiology of this disease.
doi:10.4269/ajtmh.2010.09-0526
PMCID: PMC2946748  PMID: 20889871
2.  Molecular Confirmation of Co-Infection by Pathogenic Leptospira spp. and Orientia tsutsugamushi in Patients with Acute Febrile Illness in Thailand 
Leptospirosis and scrub typhus are major causes of acute febrile illness in rural Asia, where co-infection is reported to occur based on serologic evidence. We re-examined whether co-infection occurs by using a molecular approach. A duplex real-time polymerase chain reaction was developed that targeted a specific 16S ribosomal RNA gene of pathogenic Leptospira spp. and Orientia tsutsugamushi. Of 82 patients with an acute febrile illness who had dual infection on the basis of serologic tests, 5 (6%) had polymerase chain reaction results positive for both pathogens. We conclude that dual infection occurs, but that serologic tests may overestimate the frequency of co-infections.
doi:10.4269/ajtmh.13-0402
PMCID: PMC3795116  PMID: 24002486
3.  Leptospirosis in American Samoa 2010: Epidemiology, Environmental Drivers, and the Management of Emergence 
Leptospirosis has recently been reported as an emerging disease worldwide, and a seroprevalence study was undertaken in American Samoa to better understand the drivers of transmission. Antibodies indicative of previous exposure to leptospirosis were found in 15.5% of 807 participants, predominantly against three serovars that were not previously known to occur in American Samoa. Questionnaires and geographic information systems data were used to assess behavioral factors and environmental determinants of disease transmission, and logistic regression was used to identify factors associated with infection. Many statistically significant factors were consistent with previous studies, but we also showed a significant association with living at lower altitudes (odds ratio [OR] = 1.53, 95% confidence interval [CI]: 1.03–2.28), and having higher numbers of piggeries around the home (OR = 2.63, 95% CI: 1.52–4.40). Our findings support a multifaceted approach to combating the emergence of leptospirosis, including modification of individual behavior, but importantly also managing the evolving environmental drivers of risk.
doi:10.4269/ajtmh.2012.11-0398
PMCID: PMC3269286  PMID: 22302868
4.  A Single Multilocus Sequence Typing (MLST) Scheme for Seven Pathogenic Leptospira Species 
Background
The available Leptospira multilocus sequence typing (MLST) scheme supported by a MLST website is limited to L. interrogans and L. kirschneri. Our aim was to broaden the utility of this scheme to incorporate a total of seven pathogenic species.
Methodology and Findings
We modified the existing scheme by replacing one of the seven MLST loci (fadD was changed to caiB), as the former gene did not appear to be present in some pathogenic species. Comparison of the original and modified schemes using data for L. interrogans and L. kirschneri demonstrated that the discriminatory power of the two schemes was not significantly different. The modified scheme was used to further characterize 325 isolates (L. alexanderi [n = 5], L. borgpetersenii [n = 34], L. interrogans [n = 222], L. kirschneri [n = 29], L. noguchii [n = 9], L. santarosai [n = 10], and L. weilii [n = 16]). Phylogenetic analysis using concatenated sequences of the 7 loci demonstrated that each species corresponded to a discrete clade, and that no strains were misclassified at the species level. Comparison between genotype and serovar was possible for 254 isolates. Of the 31 sequence types (STs) represented by at least two isolates, 18 STs included isolates assigned to two or three different serovars. Conversely, 14 serovars were identified that contained between 2 to 10 different STs. New observations were made on the global phylogeography of Leptospira spp., and the utility of MLST in making associations between human disease and specific maintenance hosts was demonstrated.
Conclusion
The new MLST scheme, supported by an updated MLST website, allows the characterization and species assignment of isolates of the seven major pathogenic species associated with leptospirosis.
Author Summary
Leptospirosis is a common zoonotic disease worldwide. Genotyping of the causative organisms provides important insights into disease transmission and informs preventive strategies and vaccine development. Multilocus sequence typing (MLST) is the most widespread genotyping methodology for bacterial pathogens, but the Leptospira scheme supported by a public MLST database is currently only applicable to L. interrogans and L. kirschneri. The purpose of this study was to extend the scheme to a total of seven pathogenic Leptospira species. This was achieved through the development of a modified scheme in which one of the seven MLST loci was replaced, together with newly designed primers for the remaining 6 loci. Comparison of the original and modified scheme demonstrated that they were very similar, hence sequence type (ST) assignments were largely carried over to the modified scheme. Phylogenetic trees reconstructed from concatenated sequences of the seven loci of the modified scheme demonstrated perfect classification of isolates into seven pathogenic species, which resided in clearly distinct phylogenetic clusters. Congruence was low between STs and serovars. The MLST scheme was used to gain new insights into the population genetic structure of Leptospira species associated with clinical disease and maintenance hosts in Asia.
doi:10.1371/journal.pntd.0001954
PMCID: PMC3554523  PMID: 23359622
5.  Rapid Isolation and Susceptibility Testing of Leptospira spp. Using a New Solid Medium, LVW Agar 
Pathogenic Leptospira spp., the causative agents of leptospirosis, are slow-growing Gram-negative spirochetes. Isolation of Leptospira from clinical samples and testing of antimicrobial susceptibility are difficult and time-consuming. Here, we describe the development of a new solid medium that facilitates more-rapid growth of Leptospira spp. and the use of this medium to evaluate the Etest's performance in determining antimicrobial MICs to drugs in common use for leptospirosis. The medium was developed by evaluating the effects of numerous factors on the growth rate of Leptospira interrogans strain NR-20157. These included the type of base agar, the concentration of rabbit serum (RS), and the concentration and duration of CO2 incubation during the initial period of culture. The highest growth rate of NR-20157 was achieved using a Noble agar base supplemented with 10% RS (named LVW agar), with an initial incubation at 30°C in 5% CO2 for 2 days prior to continuous culture in air at 30°C. These conditions were used to develop the Etest for three species, L. interrogans (NR-20161), L. kirschnerii (NR-20327), and L. borgpetersenii (NR-20151). The MICs were read on day 7 for all samples. The Etest was then performed on 109 isolates of pathogenic Leptospira spp. The MIC90 values for penicillin G, doxycycline, cefotaxime, ceftriaxone, and chloramphenicol were 0.64 units/ml and 0.19, 0.047, 0.5, and 2 μg/ml, respectively. The use of LVW agar, which enables rapid growth, isolation of single colonies, and simple antimicrobial susceptibility testing for Leptospira spp., provides an opportunity for new areas of fundamental and applied research.
doi:10.1128/AAC.01812-12
PMCID: PMC3535913  PMID: 23114772
6.  Leptospirosis in American Samoa – Estimating and Mapping Risk Using Environmental Data 
Background
The recent emergence of leptospirosis has been linked to many environmental drivers of disease transmission. Accurate epidemiological data are lacking because of under-diagnosis, poor laboratory capacity, and inadequate surveillance. Predictive risk maps have been produced for many diseases to identify high-risk areas for infection and guide allocation of public health resources, and are particularly useful where disease surveillance is poor. To date, no predictive risk maps have been produced for leptospirosis. The objectives of this study were to estimate leptospirosis seroprevalence at geographic locations based on environmental factors, produce a predictive disease risk map for American Samoa, and assess the accuracy of the maps in predicting infection risk.
Methodology and Principal Findings
Data on seroprevalence and risk factors were obtained from a recent study of leptospirosis in American Samoa. Data on environmental variables were obtained from local sources, and included rainfall, altitude, vegetation, soil type, and location of backyard piggeries. Multivariable logistic regression was performed to investigate associations between seropositivity and risk factors. Using the multivariable models, seroprevalence at geographic locations was predicted based on environmental variables. Goodness of fit of models was measured using area under the curve of the receiver operating characteristic, and the percentage of cases correctly classified as seropositive. Environmental predictors of seroprevalence included living below median altitude of a village, in agricultural areas, on clay soil, and higher density of piggeries above the house. Models had acceptable goodness of fit, and correctly classified ∼84% of cases.
Conclusions and Significance
Environmental variables could be used to identify high-risk areas for leptospirosis. Environmental monitoring could potentially be a valuable strategy for leptospirosis control, and allow us to move from disease surveillance to environmental health hazard surveillance as a more cost-effective tool for directing public health interventions.
Author Summary
Leptospirosis is the most common bacterial infection transmitted from animals to humans. Infected animals excrete the bacteria in their urine, and humans can become infected through contact with animals or a contaminated environment such as water and soil. Environmental factors are important in determining the risk of human infection, and differ between ecological settings. The wide range of risk factors include high rainfall and flooding; poor sanitation and hygiene; urbanisation and overcrowding; contact with animals (including rodents, livestock, pets, and wildlife); outdoor recreation and ecotourism; and environmental degradation. Predictive risk maps have been produced for many infectious diseases to identify high-risk areas for transmission and guide allocation of public health resources. Maps are particularly useful where disease surveillance and epidemiological data are poor. The objectives of this study were to estimate leptospirosis seroprevalence at geographic locations based on environmental factors, produce a predictive disease risk map for American Samoa, and assess the accuracy of the maps in predicting infection risk. This study demonstrated the value of geographic information systems and disease mapping for identifying environmental risk factors for leptospirosis, and enhancing our understanding of disease transmission. Similar principles could be used to investigate the epidemiology of leptospirosis in other areas.
doi:10.1371/journal.pntd.0001669
PMCID: PMC3362644  PMID: 22666516
7.  Fool's Gold: Why Imperfect Reference Tests Are Undermining the Evaluation of Novel Diagnostics: A Reevaluation of 5 Diagnostic Tests for Leptospirosis 
We hypothesized that the gold standard for diagnosing leptospirosis is imperfect. We used Bayesian latent class models and random-effects meta-analysis to test this hypothesis and to determine the true accuracy of a range of alternative tests for leptospirosis diagnosis.
Background. We observed that some patients with clinical leptospirosis supported by positive results of rapid tests were negative for leptospirosis on the basis of our diagnostic gold standard, which involves isolation of Leptospira species from blood culture and/or a positive result of a microscopic agglutination test (MAT). We hypothesized that our reference standard was imperfect and used statistical modeling to investigate this hypothesis.
Methods. Data for 1652 patients with suspected leptospirosis recruited during three observational studies and one randomized control trial that described the application of culture, MAT, immunofluorescence assay (IFA), lateral flow (LF) and/or PCR targeting the 16S rRNA gene were reevaluated using Bayesian latent class models and random-effects meta-analysis.
Results. The estimated sensitivities of culture alone, MAT alone, and culture plus MAT (for which the result was considered positive if one or both tests had a positive result) were 10.5% (95% credible interval [CrI], 2.7%–27.5%), 49.8% (95% CrI, 37.6%–60.8%), and 55.5% (95% CrI, 42.9%–67.7%), respectively. These low sensitivities were present across all 4 studies. The estimated specificity of MAT alone (and of culture plus MAT) was 98.8% (95% CrI, 92.8%–100.0%). The estimated sensitivities and specificities of PCR (52.7% [95% CrI, 45.2%–60.6%] and 97.2% [95% CrI, 92.0%–99.8%], respectively), lateral flow test (85.6% [95% CrI, 77.5%–93.2%] and 96.2% [95% CrI, 87.7%–99.8%], respectively), and immunofluorescence assay (45.5% [95% CrI, 33.3%–60.9%] and 96.8% [95% CrI, 92.8%–99.8%], respectively) were considerably different from estimates in which culture plus MAT was considered a perfect gold standard test.
Conclusions. Our findings show that culture plus MAT is an imperfect gold standard against which to compare alterative tests for the diagnosis of leptospirosis. Rapid point-of-care tests for this infection would bring an important improvement in patient care, but their future evaluation will require careful consideration of the reference test(s) used and the inclusion of appropriate statistical models.
doi:10.1093/cid/cis403
PMCID: PMC3393707  PMID: 22523263
8.  Emergence of new leptospiral serovars in American Samoa - ascertainment or ecological change? 
Background
Leptospirosis has recently been discussed as an emerging infectious disease in many contexts, including changes in environmental drivers of disease transmission and the emergence of serovars. In this paper, we report the epidemiology of leptospiral serovars from our study of human leptospirosis in American Samoa in 2010, present evidence of recent serovar emergence, and discuss the potential epidemiological and ecological implications of our findings.
Methods
Serovar epidemiology from our leptospirosis seroprevalence study in 2010 was compared to findings from a study in 2004. The variation in geographic distribution of the three most common serovars was explored by mapping sero-positive participants to their place of residence using geographic information systems. The relationship between serovar distribution and ecological zones was examined using geo-referenced data on vegetation type and population distribution.
Results
Human leptospirosis seroprevalence in American Samoa was 15.5% in 2010, with serological evidence that infection was caused by three predominant serovars (Hebdomadis, LT 751, and LT 1163). These serovars differed from those identified in an earlier study in 2004, and were not previously known to occur in American Samoa. In 2010, serovars also differed in geographic distribution, with variations in seroprevalence between islands and different ecological zones within the main island.
Conclusions
Our findings might indicate artefactual emergence (where serovars were long established but previously undetected), but we believe the evidence is more in favour of true emergence (a result of ecological change). Possibilities include changes in interactions between humans and the environment; introduction of serovars through transport of animals; evolution in distribution and/or abundance of animal reservoirs; and environmental changes that favour transmission of particular serovars.
Future research should explore the impact of ecological change on leptospirosis transmission dynamics and serovar emergence, and investigate how such new knowledge might better target environmental monitoring for disease control at a public health level.
doi:10.1186/1471-2334-12-19
PMCID: PMC3305655  PMID: 22273116
9.  Comparison of Two Multilocus Sequence Based Genotyping Schemes for Leptospira Species 
Background
Several sequence based genotyping schemes have been developed for Leptospira spp. The objective of this study was to genotype a collection of clinical and reference isolates using the two most commonly used schemes and compare and contrast the results.
Methods and Findings
A total of 48 isolates consisting of L. interrogans (n = 40) and L. kirschneri (n = 8) were typed by the 7 locus MLST scheme described by Thaipadungpanit et al., and the 6 locus genotyping scheme described by Ahmed et al., (termed 7L and 6L, respectively). Two L. interrogans isolates were not typed using 6L because of a deletion of three nucleotides in lipL32. The remaining 46 isolates were resolved into 21 sequence types (STs) by 7L, and 30 genotypes by 6L. Overall nucleotide diversity (based on concatenated sequence) was 3.6% and 2.3% for 7L and 6L, respectively. The D value (discriminatory ability) of 7L and 6L were comparable, i.e. 92.0 (95% CI 87.5–96.5) vs. 93.5 (95% CI 88.6–98.4). The dN/dS ratios calculated for each locus indicated that none were under positive selection. Neighbor joining trees were reconstructed based on the concatenated sequences for each scheme. Both trees showed two distinct groups corresponding to L. interrogans and L. kirschneri, and both identified two clones containing 10 and 7 clinical isolates, respectively. There were six instances in which 6L split single STs as defined by 7L into closely related clusters. We noted two discrepancies between the trees in which the genetic relatedness between two pairs of strains were more closely related by 7L than by 6L.
Conclusions
This genetic analysis indicates that the two schemes are comparable. We discuss their practical advantages and disadvantages.
Author Summary
Two independent multilocus sequence based genotyping schemes (denoted here as 7L and 6L for schemes with 7 and 6 loci, respectively) are in use for Leptospira spp., which has led to uncertainty as to which should be adopted by the scientific community. The purpose of this study was to apply the two schemes to a single collection of pathogenic Leptospira, evaluate their performance, and describe the practical advantages and disadvantages of each scheme. We used a variety of phylogenetic approaches to compare the output data and found that the two schemes gave very similar results. 7L has the advantage that it is a conventional multi-locus sequencing typing (MLST) scheme based on housekeeping genes and is supported by a publically accessible database by which genotypes can be readily assigned as known or new sequence types by any investigator, but is currently only applicable to L. interrogans and L. kirschneri. Conversely, 6L can be applied to all pathogenic Leptospira spp., but is not a conventional MLST scheme by design and is not available online. 6L sequences from 271 strains have been released into the public domain, and phylogenetic analysis of new sequences using this scheme requires their download and offline analysis.
doi:10.1371/journal.pntd.0001374
PMCID: PMC3210738  PMID: 22087342
10.  Accuracy of Loop-Mediated Isothermal Amplification for Diagnosis of Human Leptospirosis in Thailand 
There is a lack of diagnostic tests for leptospirosis in technology-restricted settings. We developed loop-mediated isothermal amplification (LAMP) specific for the 16S ribosomal RNA gene (rrs) of pathogenic and intermediate group Leptospira species. The lower limit of detection was 10 genomic equivalents/reaction, and analytical specificity was high; we observed positive reactions for pathogenic/intermediate groups and negative reactions for non-pathogenic Leptospira species and other bacterial species. We evaluated this assay in Thailand by using a case–control study of 133 patients with laboratory-proven leptospirosis and 133 patients with other febrile illnesses. Using admission blood, we found that the rrs LAMP showed positive results in 58 of 133 cases (diagnostic sensitivity = 43.6, 95% confidence interval [CI] = 35.0–52.5) and in 22 of 133 controls (diagnostic specificity = 83.5, 95% CI = 76.0–89.3). Sensitivity was high for 39 patients who were culture positive for Leptospira spp. (84.6, 95% CI = 69.5–94.1). The rrs LAMP can provide an admission diagnosis in approximately half of patients with leptospirosis, but its clinical utility is reduced by a lower specificity.
doi:10.4269/ajtmh.2011.10-0473
PMCID: PMC3062458  PMID: 21460019
12.  Diagnostic Accuracy of Real-Time PCR Assays Targeting 16S rRNA and lipl32 Genes for Human Leptospirosis in Thailand: A Case-Control Study 
PLoS ONE  2011;6(1):e16236.
Background
Rapid PCR-based tests for the diagnosis of leptospirosis can provide information that contributes towards early patient management, but these have not been adopted in Thailand. Here, we compare the diagnostic sensitivity and specificity of two real-time PCR assays targeting rrs or lipL32 for the diagnosis of leptospirosis in northeast Thailand.
Methods/Principal Findings
A case-control study of 266 patients (133 cases of leptospirosis and 133 controls) was constructed to evaluate the diagnostic sensitivity and specificity (DSe & DSp) of both PCR assays. The median duration of illness prior to admission of cases was 4 days (IQR 2–5 days; range 1–12 days). DSe and DSp were determined using positive culture and/or microscopic agglutination test (MAT) as the gold standard. The DSe was higher for the rrs assay than the lipL32 assay (56%, (95% CI 47–64%) versus 43%, (95% CI 34–52%), p<0.001). No cases were positive for the lipL32 assay alone. There was borderline evidence to suggest that the DSp of the rrs assay was lower than the lipL32 assay (90% (95% CI 83–94%) versus 93%, (95%CI 88–97%), p = 0.06). Nine controls gave positive reactions for both assays and 5 controls gave a positive reaction for the rrs assay alone. The DSe of the rrs and lipL32 assays were high in the subgroup of 39 patients who were culture positive for Leptospira spp. (95% and 87%, respectively, p = 0.25).
Conclusions/Significance
Early detection of Leptospira using PCR is possible for more than half of patients presenting with leptospirosis and could contribute to individual patient care.
doi:10.1371/journal.pone.0016236
PMCID: PMC3026019  PMID: 21283633
13.  Leptospirosis in the Asia Pacific region 
Background
Leptospirosis is a worldwide zoonotic infection that has been recognized for decades, but the problem of the disease has not been fully addressed, particularly in resource-poor, developing countries, where the major burden of the disease occurs. This paper presents an overview of the current situation of leptospirosis in the region. It describes the current trends in the epidemiology of leptospirosis, the existing surveillance systems, and presents the existing prevention and control programs in the Asia Pacific region.
Methods
Data on leptospirosis in each member country were sought from official national organizations, international public health organizations, online articles and the scientific literature. Papers were reviewed and relevant data were extracted.
Results
Leptospirosis is highly prevalent in the Asia Pacific region. Infections in developed countries arise mainly from occupational exposure, travel to endemic areas, recreational activities, or importation of domestic and wild animals, whereas outbreaks in developing countries are most frequently related to normal daily activities, over-crowding, poor sanitation and climatic conditions.
Conclusion
In the Asia Pacific region, predominantly in developing countries, leptospirosis is largely a water-borne disease. Unless interventions to minimize exposure are aggressively implemented, the current global climate change will further aggravate the extent of the disease problem. Although trends indicate successful control of leptospirosis in some areas, there is no clear evidence that the disease has decreased in the last decade. The efficiency of surveillance systems and data collection varies significantly among the countries and areas within the region, leading to incomplete information in some instances. Thus, an accurate reflection of the true burden of the disease remains unknown.
doi:10.1186/1471-2334-9-147
PMCID: PMC2749047  PMID: 19732423
14.  A Dominant Clone of Leptospira interrogans Associated with an Outbreak of Human Leptospirosis in Thailand 
Background
A sustained outbreak of leptospirosis occurred in northeast Thailand between 1999 and 2003, the basis for which was unknown.
Methods and Findings
A prospective study was conducted between 2000 and 2005 to identify patients with leptospirosis presenting to Udon Thani Hospital in northeast Thailand, and to isolate the causative organisms from blood. A multilocus sequence typing scheme was developed to genotype these pathogenic Leptospira. Additional typing was performed for Leptospira isolated from human cases in other Thai provinces over the same period, and from rodents captured in the northeast during 2004. Sequence types (STs) were compared with those of Leptospira drawn from a reference collection. Twelve STs were identified among 101 isolates from patients in Udon Thani. One of these (ST34) accounted for 77 (76%) of isolates. ST34 was Leptospira interrogans, serovar Autumnalis. 86% of human Leptospira isolates from Udon Thani corresponded to ST34 in 2000/2001, but this figure fell to 56% by 2005 as the outbreak waned (p = 0.01). ST34 represented 17/24 (71%) of human isolates from other Thai provinces, and 7/8 (88%) rodent isolates. By contrast, 59 STs were found among 76 reference strains, indicating a much more diverse population genetic structure; ST34 was not identified in this collection.
Conclusions
Development of an MLST scheme for Leptospira interrogans revealed that a single ecologically successful pathogenic clone of L. interrogans predominated in the rodent population, and was associated with a sustained outbreak of human leptospirosis in Thailand.
Author Summary
A sustained outbreak of human leptospirosis occurred in northeast Thailand between 1999 and 2003, the basis for which was unknown. Leptospirosis is a potentially serious infection cause by bacteria known as Leptospira; infection usually occurs following environmental exposure to pathogenic Leptospira shed in the urine of an infected animal. The purpose of this study was to obtain bacterial isolates from humans with leptospirosis around the time of the Thai outbreak for genotyping, and to relate these to the maintenance host animal. To achieve this, a bacterial typing scheme (multilocus sequence typing, MLST) was developed for L. interrogans, the major cause of human disease. This approach has the advantage over existing typing schemes in that the data generated are amenable to detailed evolutionary analysis, and are readily comparable via the internet. Our results demonstrated the emergence of a dominant clone of L. interrogans serovar Autumnalis; this was the major cause of human disease during the outbreak, and was found in a maintenance host which was defined as the bandicoot rat.
doi:10.1371/journal.pntd.0000056
PMCID: PMC2041815  PMID: 17989782
15.  Optimization of Culture of Leptospira from Humans with Leptospirosis▿  
Journal of Clinical Microbiology  2007;45(4):1363-1365.
A prospective study of 989 patients with acute febrile illness was performed in northeast Thailand to define the yield of Leptospira from four different types of blood sample. Based on a comparison of the yields from whole blood, surface plasma, deposit from spun plasma, and clotted blood samples from 80 patients with culture-proven leptospirosis, we suggest a sampling strategy in which culture is performed using whole blood and deposit from spun plasma.
doi:10.1128/JCM.02430-06
PMCID: PMC1865830  PMID: 17301285
16.  Clinical Diagnosis and Geographic Distribution of Leptospirosis, Thailand 
Emerging Infectious Diseases  2007;13(1):124-126.
We defined the positive predictive accuracy of a hospital-based clinical diagnosis of leptospirosis in 9 provinces across Thailand. Of 700 suspected cases, 143 (20%) were confirmed by laboratory testing. Accuracy of clinical diagnosis varied from 0% to 50% between the provinces and was highest during the rainy season. Most confirmed cases occurred in the north and northeast regions of the country.
doi:10.3201/eid1301.060718
PMCID: PMC2725830  PMID: 17370525
Leptospirosis; clinical diagnosis; positive predictive accuracy; geographic distribution; Thailand; dispatch
17.  Identification of pathogenic Leptospira species by conventional or real-time PCR and sequencing of the DNA gyrase subunit B encoding gene 
BMC Microbiology  2006;6:95.
Background
Leptospira is the causative genus of the disease, leptospirosis. Species identification of pathogenic Leptospira in the past was generally performed by either DNA-DNA hybridisation or 16s rRNA gene sequencing. Both methods have inherent disadvantages such as the need for radio-labelled isotopes or significant homology between species. A conventional and real-time PCR amplification and sequencing method was developed for an alternate gene target: DNA gyrase subunit B (gyrB). Phylogenetic comparisons were undertaken between pathogenic Leptospira 16srRNA and gyrB genes using clustering and minimum evolution analysis. In addition 50 unidentified Leptospira isolates were characterised by gyrB sequencing and compared with conventional 16s rRNA sequencing.
Results
A conventional and real-time PCR methodology was developed and optimised for the amplification of the gyrB from pathogenic Leptospira species. Non pathogenic and opportunistic Leptospira species such as L. fainei and L. broomi were not amplified. The gyrB gene shows greater nucleotide divergence (3.5% to 16.1%) than the 16s rRNA gene (0.1% to 1.4%). Minimum evolution analysis reveals that the gyrB has a different evolution topology for L. kirschneri and L. interrogans. When the two genes were compared for the identification of the 50 unknown isolates there was 100% agreement in the results.
Conclusion
This research has successfully developed a methodology for the identification of pathogenic Leptospira using an alternate gene to 16s rRNA. The gyrB encoding gene shows higher nucleotide/evolutionary divergence allowing for superior identification and also the potential for the development of DNA probe based identification.
doi:10.1186/1471-2180-6-95
PMCID: PMC1630700  PMID: 17067399
18.  Development of a Multiple-Locus Variable number of tandem repeat Analysis (MLVA) for Leptospira interrogans and its application to Leptospira interrogans serovar Australis isolates from Far North Queensland, Australia 
Background
Leptospirosis is a zoonotic disease caused by the genus, Leptospira. Leptospira interrogans is the most common genomospecies implicated in the disease. Epidemiological investigations are needed to distinguish outbreak situations or to trace reservoirs of the organisms. Current methodologies used for typing Leptospira have significant drawbacks. The development of an easy to perform yet high resolution method is needed for this organism.
Methods
In this study we have searched the available genomic sequence of L. interrogans serovar Copenhageni strain Fiocruz L1-130 for the presence of tandem repeats [1]. These repeats were evaluated against reference strains for diversity. Six loci were selected to create a Multiple Locus Variable Number of Tandem Repeats (VNTR) Analysis (MLVA) to explore the genetic diversity within L. interrogans serovar Australis clinical isolates from Far North Queensland.
Results
The 39 reference strains used for the development of the method displayed 39 distinct patterns. Diversity Indexes for the loci varied between 0.80 and 0.93 and the number of repeat units at each locus varied between less than one to 52 repeats. When the MLVA was applied to serovar Australis isolates three large clusters were distinguishable, each comprising various hosts including Rattus species, human and canines.
Conclusion
The MLVA described in this report, was easy to perform, analyse and was reproducible. The loci selected had high diversity allowing discrimination between serovars and also between strains within a serovar. This method provides a starting point on which improvements to the method and comparisons to other techniques can be made.
doi:10.1186/1476-0711-4-10
PMCID: PMC1185519  PMID: 15987533
19.  A quantitative PCR (TaqMan) assay for pathogenic Leptospira spp 
Background
Leptospirosis is an emerging infectious disease. The differential diagnosis of leptospirosis is difficult due to the varied and often "flu like" symptoms which may result in a missed or delayed diagnosis. There are over 230 known serovars in the genus Leptospira. Confirmatory serological diagnosis of leptospirosis is usually made using the microscopic agglutination test (MAT) which relies on the use of live cultures as the source of antigen, often performed using a panel of antigens representative of local serovars. Other techniques, such as the enzyme linked immunosorbent assay (ELISA) and slide agglutination test (SAT), can detect different classes of antibody but may be subject to false positive reactions and require confirmation of these results by the MAT.
Methods
The polymerase chain reaction (PCR) has been used to detect a large number of microorganisms, including those of clinical significance. The sensitivity of PCR often precludes the need for isolation and culture, thus making it ideal for the rapid detection of organisms involved in acute infections. We employed real-time (quantitative) PCR using TaqMan chemistry to detect leptospires in clinical and environmental samples.
Results and Conclusions
The PCR assay can be applied to either blood or urine samples and does not rely on the isolation and culture of the organism. Capability exists for automation and high throughput testing in a clinical laboratory. It is specific for Leptospira and may discriminate pathogenic and non-pathogenic species. The limit of detection is as low as two cells.
doi:10.1186/1471-2334-2-13
PMCID: PMC117785  PMID: 12100734
Leptospirosis; TaqMan; real-time PCR; diagnosis

Results 1-19 (19)