Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Focused ultrasound for targeted delivery of siRNA and efficient knockdown of Htt expression 
RNA interference is a promising strategy for treatment of Huntington’s disease (HD) as it can specifically decrease the expression of the mutant Huntingtin protein (Htt). However, siRNA does not cross the blood-brain barrier and therefore delivery to the brain is limited to direct CNS delivery. Non-invasive delivery of siRNA through the blood-brain barrier (BBB) would be a significant advantage for translating this therapy to HD patients. Focused ultrasound (FUS), combined with intravascular delivery of microbubble contrast agent, was used to locally and transiently disrupt the BBB in the right striatum of adult rats. 48 hrs following treatment with siRNA, the right (treated) and left (control) striatum was dissected and analyzed for Htt mRNA levels. We demonstrate that FUS can non-invasively deliver siRNA-Htt directly to the striatum leading to a significant reduction of Htt expression in a dose dependent manner. Furthermore, we show that reduction of Htt with siRNA-Htt was greater when the extent of BBB disruption was increased. This study demonstrates that siRNA treatment for knockdown of mutant Htt is feasible without the surgical intervention previously required for direct delivery to the brain.
PMCID: PMC4010143  PMID: 22921802
Focused ultrasound; siRNA; drug delivery; Huntington’s disease; blood-brain barrier
2.  Modular ‘Click-in-Emulsion’ Bone-Targeted Nanogels 
Advanced materials (Deerfield Beach, Fla.)  2012;25(10):10.1002/adma.201202881.
A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, 67 nm in diameter and synthesized via an astoichiometric click-chemistry-inemulsion method, controllably display residual, free click-able functional groups. Functionalization with a bisphosphonate ligand results in significant binding to bone on the inner walls of marrow cavities, liver avoidance, and anti-osteoporotic effects.
PMCID: PMC3815631  PMID: 23280931
Nanotechnology; Drug delivery; Polymers; Nanogel; Bone
3.  Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery 
Nature nanotechnology  2012;7(6):389-393.
Nanoparticles are employed for delivering therapeutics into cells1,2. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell specific internalization, excretion, toxicity, and efficacy3-7. A variety of materials have been explored for delivering small interfering RNAs (siRNAs) - a therapeutic agent that suppresses the expression of targeted genes8,9. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, lack of tissue specificity and potential toxicity10-12. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer targeting ligands (such as peptides and folate) on the nanoparticle surface can be precisely controlled. We show that at least three folate molecules per nanoparticle is required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ∼ 24.2 min) than the parent siRNA (t1/2 ∼ 6 min).
PMCID: PMC3898745  PMID: 22659608
4.  Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling 
Nature biotechnology  2013;31(7):10.1038/nbt.2614.
Despite substantial efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain largely unclear. Here we examined cellular uptake of siRNA delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy as well as defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions. We show that multiple cell signaling effectors are required for initial cellular entry of LNPs through macropinocytosis, including proton pumps, mTOR, and cathepsins. SiRNA delivery is substantially reduced as ≅70% of the internalized siRNA undergoes exocytosis through egress of LNPs from late endosomes/lysosomes. Niemann Pick type C1 (NPC1) is shown to be an important regulator of the major recycling pathways of LNP-delivered siRNAs. NPC1-deficient cells show enhanced cellular retention of LNPs inside late endosomes/lysosomes and increased gene silencing of the target gene. Our data suggests that siRNA delivery efficiency might be improved by designing delivery vehicles that can escape the recycling pathways.
PMCID: PMC3814166  PMID: 23792629
5.  Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells 
Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.
PMCID: PMC3381593  PMID: 23344621
delivery; immune cell; siRNA
6.  Infection of Vero Cells by BK Virus Is Dependent on Caveolae 
Journal of Virology  2004;78(21):11583-11590.
Polyomavirus-associated nephropathy occurs in ∼5% of renal transplant recipients and results in loss of graft function in 50 to 70% of these patients. The disease is caused by reactivation of the common human polyomavirus BK (BKV) in the transplanted kidney. The early events in productive BKV infection are unknown. In this report, we focus on elucidating the mechanisms of BKV internalization in its target cell. Our data reveal that BKV entry into permissive Vero cells is slow, is independent of clathrin-coated-pit assembly, is dependent on an intact caveolin-1 scaffolding domain, is sensitive to tyrosine kinase inhibition, and requires cholesterol. BKV colocalizes with the caveola-mediated endocytic marker cholera toxin subunit B but not with the clathrin-dependent endocytic marker transferrin. In addition, BKV infectious entry is sensitive to elevation in intracellular pH. These findings indicate that BKV entry into Vero cells occurs by caveola-mediated endocytosis involving a pH-dependent step.
PMCID: PMC523296  PMID: 15479799

Results 1-6 (6)