Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Effect of the oral application of a highly selective MMP-13 inhibitor in three different animal models of rheumatoid arthritis 
Annals of the Rheumatic Diseases  2009;69(5):898-902.
To evaluate the decrease of cartilage destruction by a novel orally active and specific matrix metalloproteinase 13 (MMP-13) inhibitor in three different animal models of rheumatoid arthritis (RA).
Materials and methods
The SCID mouse co-implantation model of RA, the collagen-induced arthritis (CIA) model in mice and the antigen-induced arthritis model (AIA) in rabbits were used.
In the SCID mouse co-implantation model, the MMP-13 inhibitor reduced cartilage destruction by 75%. In the CIA model of RA, the MMP-13 inhibitor resulted in a significant and dose-dependent decrease in clinical symptoms as well as of cartilage erosion by 38% (30 mg/kg), 28% (10 mg/kg) and 21% (3 mg/kg). No significant effects were seen in the AIA model. No toxic effects were seen in all three animal models.
Although several MMPs in concert with other proteinases have a role in the process of cartilage destruction, there is a need for highly selective MMP inhibitors to reduce severe side effects that occur with non-specific inhibitors. Significant inhibition of MMP-13 reduced cartilage erosions in two of three tested animal models of RA. These results strongly support the development of this class of drugs to reduce or halt joint destruction in patients with RA.
PMCID: PMC2925150  PMID: 19497915
2.  Effects of Pyrimidine and Purine Analog Combinations in the Duck Hepatitis B Virus Infection Model 
To design new strategies of antiviral therapy for chronic hepatitis B, we have evaluated the antiviral activity of the combination of amdoxovir (DAPD), emtricitabine [(−)FTC], and clevudine (l-FMAU) in the duck hepatitis B virus (DHBV) model. Using their triphosphate (TP) derivatives in a cell-free system expressing a wild-type active DHBV reverse transcriptase (RT), the three dual combinations exhibited a greater additive inhibitory effect on viral minus-strand DNA synthesis than the single drugs, according to the Bliss independence model. Both dual combinations with DAPD TP were the most efficient while the triple combination increased the inhibitory effect on the DHBV RT activity in comparison with the dual association, however, without additive effect. Postinoculation treatment of experimentally infected primary duck hepatocytes showed that dual and triple combinations potently inhibited viral DNA synthesis during treatment but did not inhibit the reinitiation of viral DNA synthesis after treatment cessation. Preinoculation treatment with the same combinations exhibited antiviral effects on intracellular viral DNA replication, but it was unable to prevent the initial covalently closed circular DNA (cccDNA) formation. Short-term in vivo treatment in acutely infected ducklings showed that the dual combinations were more-potent inhibitors of virus production than the single treatments, with the l-FMAU and FTC combination being the most potent. A longer administration of l-FMAU and FTC for 4 weeks efficiently suppressed viremia and viral replication. However, no viral clearance from the liver was observed, suggesting that the enhanced antiviral effect of this combination was not sufficient for cccDNA suppression and HBV eradication from infected cells.
PMCID: PMC155836  PMID: 12760857
3.  Inhibitory Effect of Adefovir on Viral DNA Synthesis and Covalently Closed Circular DNA Formation in Duck Hepatitis B Virus-Infected Hepatocytes In Vivo and In Vitro 
The elimination of viral covalently closed circular DNA (CCC DNA) from the nucleus of infected hepatocytes is an obstacle to achieving sustained viral clearance during antiviral therapy of chronic hepatitis B virus (HBV) infection. The aim of our study was to determine whether treatment with adefovir, a new acyclic nucleoside phosphonate, the prodrug of which, adefovir dipivoxil, is in clinical evaluation, is able to suppress viral CCC DNA both in vitro and in vivo using the duck HBV (DHBV) model. First, the effect of adefovir on viral CCC DNA synthesis was examined with primary cultures of DHBV-infected fetal hepatocytes. Adefovir was administered for six consecutive days starting one day before or four days after DHBV inoculation. Dose-dependent inhibition of both virion release in culture supernatants and synthesis of intracellular viral DNA was observed. Although CCC DNA amplification was inhibited by adefovir, CCC DNA was not eliminated by antiviral treatment and the de novo formation of CCC DNA was not prevented by pretreatment of the cells. Next, preventive treatment of experimentally infected ducklings with lamivudine or adefovir revealed that both efficiently suppressed viremia and intrahepatic DNA. However, persistence of viral DNA even when detectable only by PCR was associated with a recurrence of viral replication following drug withdrawal. Taken together, our results demonstrate that adefovir is a potent inhibitor of DHBV replication that inhibits CCC DNA amplification but does not effectively prevent the formation of CCC DNA from incoming viral genomes.
PMCID: PMC127044  PMID: 11796353

Results 1-3 (3)