Search tips
Search criteria

Results 1-25 (34)

Clipboard (0)

Select a Filter Below

more »
more »
Year of Publication
1.  Kinetics of Chikungunya Infections during an Outbreak in Southern Thailand, 2008–2009 
The Indian Ocean chikungunya epidemic re-emerged in Thailand in August 2008. Forty-five adults with laboratory-confirmed chikungunya in Songkhla province, Thailand were clinically assessed and serially bled throughout the acute and convalescent phase of the disease. Patient symptoms, antibody responses, and viral kinetics were evaluated using observational assessments, polymerase chain reaction (PCR), and serological assays. All subjects experienced joint pain with 42 (93%) involving multiple joints; the interphalangeal most commonly affected in 91% of the subjects. The mean duration of joint pain was 5.8 days, 11 (25%) experiencing discomfort through the duration of the study. Rash was observed in 37 (82%) subjects a mean 3.5 days post onset of symptoms. Patents were positive by PCR for a mean of 5.9 days with sustained peak viral load through Day 5. The IgM antibodies appeared on Day 4 and peaked at Day 7 and IgG antibodies first appeared at Day 5 and rose steadily through Day 24.
PMCID: PMC3945684  PMID: 24493674
2.  Specificity of resistance to dengue virus isolates is associated with genotypes of the mosquito antiviral gene Dicer-2 
In contrast to the prevailing view that invertebrate immunity relies on broad-spectrum recognition and effector mechanisms, intrinsic genetic compatibility between invertebrate hosts and their pathogens is often highly specific in nature. Solving this puzzle requires a better understanding of the molecular basis underlying observed patterns of invertebrate host–pathogen genetic specificity, broadly referred to as genotype-by-genotype interactions. Here, we identify an invertebrate immune gene in which natural polymorphism is associated with isolate-specific resistance to an RNA virus. Dicer-2 (dcr2) encodes a key protein upstream of the RNA interference (RNAi) pathway, a major antiviral component of innate immunity in invertebrates. We surveyed allelic polymorphism at the dcr2 locus in a wild-type outbred population and in three derived isofemale families of the mosquito Aedes aegypti that were experimentally exposed to several, genetically distinct isolates of dengue virus. We found that dcr2 genotype was associated with resistance to dengue virus in a virus isolate-specific manner. By contrast, no such association was found for genotypes at two control loci flanking dcr2, making it likely that dcr2 contains the yet-unidentified causal polymorphism(s). This result supports the idea that host–pathogen compatibility in this system depends, in part, on a genotype-by-genotype interaction between dcr2 and the viral genome, and points to the RNAi pathway as a potentially important determinant of intrinsic insect-virus genetic specificity.
PMCID: PMC3574411  PMID: 23193131
Aedes aegypti; dengue virus; genotype-by-genotype interaction; Dicer-2; RNAi
3.  Molecular Typing of “Candidatus Bartonella ancashi,” a New Human Pathogen Causing Verruga Peruana 
Journal of Clinical Microbiology  2013;51(11):3865-3868.
A recently described clinical isolate, “Candidatus Bartonella ancashi,” was obtained from a blood sample of a patient presenting with verruga peruana in the Ancash region of Peru. This sample and a second isolate obtained 60 days later from the same patient were molecularly typed using multilocus sequence typing (MLST) and multispacer sequence typing (MST). The isolates were 100% indistinguishable from each other but phylogenetically distant from Bartonella bacilliformis and considerably divergent from other known Bartonella species, confirming their novelty.
PMCID: PMC3889784  PMID: 23985925
4.  Underrecognized Mildly Symptomatic Viremic Dengue Virus Infections in Rural Thai Schools and Villages 
The Journal of Infectious Diseases  2012;206(3):389-398.
Background. The understanding of dengue virus (DENV) transmission dynamics and the clinical spectrum of infection are critical to informing surveillance and control measures. Geographic cluster studies can elucidate these features in greater detail than cohort studies alone.
Methods. A 4-year longitudinal cohort and geographic cluster study was undertaken in rural Thailand. Cohort children underwent pre-/postseason serology and active school absence–based surveillance to detect inapparent and symptomatic dengue. Cluster investigations were triggered by cohort dengue and non-dengue febrile illnesses (positive and negative clusters, respectively).
Results. The annual cohort incidence of symptomatic dengue ranged from 1.3% to 4.4%. DENV-4 predominated in the first 2 years, DENV-1 in the second 2 years. The inapparent-to-symptomatic infection ratio ranged from 1.1:1 to 2.9:1. Positive clusters had a 16.0% infection rate, negative clusters 1.1%. Of 119 infections in positive clusters, 59.7% were febrile, 20.2% were afebrile with other symptoms, and 20.2% were asymptomatic. Of 16 febrile children detected during cluster investigations who continued to attend school, 9 had detectable viremia.
Conclusions. Dengue transmission risk was high near viremic children in both high- and low-incidence years. Inapparent infections in the cohort overestimated the rate of asymptomatic infections. Ambulatory children with mild febrile viremic infections could represent an important component of dengue transmission.
PMCID: PMC3490697  PMID: 22615312
5.  Genetic Mapping of Specific Interactions between Aedes aegypti Mosquitoes and Dengue Viruses 
PLoS Genetics  2013;9(8):e1003621.
Specific interactions between host genotypes and pathogen genotypes (G×G interactions) are commonly observed in invertebrate systems. Such specificity challenges our current understanding of invertebrate defenses against pathogens because it contrasts the limited discriminatory power of known invertebrate immune responses. Lack of a mechanistic explanation, however, has questioned the nature of host factors underlying G×G interactions. In this study, we aimed to determine whether G×G interactions observed between dengue viruses and their Aedes aegypti vectors in nature can be mapped to discrete loci in the mosquito genome and to document their genetic architecture. We developed an innovative genetic mapping strategy to survey G×G interactions using outbred mosquito families that were experimentally exposed to genetically distinct isolates of two dengue virus serotypes derived from human patients. Genetic loci associated with vector competence indices were detected in multiple regions of the mosquito genome. Importantly, correlation between genotype and phenotype was virus isolate-specific at several of these loci, indicating G×G interactions. The relatively high percentage of phenotypic variation explained by the markers associated with G×G interactions (ranging from 7.8% to 16.5%) is consistent with large-effect host genetic factors. Our data demonstrate that G×G interactions between dengue viruses and mosquito vectors can be assigned to physical regions of the mosquito genome, some of which have a large effect on the phenotype. This finding establishes the existence of tangible host genetic factors underlying specific interactions between invertebrates and their pathogens in a natural system. Fine mapping of the uncovered genetic loci will elucidate the molecular mechanisms of mosquito-virus specificity.
Author Summary
The outcome of invertebrate host-pathogen interactions often depends on the specific pairing of host and pathogen genotypes. This genetic specificity challenges our current understanding of invertebrate resistance to pathogens because it contrasts the limited discriminatory power of known invertebrate defense mechanisms. However, genetic factors underlying this observed specificity have remained elusive, questioning their very existence. In this study, we developed an innovative strategy to localize factors in the genome of the mosquito Aedes aegypti that govern specific interactions with dengue viruses. We used large mosquito families derived from a natural population in Thailand that we experimentally challenged with virus isolates obtained from human patients living in the same area. We identified several regions of the mosquito genome that control specific interactions with dengue viruses and contribute significantly to the observed variation in vector competence. Our study establishes the existence of tangible host genetic factors underlying specific interactions between invertebrates and their pathogens in a natural system that is relevant to human health. This represents a critical step towards identification of mechanisms underlying the genetic specificity of insect-virus interactions.
PMCID: PMC3731226  PMID: 23935524
6.  Safety and Immunogenicity of a Tetravalent Live-Attenuated Dengue Vaccine in Flavivirus-Naive Infants 
A Phase I/II observer-blind, randomized, controlled trial evaluated the safety and immunogenicity of a dengue virus (DENV) vaccine candidate in healthy Thai infants (aged 12–15 months) without measurable pre-vaccination neutralizing antibodies to DENV and Japanese encephalitis virus. Fifty-one subjects received two doses of either DENV (N = 34; four received 1/10th dose) or control vaccine (N = 17; dose 1, live varicella; dose 2, Haemophilus influenzae type b). After each vaccine dose, adverse events (AEs) were solicited for 21 days, and non-serious AEs were solicited for 30 days; serious AEs (SAEs) were recorded throughout the study. Laboratory safety assessments were performed at 10 and 30 days; neutralizing antibodies were measured at 30 days. The DENV vaccine was well-tolerated without any related SAEs. After the second dose, 85.7% of full-dose DENV vaccinees developed at least trivalent and 53.6% developed tetravalent neutralizing antibodies ≥ 1:10 to DENV (control group = 0%). This vaccine candidate, therefore, warrants continued development in this age group (NCT00322049;
PMCID: PMC3144835  PMID: 21813857
7.  Dengue-1 Virus Clade Replacement in Thailand Associated with Enhanced Mosquito Transmission 
Journal of Virology  2012;86(3):1853-1861.
Dengue viruses (DENV) are characterized by extensive genetic diversity and can be organized in multiple, genetically distinct lineages that arise and die out on a regular basis in regions where dengue is endemic. A fundamental question for understanding DENV evolution is the relative extent to which stochastic processes (genetic drift) and natural selection acting on fitness differences among lineages contribute to lineage diversity and turnover. Here, we used a set of recently collected and archived low-passage DENV-1 isolates from Thailand to examine the role of mosquito vector-virus interactions in DENV evolution. By comparing the ability of 23 viruses isolated on different dates between 1985 and 2009 to be transmitted by a present-day Aedes aegypti population from Thailand, we found that a major clade replacement event in the mid-1990s was associated with virus isolates exhibiting increased titers in the vector's hemocoel, which is predicted to result in a higher probability of transmission. This finding is consistent with the hypothesis that selection for enhanced transmission by mosquitoes is a possible mechanism underlying major DENV clade replacement events. There was significant variation in transmission potential among isolates within each clade, indicating that in addition to vector-driven selection, other evolutionary forces act to maintain viral genetic diversity. We conclude that occasional adaptive processes involving the mosquito vector can drive major DENV lineage replacement events.
PMCID: PMC3264336  PMID: 22130539
8.  A Prospective Assessment of the Accuracy of Commercial IgM ELISAs in Diagnosis of Japanese Encephalitis Virus Infections in Patients with Suspected Central Nervous System Infections in Laos 
Japanese encephalitis virus (JEV) is a major cause of encephalitis in Asia. We estimated the diagnostic accuracy of two anti-JEV immunoglobulin M (IgM) enzyme-linked immunosorbent assays (ELISAs) (Panbio and XCyton JEVCheX) compared with a reference standard (AFRIMS JEV MAC ELISA) in a prospective study of the causes of central nervous system infections in Laos. Cerebrospinal fluid (CSF; 515 patients) and serum samples (182 patients) from those admitted to Mahosot Hospital, Vientiane, were tested. The CSF from 14.5% of acute encephalitis syndrome (AES) patients and 10.1% from those with AES and meningitis were positive for anti-JEV IgM in the reference ELISA. The sensitivities for CSF were 65.4% (95% confidence interval [CI] = 51–78) (Xcyton), 69.2% (95% CI = 55–81) (Panbio), however 96.2% (95% CI = 87–100) with Panbio Ravi criteria. Specificities were 89–100%. For admission sera from AES patients, sensitivities and specificities of the Panbio ELISA were 85.7% (95% CI = 42–100%) and 92.9% (95% CI = 83–98%), respectively.
PMCID: PMC3391045  PMID: 22764310
9.  Serologic Study of Pig-Associated Viral Zoonoses in Laos 
We conducted a serologic survey of four high-priority pig-associated viral zoonoses, Japanese encephalitis virus (JEV), hepatitis E virus (HEV), Nipah virus (NiV), and swine influenza virus (SIV), in Laos. We collected blood from pigs at slaughter during May 2008–January 2009 in four northern provinces. Japanese encephalitis virus hemagglutination inhibition seroprevalence was 74.7% (95% confidence interval [CI] = 71.5–77.9%), JEV IgM seroprevalence was 2.3% (95% CI = 1.2–3.2%), and HEV seroprevalence was 21.1% (95% CI = 18.1–24.0%). Antibodies to SIV were detected in 1.8% (95% CI = 0.8–2.8%) of pigs by screening enzyme-linked immunosorbent assay, and only subtype H3N2 was detected by hemagglutination inhibition in two animals with an inconclusive enzyme-linked immunosorbent assay result. No NiV antibody–positive pigs were detected. Our evidence indicates that peak JEV and HEV transmission coincides with the start of the monsoonal wet season and poses the greatest risk for human infection.
PMCID: PMC3366526  PMID: 22665622
10.  Comparison of Seven Commercial Antigen and Antibody Enzyme-Linked Immunosorbent Assays for Detection of Acute Dengue Infection 
Seven commercial assays were evaluated to determine their suitability for the diagnosis of acute dengue infection: (i) the Panbio dengue virus Pan-E NS1 early enzyme-linked immunosorbent assay (ELISA), second generation (Alere, Australia); (ii) the Panbio dengue virus IgM capture ELISA (Alere, Australia); (iii) the Panbio dengue virus IgG capture ELISA (Alere, Australia); (iv) the Standard Diagnostics dengue virus NS1 antigen ELISA (Standard Diagnostics, South Korea); (v) the Standard Diagnostics dengue virus IgM ELISA (Standard Diagnostics, South Korea); (vi) the Standard Diagnostics dengue virus IgG ELISA (Standard Diagnostics, South Korea); and (vii) the Platelia NS1 antigen ELISA (Bio-Rad, France). Samples from 239 Thai patients confirmed to be dengue virus positive and 98 Sri Lankan patients negative for dengue virus infection were tested. The sensitivities and specificities of the NS1 antigen ELISAs ranged from 45 to 57% and 93 to 100% and those of the IgM antibody ELISAs ranged from 85 to 89% and 88 to 100%, respectively. Combining the NS1 antigen and IgM antibody results from the Standard Diagnostics ELISAs gave the best compromise between sensitivity and specificity (87 and 96%, respectively), as well as providing the best sensitivity for patients presenting at different times after fever onset. The Panbio IgG capture ELISA correctly classified 67% of secondary dengue infection cases. This study provides strong evidence of the value of combining dengue virus antigen- and antibody-based test results in the ELISA format for the diagnosis of acute dengue infection.
PMCID: PMC3346317  PMID: 22441389
11.  Factors Influencing Dengue Virus Isolation by C6/36 Cell Culture and Mosquito Inoculation of Nested PCR-Positive Clinical Samples 
Dengue viral isolation is necessary for definitive diagnosis, pathogenesis and evolutionary research, vaccine candidates, and diagnostic materials. Using standardized techniques, we analyzed isolation rates of 1,544 randomly selected polymerase chain reaction (PCR)-positive samples, representing all four dengue serotypes, from patients with serologically confirmed dengue infections and evaluated whether clinical and laboratory results could be predictive of isolation using standard and mosquito isolation techniques. Viruses were isolated from 62.5% of the samples by direct application to C6/36 cells and increased to 79.4% when amplifying C6/36 negative samples by intrathorasic inoculation in Toxyrhynchites splendens mosquitoes. High viremia, measured by reverse transcriptase (RT)-PCR, was a strong predictor for viral isolation by either method. Isolation was most successful in samples collected early in the disease, had low antibody levels, temperatures greater than 38°C, and had a final clinical diagnosis of dengue fever. Dengue serotypes also played a role in the success of viral isolation.
PMCID: PMC3029170  PMID: 21292887
12.  Differential Susceptibility of Two Field Aedes aegypti Populations to a Low Infectious Dose of Dengue Virus 
PLoS ONE  2014;9(3):e92971.
The infectious dose required to infect mosquito vectors when they take a blood meal from a viremic person is a critical parameter underlying the probability of dengue virus (DENV) transmission. Because experimental vector competence studies typically examine the proportion of mosquitoes that become infected at intermediate or high DENV infectious doses in the blood meal, the minimum blood meal titer required to infect mosquitoes is poorly documented. Understanding the factors influencing the lower infectiousness threshold is epidemiologically significant because it determines the transmission potential of humans with a low DENV viremia, possibly including inapparent infections, and during the onset and resolution of the viremic period of acutely infected individuals.
Methodology/Principal Findings
We compared the susceptibility of two field-derived Aedes aegypti populations from Kamphaeng Phet, Thailand when they were orally exposed to low titers of six DENV-2 isolates derived from the serum of naturally infected humans living in the same region. The infectious dose, time-point post-blood feeding, viral isolate and mosquito population, were significant predictors of the proportion of mosquitoes that became infected. Importantly, the dose-response profile differed significantly between the two Ae. aegypti populations. Although both mosquito populations had a similar 50% oral infectious dose (OID50), the slope of the dose-response was shallower in one population, resulting in a markedly higher susceptibility at low blood meal titers.
Our results indicate that mosquitoes in nature vary in their infectious dose-response to DENV. Thus, different mosquito populations have a differential ability to acquire DENV infection at low viremia levels. Future studies on human-to-mosquito DENV transmission should not be limited to OID50 values, but rather they should be expanded to account for the shape of the dose-response profile across a range of virus titers.
PMCID: PMC3963970  PMID: 24664142
13.  Evaluation of Six Commercial Point-of-Care Tests for Diagnosis of Acute Dengue Infections: the Need for Combining NS1 Antigen and IgM/IgG Antibody Detection To Achieve Acceptable Levels of Accuracy ▿† 
Clinical and Vaccine Immunology : CVI  2011;18(12):2095-2101.
Six assays were evaluated in this study to determine their suitability for the diagnosis of acute dengue infection using samples from 259 Sri Lankan patients with acute fevers (99 confirmed dengue cases and 160 patients with other confirmed acute febrile illnesses): (i) the Merlin dengue fever IgG & IgM combo device (Merlin), (ii) the Standard Diagnostics Dengue Duo nonstructural 1 (NS1) antigen and IgG/IgM combo device (Standard Diagnostics, South Korea), (iii) the Biosynex Immunoquick dengue fever IgG and IgM (Biosynex, France) assay, (iv) the Bio-Rad NS1 antigen strip (Bio-Rad, France), (v) the Panbio Dengue Duo IgG/IgM Cassette (Inverness, Australia), and (vi) the Panbio dengue NS1 antigen strip (Inverness, Australia). The median number of days of fever prior to admission sample collection was 5 days (interquartile range, 3 to 7 days). Sensitivity and specificity of the NS1 antigen tests ranged from 49 to 59% and from 93 to 99%, respectively, and sensitivity and sensitivity of the IgM antibody test ranged from 71 to 80% and from 46 to 90%, respectively. Combining the NS1 antigen and IgM antibody results from the Standard Diagnostics Dengue Duo test gave the best compromise of sensitivity and specificity (93% and 89%, respectively) and provided the best sensitivity in patients presenting at different times after fever onset. The Merlin IgM/IgG antibody tests correctly classified 64% and 86% of the primary and secondary dengue infection cases, respectively, and the Standard Diagnostics IgM/IgG antibody tests correctly classified 71% and 83% of the primary and secondary dengue infection cases, respectively. This study provides strong evidence of the value of combining dengue antigen- and antibody-based test results in the rapid diagnostic test (RDT) format for the acute diagnosis of dengue.
PMCID: PMC3232692  PMID: 22012979
14.  Poor Diagnostic Accuracy of Commercial Antibody-Based Assays for the Diagnosis of Acute Chikungunya Infection ▿ ‖ 
Clinical and Vaccine Immunology : CVI  2011;18(10):1773-1775.
A Sri Lankan fever cohort (n = 292 patients; 17.8% prevalence) was used to assess two standard diagnostic Chikungunya IgM tests. The immunochromatographic test (ICT) acute sample sensitivity (SN) was 1.9 to 3.9%, and specificity (SP) was 92.5 to 95.0%. The enzyme-linked immunosorbent assay (ELISA) gave an acute sample SN of 3.9% and an SP of 92.5% and a convalescent sample SN of 84% and an SP of 91%. These assays are not suitable for the acute diagnosis of Chikungunya virus infection.
PMCID: PMC3187043  PMID: 21865416
15.  Genomic Characterization of Group C Orthobunyavirus Reference Strains and Recent South American Clinical Isolates 
PLoS ONE  2014;9(3):e92114.
Group C orthobunyaviruses (family Bunyaviridae, genus Orthobunyavirus), discovered in the 1950s, are vector-borne human pathogens in the Americas. Currently there is a gap in genomic information for group C viruses. In this study, we obtained complete coding region sequences of reference strains of Caraparu (CARV), Oriboca (ORIV), Marituba (MTBV) and Madrid (MADV) viruses, and five clinical isolates from Peru and Bolivia, using an unbiased de novo approach consisting of random reverse transcription, random anchored PCR amplification, and high throughput pyrosequencing. The small, medium, and large segments encode for a 235 amino acid nucleocapsid protein, an approximately 1430 amino acid surface glycoprotein polyprotein precursor, and a 2248 amino acid RNA-dependent RNA polymerase, respectively. Additionally, the S segment encodes for an 83 amino acid non-structural protein, although this protein is truncated or silenced in some isolates. Phylogenetically, three clinical isolates clustered with CARV, one clustered with MTBV, and one isolate appeared to be a reassortant or a genetic drift resulted from the high variability of the medium segment which was also seen in a few other orthobunyaviruses. These data represent the first complete coding region sequences for this serocomplex of pathogenic orthobunyaviruses. The genome-wide phylogeny of reference strains is consistent with the antigenic properties of the viruses reported in the original serological studies conducted in the 1960s. Comparative analysis of conserved protein regions across group C virus strains and the other orthobunyavirus groups revealed that these group C viruses contain characteristic domains of potential structural and functional significance. Our results provide the basis for the developments of diagnostics, further genetic analyses, and future epidemiologic studies of group C viruses.
PMCID: PMC3954874  PMID: 24633174
16.  Determinants of Inapparent and Symptomatic Dengue Infection in a Prospective Study of Primary School Children in Kamphaeng Phet, Thailand 
Dengue viruses are a major cause of morbidity in tropical and subtropical regions of the world. Inapparent dengue is an important component of the overall burden of dengue infection. It provides a source of infection for mosquito transmission during the course of an epidemic, yet by definition is undetected by health care providers. Previous studies of inapparent or subclinical infection have reported varying ratios of symptomatic to inapparent dengue infection.
Methodology/Principal Findings
In a prospective study of school children in Northern Thailand, we describe the spatial and temporal variation of the symptomatic to inapparent (S:I) dengue illness ratio. Our findings indicate that there is a wide fluctuation in this ratio between and among schools in a given year and within schools over several dengue seasons. The most important determinants of this S:I ratio for a given school were the incidence of dengue infection in a given year and the incidence of infection in the preceding year. We found no association between the S:I ratio and age in our population.
Our findings point to an important aspect of virus-host interactions at either a population or individual level possibly due to an effect of heterotypic cross-reactive immunity to reduce dengue disease severity. These findings have important implications for future dengue vaccines.
Author Summary
Dengue viruses are a major cause of illness and hospitalizations in tropical and subtropical regions of the world. Severe dengue illness can cause prolonged hospitalization and in some cases death in both children and adults. The majority of dengue infections however are inapparent, producing little clinical illness. Little is known about the epidemiology or factors that determine the incidence of inapparent infection. We describe in a study of school children in Northern Thailand the changing nature of symptomatic and inapparent dengue infection. We demonstrate that the proportion of inapparent dengue infection varies widely among schools during a year and within schools during subsequent years. Important factors that determine this variation are the amount of dengue infection in a given and previous year. Our findings provide an important insight in the virus-host interaction that determines dengue severity, how severe a dengue epidemic may be in a given year, and important clues on how a dengue vaccine may be effective.
PMCID: PMC3046956  PMID: 21390158
17.  The Incidence, Characteristics, and Presentation of Dengue Virus Infections during Infancy 
Infants are a vulnerable and unique population at risk for dengue in endemic areas. This report describes the incidence and presenting clinical features of infant dengue virus (DENV) infections from a prospective community-based study performed between January 2007 and May 2009 in the Philippines. DENV3 was the predominant infecting serotype over a wide spectrum of disease severity, ranging from inapparent infection to dengue hemorrhagic fever (DHF). In 2007, the incidence of inapparent DENV infections during infancy was 103 per 1,000 persons person-years and 6-fold higher than symptomatic dengue. The age-specific incidence of infant DHF was 0.5 per 1,000 persons over the age of 3–8 months, and it disappeared by age 9 months. A febrile seizure, macular rash, petechiae, and lower platelet count were presenting clinical features associated with DENV infection among infants with acute undifferentiated febrile illnesses. Community-based studies can help to delineate the incidence rates, disease spectrum, and clinical features of DENV infections during infancy.
PMCID: PMC2813177  PMID: 20134013
18.  A prospective evaluation of diagnostic methodologies for the acute diagnosis of dengue virus infection on the Thailand-Myanmar border 
Clinically useful diagnostic tests of dengue virus infection are lacking. We prospectively evaluated the performance of real-time reverse transcriptase (rRT)-PCR, NS-1 antigen and IgM antibody tests to confirm dengue virus infection in acute blood specimens from 162 patients presenting with undifferentiated febrile illness compatible with dengue infection. rRT-PCR was the most sensitive test (89%) and potentially could be used as a single test for confirmation of dengue infection. NS-1 antigen and IgM antibody were not sufficiently sensitive to be used as a single confirmatory test with sensitivities of 54% and 17% respectively. The specificities of rRT-PCR, NS-1 antigen and IgM antibody tests were 96%, 100% and 88% respectively. Combining NS-1 and rRT-PCR or the combination of all three tests resulted in the highest sensitivity (93%) but specificities dropped to 96% and 83% respectively. We conclude that at least the combination of two tests, either agent detection (rRT-PCR) or antigen detection (NS-1) plus IgM antibody detection should be used for laboratory confirmation of dengue infection.
PMCID: PMC3444753  PMID: 21035827
Dengue; PCR; Serology; Evaluation; Diagnosis; Thailand
19.  2nd International External Quality Control Assessment for the Molecular Diagnosis of Dengue Infections 
Currently dengue viruses (DENV) pose an increasing threat to over 2.5 billion people in over 100 tropical and sub-tropical countries worldwide. International air travel is facilitating rapid global movement of DENV, increasing the risk of severe dengue epidemics by introducing different serotypes. Accurate diagnosis is critical for early initiation of preventive measures. Different reverse transcriptase PCR (RT-PCR) methods are available, which should be evaluated and standardized. Epidemiological and laboratory-based surveillance is required to monitor and guide dengue prevention and control programmes, i.e., by mosquito control or possible vaccination (as soon as an effective and safe vaccine becomes available).
The purpose of the external quality assurance (EQA) study described is to assess the efficiency and accuracy of dengue molecular diagnosis methods applied by expert laboratories.
Study Design
A panel of 12 human plasma samples was distributed and tested for DENV-specific RNA. The panel comprised 9 samples spiked with different DENV serotypes (DENV-1 to DENV-4), including 10-fold dilution series of DENV-1 and DENV-3. Two specificity controls consisted of a sample with a pool of 4 other flaviviruses and a sample with chikungunya virus. A negative control sample was also included.
Thirty-seven laboratories (from Europe, Middle East Asia, Asia, the Americas/Caribbean, and Africa) participated in this EQA study, and reports including 46 sets of results were returned. Performance among laboratories varied according to methodologies used. Only 5 (10.9%) data sets met all criteria with optimal performance, and 4 (8.7%) with acceptable performance, while 37 (80.4%) reported results showed the need for improvement regarding accomplishment of dengue molecular diagnosis. Failures were mainly due to lack of sensitivity and the presence of false positives.
The EQA provides information on each laboratory's efficacy of RT-PCR techniques for dengue diagnosis and indicates for most laboratories an urgent need to improve sensitivity and specificity.
Author Summary
Dengue viruses (DENV) are the most widespread arthropod-borne viruses which have shown an unexpected geographic expansion, as well as an increase in the number and severity of outbreaks in the last decades. In this context, the accurate diagnosis and reliable surveillance of dengue infections are essential. The laboratory diagnosis of dengue relies on the use of several methods detecting markers of DENV infection present in patient serum. Molecular diagnosis methods are usually rapid, sensitive, and simple when correctly standardized. Moreover, PCR-based diagnosis techniques are able to readily detect DENV during the acute phase of the disease and may assume an important role in dengue diagnosis and surveillance. Different reverse transcriptase PCR (RT-PCR) methods have been developed and are currently available and should be standardized in each laboratory to maintain high quality performance. In this work an External quality assessment (EQA) activity has been carried out to evaluate the accuracy and quality of laboratory data for the molecular diagnosis and surveillance of dengue, which involved worldwide dengue reference laboratories. In conclusion, RT-PCR techniques for dengue diagnosis applied by the participating laboratories demonstrated the need of further improvement in most laboratories.
PMCID: PMC2950135  PMID: 20957194
20.  Serotype-Specific Differences in the Risk of Dengue Hemorrhagic Fever: An Analysis of Data Collected in Bangkok, Thailand from 1994 to 2006 
It is unclear whether dengue serotypes differ in their propensity to cause severe disease. We analyzed differences in serotype-specific disease severity in children presenting for medical attention in Bangkok, Thailand.
Methodology/Principal Findings
Prospective studies were conducted from 1994 to 2006. Univariate and multivariate logistic and multinomial logistic regressions were used to determine if dengue hemorrhagic fever (DHF) and signs of severe clinical disease (pleural effusion, ascites, thrombocytopenia, hemoconcentration) were associated with serotype. Crude and adjusted odds ratios were calculated. There were 162 (36%) cases with DENV-1, 102 (23%) with DENV-2, 123 (27%) with DENV-3, and 64 (14%) with DENV-4. There was no significant difference in the rates of DHF by serotype: DENV-2 (43%), DENV-3 (39%), DENV-1 (34%), DENV-4 (31%). DENV-2 was significantly associated with increased odds of DHF grade I compared to DF (OR 2.9 95% CI 1.1, 8.0), when using DENV-1 as the reference. Though not statistically significant, DENV-2 had an increased odds of total DHF and DHF grades II, III, and IV. Secondary serologic response was significantly associated with DHF (OR 6.2) and increased when considering more severe grades of DHF. DENV-2 (9%) and -4 (3%) were significantly less often associated with primary disease than DENV-1 (28%) and -3 (33%). Restricting analysis to secondary cases, we found DENV-2 and DENV-3 to be twice as likely to result in DHF as DEN-4 (p = 0.05). Comparing study years, we found the rate of DHF to be significantly less in 1999, 2000, 2004, and 2005 than in 1994, the study year with the highest percentage of DHF cases, even when controlling for other variables.
As in other studies, we find secondary disease to be strongly associated with DHF and with more severe grades of DHF. DENV-2 appears to be marginally associated with more severe dengue disease as evidenced by a significant association with DHF grade I when compared to DENV-1. In addition, we found non-significant trends with other grades of DHF. Restricting the analysis to secondary disease we found DENV-2 and -3 to be twice as likely to result in DHF as DEN-4. Differences in severity by study year may suggest that other factors besides serotype play a role in disease severity.
Author Summary
The four dengue viruses (DENV) represent the most common human arbovirus infections in the world and are currently a challenging problem, particularly in the tropical and subtropical regions of Asia and the Americas. Infection with DENV may produce symptoms of varying severity. While access to care, appropriate interventions, host genetic factors, and previous exposure to DENV are all known to affect the outcome of the infection, it is not entirely understood why some individuals develop more severe disease. It has been hypothesized that the four dengue serotypes differ in disease severity and clinical manifestations. This analysis assessed whether there were significant differences in severity of disease caused by the dengue serotypes in a pediatric population in Thailand. We found significant and non-significant correlations between dengue serotype 2 infection and more severe dengue disease. We also found that individual serotypes varied in disease severity between study years, perhaps supporting the hypothesis that the particular sequences of primary and secondary DENV infections influence disease severity.
PMCID: PMC2830471  PMID: 20209155
21.  A Prospective Nested Case-Control Study of Dengue in Infants: Rethinking and Refining the Antibody-Dependent Enhancement Dengue Hemorrhagic Fever Model 
PLoS Medicine  2009;6(10):e1000171.
Analyses of a prospective case-control study of infant dengue by Daniel Libraty and colleagues casts doubt on the antibody-dependent enhancement model for dengue hemorrhagic fever.
Dengue hemorrhagic fever (DHF) is the severe and life-threatening syndrome that can develop after infection with any one of the four dengue virus (DENV) serotypes. DHF occurs almost exclusively in individuals with secondary heterologous DENV infections and infants with primary DENV infections born to dengue immune mothers. The widely accepted explanation for the pathogenesis of DHF in these settings, particularly during infancy, is antibody-dependent enhancement (ADE) of DENV infection.
Methods and Findings
We conducted a prospective nested case-control study of DENV infections during infancy. Clinical data and blood samples were collected from 4,441 mothers and infants in up to two pre-illness study visits, and surveillance was performed for symptomatic and inapparent DENV infections. Pre-illness plasma samples were used to measure the associations between maternally derived anti-DENV3 antibody-neutralizing and -enhancing capacities at the time of DENV3 infection and development of infant DHF.
The study captured 60 infants with DENV infections across a wide spectrum of disease severity. DENV3 was the predominant serotype among the infants with symptomatic (35/40) and inapparent (15/20) DENV infections, and 59/60 infants had a primary DENV infection. The estimated in vitro anti-DENV3 neutralizing capacity at birth positively correlated with the age of symptomatic primary DENV3 illness in infants. At the time of symptomatic DENV3 infection, essentially all infants had low anti-DENV3 neutralizing activity (50% plaque reduction neutralizing titers [PRNT50] ≤50) and measurable DENV3 ADE activity. The infants who developed DHF did not have significantly higher frequencies or levels of DENV3 ADE activity compared to symptomatic infants without DHF. A higher weight-for-age in the first 3 mo of life and at illness presentation was associated with a greater risk for DHF from a primary DENV infection during infancy.
This prospective nested case-control study of primarily DENV3 infections during infancy has shown that infants exhibit a full range of disease severity after primary DENV infections. The results support an initial in vivo protective role for maternally derived antibody, and suggest that a DENV3 PRNT50 >50 is associated with protection from symptomatic DENV3 illness. We did not find a significant association between DENV3 ADE activity at illness onset and the development of DHF compared with less severe symptomatic illness. The results of this study should encourage rethinking or refinement of the current ADE pathogenesis model for infant DHF and stimulate new directions of research into mechanisms responsible for the development of DHF during infancy.
Trial registration NCT00377754
Please see later in the article for the Editors' Summary
Editors' Summary
Every year, dengue infects 50–100 million people living in tropical and subtropical areas. The four closely related viruses that cause dengue (DENV1–4) are transmitted to people through the bites of female Aedes aegypti mosquitoes, which acquire the viruses by feeding on the blood of an infected person. Many people who become infected with DENV have no symptoms but some develop dengue fever, a severe, flu-like illness that lasts a few days. Other people—about half a million a year—develop a potentially fatal condition called dengue hemorrhagic fever (DHF). In DHF, which can be caused by any of the DENVs, small blood vessels become leaky and friable. This leakiness causes nose and gum bleeds, bruising and, in the worst cases, failure of the circulatory system and death. There is no vaccine to prevent dengue and no specific treatment for dengue fever or DHF. However, with standard medical care—in particular, replacement of lost fluids—most people can survive DHF.
Why Was This Study Done?
DHF is increasingly common, but why do only some people develop DHF after infection with DENV? The widely accepted explanation for the development of DHF is “antibody-dependent enhancement” (ADE) of DENV infection. DHF occurs almost exclusively in two settings; (i) children and adults who become infected with a second DENV serotype after an initial “primary” DENV infection with a different serotype, and (ii) infants with primary DENV infections whose mothers have some DENV immunity. The ADE model suggests that in individuals who develop DHF, although there are some antibodies (proteins made by the immune system to fight infections) against DENV in their blood (in secondary heterologous infections, antibodies left over from the primary infection; in infants with primary infections, antibodies acquired from their mothers before birth), these antibodies cannot “neutralize” the virus. Instead, they bind to it and enhance its uptake by certain immune system cells, thus increasing viral infectivity and triggering an immunological cascade that results in DHF. In this prospective, nested case-control study, the researchers directly test the ADE model for infant DHF. In a prospective study, a group of people is selected and followed to see if they develop a disease; in a nested case-control study, each case is compared with people in the group who do not develop the disease.
What Did the Researchers Do and Find?
The researchers collected clinical data and blood samples from 4,441 mothers and their babies at up to two pre-illness study visits. They then followed the infants for a year to see which of them developed symptomatic and symptom-free DENV infections. Finally, they used the pre-illness blood samples to estimate the maternally derived anti-DENV antibody-neutralizing and -enhancing capacities in the infants at the time of DENV infection. 60 infants were infected with DENV—mainly DENV3—during the study. All but one infection was a primary infection. The infected infants showed a wide range of disease severity. Infants who had a high DENV3 neutralizing capacity at birth tended to develop symptomatic DENV3 infections later than infants who had a low DENV3 neutralizing capacity at birth. All the infants who developed a symptomatic DENV3 infection had a low estimated DENV3 neutralizing activity at the time of infection, and nearly all had measurable levels of DENV3 ADE activity. Infants who developed DHF did not have significantly higher frequencies or levels of DENV3 ADE activity than DENV3-infected infants with less severe symptoms.
What Do These Findings Mean?
These findings indicate that maternally derived anti-DENV3 antibody initially provides protection against dengue infections. That is, babies born to DENV immune mothers are protected against dengue infections by maternally derived antibodies. Over time, the level of these antibodies declines until eventually the infant becomes susceptible to DENV infections. However, the lack of a significant association between the estimated level of DENV3 ADE activity at illness onset and the development of DHF rather than a less severe illness throws doubt onto (but does not completely rule out) the current ADE pathogenesis model for infant DHF, at least for DENV3 infections. The results of this study, the researchers conclude, should encourage rethinking or refinement of the ADE model for infant DHF and should promote further prospective studies into the development of DHF during infancy.
Additional Information
Please access these Web sites via the online version of this summary at provides review articles, news, opinions, research articles, and reports on dengue (in English)
The US Centers for Disease Control and Prevention provide detailed information about dengue fever and dengue hemorrhagic fever (in English and Spanish)
The World Health Organization provides information on dengue fever and dengue hemorrhagic fever around the world (in several languages)
Links to additional resources about dengue are provided by MedlinePlus (in English and Spanish)
Wikipedia has a page on antibody-dependent enhancement of viral infections (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC2762316  PMID: 19859541
22.  Diversity and Origin of Dengue Virus Serotypes 1, 2, and 3, Bhutan 
Emerging Infectious Diseases  2009;15(10):1630-1632.
To determine the serotype and genotype of dengue virus (DENV) in Bhutan, we conducted phylogenetic analyses of complete envelope gene sequences. DENV-2 (Cosmopolitan genotype) predominated in 2004, and DENV-3 (genotype III) predominated in 2005–2006; these viruses were imported from India. Primary dengue infections outnumbered secondary infections, suggesting recent emergence.
PMCID: PMC2866390  PMID: 19861059
Dengue; Bhutan; Nepal; phylogeny; emergence; serotypes; viruses; dispatch
23.  Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors 
Several observations support the hypothesis that vector-driven selection plays an important role in shaping dengue virus (DENV) genetic diversity. Clustering of DENV genetic diversity at a particular location may reflect underlying genetic structure of vector populations, which combined with specific vector genotype × virus genotype (G × G) interactions may promote adaptation of viral lineages to local mosquito vector genotypes. Although spatial structure of vector polymorphism at neutral genetic loci is well-documented, existence of G × G interactions between mosquito and virus genotypes has not been formally demonstrated in natural populations. Here we measure G × G interactions in a system representative of a natural situation in Thailand by challenging three isofemale families from field-derived Aedes aegypti with three contemporaneous low-passage isolates of DENV-1.
Among indices of vector competence examined, the proportion of mosquitoes with a midgut infection, viral RNA concentration in the body, and quantity of virus disseminated to the head/legs (but not the proportion of infected mosquitoes with a disseminated infection) strongly depended on the specific combinations of isofemale families and viral isolates, demonstrating significant G × G interactions.
Evidence for genetic specificity of interactions in our simple experimental design indicates that vector competence of Ae. aegypti for DENV is likely governed to a large extent by G × G interactions in genetically diverse, natural populations. This result challenges the general relevance of conclusions from laboratory systems that consist of a single combination of mosquito and DENV genotypes. Combined with earlier evidence for fine-scale genetic structure of natural Ae. aegypti populations, our finding indicates that the necessary conditions for local DENV adaptation to mosquito vectors are met.
PMCID: PMC2714696  PMID: 19589156
24.  Spatial and Temporal Clustering of Dengue Virus Transmission in Thai Villages 
PLoS Medicine  2008;5(11):e205.
Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted.
Methods and Findings
Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1–19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive and negative clusters were greater availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children.
Our data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection prompting local spraying could contain recent virus introductions and reduce the longitudinal risk of virus spread within rural areas. Our results should prompt future cluster studies to explore how host immune and behavioral aspects may impact DENV transmission and prevention strategies. Cluster methodology could serve as a useful research tool for investigation of other temporally and spatially clustered infectious diseases.
Investigating dengue cases identified by testing febrile schoolchildren in rural Thai villages, Mammen P. Mammen and colleagues find a pattern of focal spread to houses neighboring those of case patients.
Editors' Summary
Every year, over 50 million people living in tropical and subtropical urban and semi-urban areas become infected with dengue (a mosquito-borne viral infection) and several hundred thousand develop a potentially lethal complication called dengue hemorrhagic fever. Dengue is caused by four closely related viruses that are transmitted to people through the bites of infected female Aedes aegypti mosquitoes. These day-biting insects, which breed in household water containers and in the water that collects in used tires and other discarded containers, acquire dengue virus through feeding on the blood of an infected person. Some people who become infected with dengue virus have no symptoms but others develop high fever, a rash, and severe headache that lasts two to seven days. In dengue hemorrhagic fever, small blood vessels become leaky, which causes nose and gum bleeds, bruising and, in the worst cases, failure of the circulatory system and death. There is no specific treatment for dengue fever or dengue hemorrhagic fever but standard medical care—in particular, replacement of lost blood fluids—helps most people survive the latter condition.
Why Was This Study Done?
There is no vaccine to prevent dengue. As a result the only way to minimize dengue outbreaks is to control mosquito numbers through environmental management—providing piped water, encouraging people not to store water in open containers, and removing other sources of standing water—and by applying insecticides to areas where mosquitoes breed. During outbreaks, because Ae. aegypti mosquitoes rest in houses, insecticides are also often sprayed in dwellings in the affected areas. However, to improve dengue prevention and surveillance, public-health officials need to know much more about the patterns of dengue virus transmission and about the factors that underlie these patterns. In this study, therefore, the researchers test the idea that dengue virus transmission occurs in localized neighborhood clusters over short periods of time.
What Did the Researchers Do and Find?
The researchers used “cluster investigations” to examine the pattern of dengue virus transmission among school children in several rural villages in Thailand, a country where dengue is very common (hyperendemic). Primary school children with fever were identified during two seasons of peak dengue virus transmission. Each child was characterized as a dengue-positive index case (by finding dengue virus in their blood) or as a dengue-negative index case. Data on human infection and mosquito infection and density were then collected within 100 meters of the homes of each index case—the “cluster area.” Not all the neighbors of the index cases participated in the study but among the 556 village children who did participate, there were 27 dengue infections, all of which occurred in clusters centered on the homes of the dengue-positive index cases. In the positive clusters, one in eight of the enrolled children became infected within 15 days of the index case becoming ill. Among 1,000 Ae. aegypti mosquitoes collected inside and around the houses in each cluster, only eight were infected with dengue and these were all collected from houses in positive clusters. Finally, there was a greater availability of piped water and fewer Ae. aegypti pupae in the negative clusters than in the positive clusters.
What Do These Findings Mean?
Although this study did not sample all the children or mosquitoes within each cluster area, these findings show that in an area where dengue is hyperendemic, dengue virus transmission among children occurs in localized areas and over short time periods. The findings also suggest that focal transmission is associated with recent dengue virus introductions and that one or a few mosquitoes are likely responsible for all the transmission in each cluster. Although it would be impractical to set up surveillance of all the school children in Thailand for dengue infections, these findings suggest that improved detection of cases within schools combined with local spraying inside the homes in the immediate vicinity of any affected children could help to halt dengue virus transmission. Future cluster studies could explore how human behavior and human immunity affect dengue virus transmission and could also be used to investigate other temporally and spatially clustered infectious diseases, including malaria.
Additional Information.
Please access these Web sites via the online version of this summary at
Read the related PLoS Medicine Perspective by Steven Riley
The US Centers for Disease Control and Prevention provides detailed information about dengue fever, including a questions and answers section in English and Spanish
The World Health Organization provides information on dengue and dengue hemorrhagic fever around the world (in several languages)
Links to additional information about dengue are provided by MedlinePlus (in English and Spanish)
PMCID: PMC2577695  PMID: 18986209
25.  Identification of All Dengue Serotypes in Nepal 
Emerging Infectious Diseases  2008;14(10):1669-1670.
PMCID: PMC2609890  PMID: 18826846
dengue; Nepal; Aedes; serotype; PCR; ELISA; letter

Results 1-25 (34)