Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Lipid Nanoparticle Delivery of siRNA to Silence Neuronal Gene Expression in the Brain 
Manipulation of gene expression in the brain is fundamental for understanding the function of proteins involved in neuronal processes. In this article, we show a method for using small interfering RNA (siRNA) in lipid nanoparticles (LNPs) to efficiently silence neuronal gene expression in cell culture and in the brain in vivo through intracranial injection. We show that neurons accumulate these LNPs in an apolipoprotein E–dependent fashion, resulting in very efficient uptake in cell culture (100%) with little apparent toxicity. In vivo, intracortical or intracerebroventricular (ICV) siRNA-LNP injections resulted in knockdown of target genes either in discrete regions around the injection site or in more widespread areas following ICV injections with no apparent toxicity or immune reactions from the LNPs. Effective targeted knockdown was demonstrated by showing that intracortical delivery of siRNA against GRIN1 (encoding GluN1 subunit of the NMDA receptor (NMDAR)) selectively reduced synaptic NMDAR currents in vivo as compared with synaptic AMPA receptor currents. Therefore, LNP delivery of siRNA rapidly manipulates expression of proteins involved in neuronal processes in vivo, possibly enabling the development of gene therapies for neurological disorders.
PMCID: PMC3889191  PMID: 24301867
2.  Influence of Polyethylene Glycol Lipid Desorption Rates on Pharmacokinetics and Pharmacodynamics of siRNA Lipid Nanoparticles 
Lipid nanoparticles (LNPs) encapsulating short interfering RNAs that target hepatic genes are advancing through clinical trials, and early results indicate the excellent gene silencing observed in rodents and nonhuman primates also translates to humans. This success has motivated research to identify ways to further advance this delivery platform. Here, we characterize the polyethylene glycol lipid (PEG-lipid) components, which are required to control the self-assembly process during formation of lipid particles, but can negatively affect delivery to hepatocytes and hepatic gene silencing in vivo. The rate of transfer from LNPs to plasma lipoproteins in vivo is measured for three PEG-lipids with dialkyl chains 14, 16, and 18 carbons long. We show that 1.5 mol % PEG-lipid represents a threshold concentration at which the chain length exerts a minimal effect on hepatic gene silencing but can still modify LNPs pharmacokinetics and biodistribution. Increasing the concentration to 2.5 and 3.5 mol % substantially compromises hepatocyte gene knockdown for PEG-lipids with distearyl (C18) chains but has little impact for shorter dimyristyl (C14) chains. These data are discussed with respect to RNA delivery and the different rates at which the steric barrier disassociates from LNPs in vivo.
PMCID: PMC3894582  PMID: 24345865
drug delivery; hepatocyte; lipid nanoparticles; polyethylene glycol; siRNA; prenatal diagnosis
3.  Advances in Lipid Nanoparticles for siRNA Delivery 
Pharmaceutics  2013;5(3):498-507.
Technological advances in both siRNA (small interfering RNA) and whole genome sequencing have demonstrated great potential in translating genetic information into siRNA-based drugs to halt the synthesis of most disease-causing proteins. Despite its powerful promises as a drug, siRNA requires a sophisticated delivery vehicle because of its rapid degradation in the circulation, inefficient accumulation in target tissues and inability to cross cell membranes to access the cytoplasm where it functions. Lipid nanoparticle (LNP) containing ionizable amino lipids is the leading delivery technology for siRNA, with five products in clinical trials and more in the pipeline. Here, we focus on the technological advances behind these potent systems for siRNA-mediated gene silencing.
PMCID: PMC3836621  PMID: 24300520
lipid nanoparticle; siRNA; ionizable amino lipid; pKa; PEG lipid; targeting
4.  Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA 
Lipid nanoparticles (LNP) are the leading systems for in vivo delivery of small interfering RNA (siRNA) for therapeutic applications. Formulation of LNP siRNA systems requires rapid mixing of solutions containing cationic lipid with solutions containing siRNA. Current formulation procedures employ macroscopic mixing processes to produce systems 70-nm diameter or larger that have variable siRNA encapsulation efficiency, homogeneity, and reproducibility. Here, we show that microfluidic mixing techniques, which permit millisecond mixing at the nanoliter scale, can reproducibly generate limit size LNP siRNA systems 20 nm and larger with essentially complete encapsulation of siRNA over a wide range of conditions with polydispersity indexes as low as 0.02. Optimized LNP siRNA systems produced by microfluidic mixing achieved 50% target gene silencing in hepatocytes at a dose level of 10 µg/kg siRNA in mice. We anticipate that microfluidic mixing, a precisely controlled and readily scalable technique, will become the preferred method for formulation of LNP siRNA delivery systems.
PMCID: PMC3442367  PMID: 23344179
lipid nanoparticle; microfluidics; nanomedicine; siRNA; synthesis and formulation
5.  Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells 
Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.
PMCID: PMC3381593  PMID: 23344621
delivery; immune cell; siRNA
6.  Influence of Cationic Lipid Composition on Gene Silencing Properties of Lipid Nanoparticle Formulations of siRNA in Antigen-Presenting Cells 
Molecular Therapy  2011;19(12):2186-2200.
Lipid nanoparticles (LNPs) are currently the most effective in vivo delivery systems for silencing target genes in hepatocytes employing small interfering RNA. Antigen-presenting cells (APCs) are also potential targets for LNP siRNA. We examined the uptake, intracellular trafficking, and gene silencing potency in primary bone marrow macrophages (bmMΦ) and dendritic cells of siRNA formulated in LNPs containing four different ionizable cationic lipids namely DLinDAP, DLinDMA, DLinK-DMA, and DLinKC2-DMA. LNPs containing DLinKC2-DMA were the most potent formulations as determined by their ability to inhibit the production of GAPDH target protein. Also, LNPs containing DLinKC2-DMA were the most potent intracellular delivery agents as indicated by confocal studies of endosomal versus cytoplamic siRNA location using fluorescently labeled siRNA. DLinK-DMA and DLinKC2-DMA formulations exhibited improved gene silencing potencies relative to DLinDMA but were less toxic. In vivo results showed that LNP siRNA systems containing DLinKC2-DMA are effective agents for silencing GAPDH in APCs in the spleen and peritoneal cavity following systemic administration. Gene silencing in APCs was RNAi mediated and the use of larger LNPs resulted in substantially reduced hepatocyte silencing, while similar efficacy was maintained in APCs. These results are discussed with regard to the potential of LNP siRNA formulations to treat immunologically mediated diseases.
PMCID: PMC3242662  PMID: 21971424
7.  Investigation of factors responsible for cell line cytoplasmic expression differences 
Previous work has described a novel cytoplasmic expression system that results in a 20-fold increase in the levels of gene expression over a standard CMV-based nuclear expression system, as compared with a 2–3 fold increase seen with previous similar systems. While this increase was seen with BHK and Neuro-2a cells, further studies revealed that some cell lines, such as COS-7, demonstrated relatively poor levels of cytoplasmic expression. The objective of this study was to determine what factors were responsible for the different expression levels between BHK (a high expressing cell line) and COS-7 (a low expressing cell line).
The main findings of this work are that the individual elements of the cytoplasmic expression system (such as the T7 RNAP gene and Internal Ribosome Entry Sequence) are functioning similarly in both cell types. Both cell types were found to have the same amount of cytosolic nuclease activity, and that the cells appeared to have differences in the intra-cellular processing of DNA -cationic lipid complexes.
After exploring many factors, it was found that differences in the intra-cellular processing of the DNA-cationic lipid complex was the most probable factor responsible for the difference in cytoplasmic gene expression.
PMCID: PMC1134659  PMID: 15888202
8.  Lipid Nanoparticles Containing siRNA Synthesized by Microfluidic Mixing Exhibit an Electron-Dense Nanostructured Core 
Lipid nanoparticles (LNP) containing ionizable cationic lipids are the leading systems for enabling therapeutic applications of siRNA; however, the structure of these systems has not been defined. Here we examine the structure of LNP siRNA systems containing DLinKC2-DMA(an ionizable cationic lipid), phospholipid, cholesterol and a polyethylene glycol (PEG) lipid formed using a rapid microfluidic mixing process. Techniques employed include cryo-transmission electron microscopy, 31P NMR, membrane fusion assays, density measurements, and molecular modeling. The experimental results indicate that these LNP siRNA systems have an interior lipid core containing siRNA duplexes complexed to cationic lipid and that the interior core also contains phospholipid and cholesterol. Consistent with experimental observations, molecular modeling calculations indicate that the interior of LNP siRNA systems exhibits a periodic structure of aqueous compartments, where some compartments contain siRNA. It is concluded that LNP siRNA systems formulated by rapid mixing of an ethanol solution of lipid with an aqueous medium containing siRNA exhibit a nanostructured core. The results give insight into the mechanism whereby LNP siRNA systems are formed, providing an understanding of the high encapsulation efficiencies that can be achieved and information on methods of constructing more sophisticated LNP systems.
PMCID: PMC3434764  PMID: 22962627

Results 1-10 (10)