PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells 
Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.
doi:10.1038/mtna.2011.3
PMCID: PMC3381593  PMID: 23344621
delivery; immune cell; siRNA
2.  Influence of Cationic Lipid Composition on Gene Silencing Properties of Lipid Nanoparticle Formulations of siRNA in Antigen-Presenting Cells 
Molecular Therapy  2011;19(12):2186-2200.
Lipid nanoparticles (LNPs) are currently the most effective in vivo delivery systems for silencing target genes in hepatocytes employing small interfering RNA. Antigen-presenting cells (APCs) are also potential targets for LNP siRNA. We examined the uptake, intracellular trafficking, and gene silencing potency in primary bone marrow macrophages (bmMΦ) and dendritic cells of siRNA formulated in LNPs containing four different ionizable cationic lipids namely DLinDAP, DLinDMA, DLinK-DMA, and DLinKC2-DMA. LNPs containing DLinKC2-DMA were the most potent formulations as determined by their ability to inhibit the production of GAPDH target protein. Also, LNPs containing DLinKC2-DMA were the most potent intracellular delivery agents as indicated by confocal studies of endosomal versus cytoplamic siRNA location using fluorescently labeled siRNA. DLinK-DMA and DLinKC2-DMA formulations exhibited improved gene silencing potencies relative to DLinDMA but were less toxic. In vivo results showed that LNP siRNA systems containing DLinKC2-DMA are effective agents for silencing GAPDH in APCs in the spleen and peritoneal cavity following systemic administration. Gene silencing in APCs was RNAi mediated and the use of larger LNPs resulted in substantially reduced hepatocyte silencing, while similar efficacy was maintained in APCs. These results are discussed with regard to the potential of LNP siRNA formulations to treat immunologically mediated diseases.
doi:10.1038/mt.2011.190
PMCID: PMC3242662  PMID: 21971424
3.  Dendritic Cell Cross-Priming Is Essential for Immune Responses to Listeria monocytogenes 
PLoS ONE  2009;4(10):e7210.
Cross-presentation is now recognized as a major mechanism for initiating CD8 T cell responses to virus and tumor antigens in vivo. It provides an elegant mechanism that allows relatively few Dendritic cells (DCs) to initiate primary immune responses while avoiding the consumptive nature of pathogenic infection. CD8 T cells play a major role in anti-bacterial immune responses; however, the contribution of cross-presentation for priming CD8 T cell responses to bacteria, in vivo, is not well established. Listeria monocytogenes (Listeria) is the causative agent of Listeriosis, an opportunistic food-borne bacterial infection that poses a significant public health risk. Here, we employ a transgenic mouse model in which cross-presentation is uniquely inactivated, to investigate cross-priming during primary Listeria infection. We show that cross-priming deficient mice are severely compromised in their ability to generate antigen-specific T cells to stimulate MHC I-restricted CTL responses following Listeria infection. The defect in generation of Listeria-elicited CD8 T cell responses is also apparent in vitro. However, in this setting, the endogenous route of processing Listeria-derived antigens is predominant. This reveals a new experimental dichotomy whereby functional sampling of Listeria-derived antigens in vivo but not in vitro is dependent on cross-presentation of exogenously derived antigen. Thus, under normal physiological circumstances, cross-presentation is demonstrated to play an essential role in priming CD8 T cell responses to bacteria.
doi:10.1371/journal.pone.0007210
PMCID: PMC2751817  PMID: 19806187
4.  MHC Class I Endosomal and Lysosomal Trafficking Coincides with Exogenous Antigen Loading in Dendritic Cells 
PLoS ONE  2008;3(9):e3247.
Background
Cross-presentation by dendritic cells (DCs) is a crucial prerequisite for effective priming of cytotoxic T-cell responses against bacterial, viral and tumor antigens; however, this antigen presentation pathway remains poorly defined.
Methodology/Principal Findings
In order to develop a comprehensive understanding of this process, we tested the hypothesis that the internalization of MHC class I molecules (MHC-I) from the cell surface is directly involved in cross-presentation pathway and the loading of antigenic peptides. Here we provide the first examination of the internalization of MHC-I in DCs and we demonstrate that the cytoplasmic domain of MHC-I appears to act as an addressin domain to route MHC-I to both endosomal and lysosomal compartments of DCs, where it is demonstrated that loading of peptides derived from exogenously-derived proteins occurs. Furthermore, by chasing MHC-I from the cell surface of normal and transgenic DCs expressing mutant forms of MHC-I, we observe that a tyrosine-based endocytic trafficking motif is required for the constitutive internalization of MHC-I molecules from the cell surface into early endosomes and subsequently deep into lysosomal peptide-loading compartments. Finally, our data support the concept that multiple pathways of peptide loading of cross-presented antigens may exist depending on the chemical nature and size of the antigen requiring processing.
Conclusions/Significance
We conclude that DCs have ‘hijacked’ and adapted a common vacuolar/endocytic intracellular trafficking pathway to facilitate MHC I access to the endosomal and lysosomal compartments where antigen processing and loading and antigen cross-presentation takes place.
doi:10.1371/journal.pone.0003247
PMCID: PMC2532750  PMID: 18802471
5.  Using the TAP Component of the Antigen-Processing Machinery as a Molecular Adjuvant 
PLoS Pathogens  2005;1(4):e36.
We hypothesize that over-expression of transporters associated with antigen processing (TAP1 and TAP2), components of the major histocompatibility complex (MHC) class I antigen-processing pathway, enhances antigen-specific cytotoxic activity in response to viral infection. An expression system using recombinant vaccinia virus (VV) was used to over-express human TAP1 and TAP2 (VV-hTAP1,2) in normal mice. Mice coinfected with either vesicular stomatitis virus plus VV-hTAP1,2 or Sendai virus plus VV-hTAP1,2 increased cytotoxic lymphocyte (CTL) activity by at least 4-fold when compared to coinfections with a control vector, VV encoding the plasmid PJS-5. Coinfections with VV-hTAP1,2 increased virus-specific CTL precursors compared to control infections without VV-hTAP1,2. In an animal model of lethal viral challenge after vaccination, VV-hTAP1,2 provided protection against a lethal challenge of VV at doses 100-fold lower than control vector alone. Mechanistically, the total MHC class I antigen surface expression and the cross-presentation mechanism in spleen-derived dendritic cells was augmented by over-expression of TAP. Furthermore, VV-hTAP1,2 increases splenic TAP transport activity and endogenous antigen processing, thus rendering infected targets more susceptible to CTL recognition and subsequent killing. This is the first demonstration that over-expression of a component of the antigen-processing machinery increases endogenous antigen presentation and dendritic cell cross-presentation of exogenous antigens and may provide a novel and general approach for increasing immune responses against pathogens at low doses of vaccine inocula.
Synopsis
The development of protective vaccines against infectious diseases such as AIDS, SARS, and West Nile virus has become a societal priority but remains a scientific challenge. In recent years, the threat of bioterrorism agents such as anthrax and smallpox has heightened the need for the rapid development of effective new vaccines. One of the major stumbling blocks to the implementation of any vaccine is the toxic side effects on the vaccine candidate. For example, a significant number of doses of a new vaccine against smallpox have been commissioned, but approximately 20% of the individuals targeted to be inoculated will suffer toxicity due to vaccination. Furthermore, an additional difficulty in the production of vaccines is the creation of sufficient doses to vaccinate a large population. The authors have identified a novel approach that appears to address these issues. They demonstrate that the inclusion, in low doses of vaccines, of a normal component of the antigen-processing pathway, the transporter associated with antigen processing (TAP), confers protective immunity against lethal viral loads during viral challenges. This new paradigm is shown to be applicable to many viruses, including poxviruses, and could significantly advance the creation of new vaccines and improve those that already exist.
doi:10.1371/journal.ppat.0010036
PMCID: PMC1323471  PMID: 16389301

Results 1-5 (5)