PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-21 (21)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  DNA electroporation in rabbits as a method for generation of high-titer neutralizing antisera 
Human Vaccines & Immunotherapeutics  2013;9(10):2147-2156.
Raising high titer antibodies in animals is usually performed by protein immunization, which requires the long and sometimes difficult step of production of the recombinant protein. DNA immunization is an alternative to recombinant proteins, only requiring the building of an eukaryotic expression plasmid. Thanks to efficient DNA delivery techniques such as in vivo electroporation, DNA vaccination has proven useful the last few years. In this work, we have shown that it is possible to raise very high antibody titers in rabbit by DNA electroporation of an antigen encoding plasmid in the skeletal muscle with the right set of electrodes and rabbit strain. In a model of botulinum toxins types A and E, the neutralizing titers obtained after three treatments were high enough to fit the European Pharmacopeia, while it did not for type B toxin. Furthermore, the raised antibodies have high avidity and are suitable for in vitro and in vivo immunodetection of proteins.
doi:10.4161/hv.25192
PMCID: PMC3906399  PMID: 23877030
DNA immunization; electroporation; botulinum neurotoxin; antiserum; neutralizing antibodies
2.  Synthesis and biological evaluation of novel ferrocenyl curcuminoid derivatives 
Medchemcomm  2011;2(3):190-195.
With the purpose to improve the biological activities of curcumin, eight novel ferrocenyl curcuminoids were synthesized by covalent anchorage of three different ferrocenyl ligands. We evaluated their cytotoxicity on B16 melanoma cells and normal NIH 3T3 cells, their inhibition of tubulin polymerization and their effect on the morphology of endothelial cells. The presence of a ferrocenyl side chain was clearly shown to improve the biological activity of most of their corresponding organic curcuminoid analogues.
doi:10.1039/c0md00231c
PMCID: PMC3745372  PMID: 23967373
curcuminoid; ferrocenyl; B16 melanoma; NIH 3T3 cells; endothelial cells; cancer
3.  Vascular density and endothelial cell expression of integrin alpha v beta 3 and E-selectin in murine tumours 
Tumour Biology  2012;33(5):1709-1717.
The endothelial cell adhesion molecules, including the integrin alpha v beta 3 (αvβ3) and E-selectin, are involved in the process of angiogenesis required for tumour growth, cell migration and metastasis. The purpose of this study was to assess and compare widely used tumour models to select the ones most suitable for angiogenesis research. Fifteen murine tumours were selected including melanoma (B16), colon (C26, C38, C51), mammary (MA13, MA16, MA16/Adr, MA17, MA17/Adr, MA25, MA44), pancreatic (PO2, PO3), Glasgow osteogenic sarcoma (GOS) and Lewis lung carcinoma (LLC). The tumour vascular density, assessed using the platelet endothelial cell adhesion molecule 1 (PECAM-1; CD31) immunostaining, revealed that B16 melanoma was poorly vascularized (<5%), whereas the colon and mammary tumours were well vascularized (5–15%). The most vascularized tumours (>15%) were the pancreatic tumours (PO2 and PO3), the sarcoma (GOS) and the lung tumour (LLC). The integrin αvβ3 and E-selectin evaluated by immunohistology, showed that 7/15 tumours expressed the αvβ3 integrin which was homogeneously distributed on all tumour sections (B16, C26, MA17/Adr, MA25, MA44, PO2, LLC). E-selectin was expressed in 4/15 tumours and its expression was restricted to the tumour periphery. Only 2/15 tumours (B16 and C26) were shown to express both integrin αvβ3 and E-selectin. In conclusion, these data not only contribute to a better understanding of the tumour biology of murine tumours, but can also guide the choice of appropriate models for antiangiogenic therapy, for selective drug delivery to tumours and the validation of tumour imaging modalities targeting these endothelial cell adhesion molecules.
doi:10.1007/s13277-012-0428-x
PMCID: PMC3743742  PMID: 22669616
Animals; Cell Adhesion Molecules; metabolism; Cell Line, Tumor; E-Selectin; metabolism; Endothelial Cells; metabolism; Female; Integrin alphaVbeta3; metabolism; Mice; Neoplasms, Experimental; blood supply; metabolism; Neovascularization, Pathologic; metabolism; mouse tumors; vascularization; integrin alpha v beta 3; E-selectin; melanoma; colon; mammary; pancreas; sarcoma; lung
4.  Identification and induction of cytochrome P450s involved in the metabolism of flavone-8-acetic acid in mice 
Drug Metabolism Letters  2011;5(2):73-84.
The metabolism of flavone-8-acetic acid (FAA) has been hypothesized to be partly responsible for its potent anticancer activity in mice. The purpose of this study was to identify the mouse enzymes involved in FAA Phase I metabolism and evaluate their possible induction in vivo by FAA. Mouse microsomes metabolized FAA into 6 metabolites: 3′,4′-dihydrodiol-FAA, 5,6-epoxy-FAA, 4′-OH-FAA, 3′-OH-FAA, 3′,4′-epoxy-FAA and 6-OH-FAA. Using Cyp-specific inhibitors (furafylline, Cyp1a2; α-naphthoflavone, Cyp1b1; tranylcypromine, Cyp2b9; quercetin, Cyp2c29; quinidine, 2d9; diethyldithiocarbamate, Cyp2e1; ketoconazole, Cyp3a11), the formation of 5,6-epoxy-FAA was mainly attributed to Cyps 1a2, 1b1, 2b9, 2c29 and 2e1, whereas the 3′,4′-epoxy-FAA was formed by Cyps 2b9 and 3a11. The 4′-OH-FAA was generated by Cyps 1a2, 1b1, 2b9 and 2e1, and the 6-OH-FAA was formed by Cyps 1b1 and 2c9. Using the epoxide scavenger N-acetyl cysteine, 4′-OH-FAA, 3′-OH-FAA and 6-OH-FAA were shown to derive partly from non enzymatic isomerisation of their corresponding epoxides. The specific epoxide hydrolase inhibitor elaidamide allowed the confirmation that 3′,4′-dihydrodiol-FAA was formed via the epoxide hydrolase. FAA treatment in vivo in mice led to a significant increase in the hepatic expression of Cyp1a2 (1.9-fold), 2e1 (2.1-fold), 2b10 (3.2-fold), 2d9 (2.3-fold) and 3a11 (2.2-fold), as evaluated by qRT-PCR. In conclusion, several Cyps were shown to be involved in FAA metabolism, particularly Cyps 3a11 and 2b9 which were responsible for the formation of the principal metabolites (5,6-epoxy-FAA, 3′,4′-epoxy-FAA), and that FAA could induce the expression of several Cyps after in vivo administration. The possible implication of these enzymes in the in vivo anticancer activity of FAA in mice is discussed.
PMCID: PMC3743746  PMID: 21457135
Acetylcysteine; metabolism; Animals; Cytochrome P-450 Enzyme System; physiology; Enzyme Induction; Epoxide Hydrolases; physiology; Female; Flavonoids; metabolism; Hydroxylation; Mice; Mice, Inbred C57BL; Microsomes, Liver; metabolism
5.  Evaluation of Nonradiative Clinical Imaging Techniques for the Longitudinal Assessment of Tumour Growth in Murine CT26 Colon Carcinoma 
Background and Objectives. To determine the most appropriate technique for tumour followup in experimental therapeutics, we compared ultrasound (US) and magnetic resonance imaging (MRI) to characterize ectopic and orthotopic colon carcinoma models. Methods. CT26 tumours were implanted subcutaneously (s.c.) in Balb/c mice for the ectopic model or into the caecum for the orthotopic model. Tumours were evaluated by histology, spectrofluorescence, MRI, and US. Results. Histology of CT26 tumour showed homogeneously dispersed cancer cells and blood vessels. The visualization of the vascular network using labelled albumin showed that CT26 tumours were highly vascularized and disorganized. MRI allowed high-resolution and accurate 3D tumour measurements and provided additional anatomical and functional information. Noninvasive US imaging allowed good delineation of tumours despite an hypoechogenic signal. Monitoring of tumour growth with US could be accomplished as early as 5 days after implantation with a shorter acquisition time (<5 min) compared to MRI. Conclusion. MRI and US afforded excellent noninvasive imaging techniques to accurately follow tumour growth of ectopic and orthotopic CT26 tumours. These two techniques can be appropriately used for tumour treatment followup, with a preference for US imaging, due to its short acquisition time and simplicity of use.
doi:10.1155/2013/983534
PMCID: PMC3713650  PMID: 23936648
6.  Formulation and cytotoxicity evaluation of new self-emulsifying multiple W/O/W nanoemulsions 
Three multiple water-in-oil-in-water (W/O/W) nanoemulsions have been designed for potential inclusion of either lipophilic or hydrophilic drugs using a two-step emulsification process exclusively based on low-energy self-emulsification. The W/O primary emulsion was constituted by a blend of oil (medium chain triglyceride), a mixture (7:3) of two surfactants, and a 10% water phase. The surfactants were a mixture of Polysorbate-85/Labrasol®, Polysorbate-85/Cremophor® EL or glycerol/Polysorbate-85. The final W/O/W nanoemulsions were obtained by the addition of water, with a weight ratio nanoemulsion/water of 1:2. The multiple emulsion stability was found to increase from 24 hours to 2 and 6 months with Labrasol, glycerol, and Cremophor, respectively. Cytotoxicity was found for formulations including Labrasol and Cremophor EL. The concentration of emulsion inhibiting 50% cell viability (IC50) was determined using the alamarBlue® test, giving after 24 hours of incubation, IC50 = 10.2 mg/mL for the Labrasol formulation and IC50 = 11.8 mg/mL for the Cremophor EL formulation. Corresponding calculated IC50 values for surfactants were 0.51 mg/mL for Labrasol and 0.59 mg/mL for Cremophor EL. In both cases, cytotoxicity was due to an apoptotic mechanism, evidenced by chromatin condensation and P2X7 cell death receptor activation. The formulation including glycerol, investigated between 1 and 100 mg/mL concentration of nanoemulsion, did not affect cell viability. Moreover, neither chromatin condensation nor P2X7 activation was found between the 10 and 30 mg/mL final concentration of the emulsion. This last formulation would therefore be of major interest for further developments.
doi:10.2147/IJN.S35661
PMCID: PMC3569110  PMID: 23403891
Labrasol; Cremophor EL; apoptosis; P2X7 receptor; polysorbate; glycerol
8.  Control of pH responsive peptide self-association during endocytosis is required for effective gene transfer 
Biochimica et biophysica acta  2011;1818(5):1332-1341.
Cationic amphipathic histidine rich peptides demonstrate differential nucleic acid binding capabilities at neutral and acidic pH and adopt conformations at acidic pH that enable interaction with endosomal membranes, their subsequent disordering and facilitate entry of cargo to the cell cytosol. To better understand the relative contributions of each stage in the process and consequently the structural requirements of pH responsive peptides for optimal nucleic acid transfer, we used biophysical methods to dissect the series of events that occur during endosomal acidification. Far-UV circular dichroism was used to characterise the solution conformation of a series of peptides, containing either four or six histidine residues, designed to respond at differing pH while a novel application of near-UV circular dichroism was used to determine the binding affinities of the peptides for both DNA and siRNA. The peptide induced disordering of neutral and anionic membranes was investigated using 2H solid-state NMR. While each of these parameters model key stages in the nucleic acid delivery process and all were affected by increasing the histidine content of the peptide, the effect of a more acidic pH response on peptide self-association was most notable and identified as the most important barrier to further enhancing nucleic acid delivery. Further, the results indicate that Coulombic interactions between the histidine residues modulate protonation and subsequent conformational transitions required for peptide mediated gene transfer activity and are an important factor to consider in future peptide design.
doi:10.1016/j.bbamem.2011.12.018
PMCID: PMC3378503  PMID: 22226847
pH responsive peptides; endocytosis; gene delivery; DNA binding; circular dichroism
9.  AON-mediated Exon Skipping Restores Ciliation in Fibroblasts Harboring the Common Leber Congenital Amaurosis CEP290 Mutation 
Leber congenital amaurosis (LCA) is a severe hereditary retinal dystrophy responsible for congenital or early-onset blindness. The most common disease-causing mutation (>10%) is located deep in intron 26 of the CEP290 gene (c.2991+1655A>G). It creates a strong splice donor site that leads to insertion of a cryptic exon encoding a premature stop codon. In the present study, we show that the use of antisense oligonucleotides (AONs) allow an efficient skipping of the mutant cryptic exon and the restoration of ciliation in fibroblasts of affected patients. These data support the feasibility of an AON-mediated exon skipping strategy to correct the aberrant splicing.
doi:10.1038/mtna.2012.21
PMCID: PMC3390222  PMID: 23344081
antisense oligonucleotide; CEP290; ciliogenesis repair; LCA; splice switching-mediated therapy
10.  Flavonoid-induced morphological modifications of endothelial cells through microtubule stabilization 
Nutrition and Cancer  2009;61(3):310-321.
Flavonoids are common components of the human diet and appear to be of interest in cancer prevention or therapy, but their structure-activity relationships (SAR) remain poorly defined. In this study, were compared 24 flavonoids for their cytotoxicity on cancer cells (B16 and Lewis lung), and their morphological effect on endothelial cells (EC) that could predict antiangiogenic activity. Ten flavonoids presented inhibitory concentrations for 50% of cancer cells (IC50, 48 h) below 50 μM: rhamnetin, 3′,4′-dihydroxyflavone, luteolin, 3-hydroxyflavone, acacetin, apigenin, quercetin, baicalein, fisetin, and galangin. Important SAR for cytotoxicity included the C2-C3 double bond and 3′,4′-dihydroxylation. Concerning the morphological effects on EC, only fisetin, quercetin, kaempferol, apigenin, and morin could induce the formation of cell extensions and filopodias at non cytotoxic concentrations. The SAR for morphologic activity differed from cytotoxicity and involved hydroxylation at C-7 and C-4′. Fisetin, the most active agent, presented cell morphology that was distinct compared to colchicine, combretastatin A-4, docetaxel, and cytochalasin D. Resistance to cold depolymerization and a 2.4-fold increase in acetylated α-tubulin demonstrated that fisetin was a microtubule stabilizer. In conclusion, this study disclosed several SAR that could guide the choice or the rational synthesis of improved flavonoids for cancer prevention or therapy.
doi:10.1080/01635580802521346
PMCID: PMC3317886  PMID: 19373604
Acetylation; Animals; Carcinoma, Lewis Lung; drug therapy; pathology; Cytoskeleton; drug effects; Endothelial Cells; cytology; drug effects; Flavonoids; pharmacology; Melanoma, Experimental; drug therapy; pathology; Mice; Microtubules; chemistry; drug effects; Structure-Activity Relationship; Tubulin; metabolism; flavonoid, fisetin, endothelial cells, morphology
11.  Incorporation of 2,3-diaminopropionic acid in linear cationic amphipathic peptides produces pH sensitive vectors 
Non-viral vectors that harness the change in pH in endosomes are increasingly being used to deliver cargoes, including nucleic acids, to mammalian cells. Here we present evidence that the pKa of the β-NH2 in 2,3-diaminopropionic acid (Dap) is sufficiently lowered, when incorporated in peptides, that its protonation state is sensitive to the pH changes that occur during endosomal acidification. The lowered pKa around 6.3 is stabilised by the increased electron withdrawing effect of the peptide bonds, by inter-molecular hydrogen bonding and from contributions arising from the peptide conformation, including mixed polar/apolar environments, Coulombic interactions and inter-molecular hydrogen bonding. Changes of the charged state are therefore expected between pH 5 and 7 and large scale conformational changes are observed in Dap rich peptides, in contrast with analogues containing lysine or ornithine, when the pH is altered through this range. These physical properties confer a robust gene delivery capability on designed cationic amphipathic peptides that incorporate Dap.
doi:10.1002/cbic.201000073
PMCID: PMC3309271  PMID: 20480482
Circular dichroism; peptides; NMR spectroscopy; pH sensitivity; gene delivery
12.  Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice 
Purpose
The natural flavonoid fisetin was recently identified as a lead compound that stabilizes endothelial cell microtubules. In this study we investigated the antiproliferative and antiangiogenic properties of fisetin in vitro and in vivo.
Methods
Fisetin cytotoxicity was evaluated using Lewis lung carcinoma cells (LLC), endothelial cells and NIH 3T3 cells. Endothelial cell (EC) migration and capillary-like structure formation were evaluated using EAhy 926 cells. In vivo tumour growth inhibition studies were performed using LLC bearing mice treated with fisetin and/or cyclophosphamide (CPA).
Results
The fisetin IC50 was 59 μM for LLC and 77 μM for EC cells, compared to 210 μM for normal NIH 3T3 cells (24 h). Fisetin inhibited EC migration and capillary-like structure formation at non-cytotoxic concentrations (22–44 μM). In mice, fisetin inhibited angiogenesis assessed using the Matrigel plug assay. In LLC bearing mice, fisetin produced a 67% tumour growth inhibition (223 mg/kg, intraperitoneal), similar to the 66% produced by low dose CPA (30 mg/kg, subcutaneous). When fisetin and CPA were combined, however, a marked improvement in antitumour activity was observed (92% tumour growth inhibition), with low systemic toxicity. Tumour histology showed decreased microvessel density with either fisetin or CPA alone, and a dramatic decrease after the fisetin/CPA combination.
Conclusions
We have shown that fisetin not only displays in vitro and in vivo antiangiogenic properties, but that it can also markedly improve the in vivo antitumour effect of CPA. We propose that this drug combination associating a non-toxic dietary flavonoid with a cytotoxic agent could advantageously be used in the treatment of solid tumours.
doi:10.1007/s00280-010-1505-8
PMCID: PMC3308124  PMID: 21069336
Angiogenesis Inhibitors; administration & dosage; adverse effects; pharmacology; therapeutic use; Animals; Antineoplastic Agents, Alkylating; administration & dosage; adverse effects; pharmacology; therapeutic use; Antineoplastic Agents, Phytogenic; administration & dosage; adverse effects; pharmacology; therapeutic use; Antineoplastic Combined Chemotherapy Protocols; administration & dosage; adverse effects; pharmacology; therapeutic use; Carcinoma, Lewis Lung; drug therapy; pathology; Cell Cycle; drug effects; Cell Line; Cell Movement; drug effects; Cell Proliferation; drug effects; Cell Survival; drug effects; Cyclophosphamide; administration & dosage; adverse effects; pharmacology; therapeutic use; Endothelial Cells; cytology; drug effects; Female; Flavonoids; administration & dosage; adverse effects; pharmacology; therapeutic use; Humans; Mice; Mice, Inbred C57BL; NIH 3T3 Cells; Neovascularization, Pathologic; drug therapy; Tubulin Modulators; administration & dosage; adverse effects; pharmacology; therapeutic use; Tumor Burden; drug effects; flavonoid; fisetin; cyclophosphamide; Lewis lung carcinoma; EA.hy 926; endothelial cells; angiogenesis; cytotoxicity; antitumour activity
14.  Lipothioureas as Lipids for Gene Transfection: A Review 
Pharmaceuticals  2011;4(10):1381-1399.
Non-viral gene therapy requires innovative strategies to achieve higher transfection efficacy. A few years ago, our group proposed bioinspired lipids whose interaction with DNA was not based on ionic interactions, but on hydrogen bonds. We thus developed lipids bearing a thiourea head which allowed an interaction with DNA phosphates through hydrogen bonds. After a proof of concept with a lipid bearing three thiourea functions, a molecular and cellular screening was performed by varying all parts of the lipids: the hydrophobic anchor, the spacer, the linker, and the thiourea head. Two lipothiourea-based structures were identified as highly efficient in vitro transfecting agents. The lipothioureas were shown to reduce non specific interactions with cell membranes and deliver their DNA content intracellularly more efficiently, as compared to cationic lipoplexes. These lipids could deliver siRNA efficiently and allowed specific cell targeting in vitro. In vivo, thiourea lipoplexes presented a longer retention time in the blood and less accumulation in the lungs after an intravenous injection in mice. They also induced luciferase gene expression in muscle and tumor after local administration in mice. Therefore, these novel lipoplexes represent an excellent alternative to cationic lipoplexes as transfecting agents. In this review we will focus on the structure activity studies that permitted the identification of the two most efficient thiourea lipids.
doi:10.3390/ph4101381
PMCID: PMC4060130
lipothiourea; thiourea lipids; DNA; lipoplexes; transfection; gene therapy
15.  Polymers for Improving the In Vivo Transduction Efficiency of AAV2 Vectors 
PLoS ONE  2010;5(12):e15576.
Background
Adeno-associated virus has attracted great attention as vehicle for body-wide gene delivery. However, for the successful treatment of a disease such as Duchenne muscular dystrophy infusion of very large amounts of vectors is required. This not only raises questions about the technical feasibility of the large scale production but also about the overall safety of the approach. One way to overcome these problems would be to find strategies able to increase the in vivo efficiency.
Methodology
Here, we investigated whether polymers can act as adjuvants to increase the in vivo efficiency of AAV2. Our strategy consisted in the pre-injection of polymers before intravenous administration of mice with AAV2 encoding a murine secreted alkaline phosphatase (mSeAP). The transgene expression, vector biodistribution and tissue transduction were studied by quantification of the mSeAP protein and real time PCR. The injection of polyinosinic acid and polylysine resulted in an increase of plasmatic mSeAP of 2- and 12-fold, respectively. Interestingly, polyinosinic acid pre-injection significantly reduced the neutralizing antibody titer raised against AAV2.
Conclusions
Our results show that the pre-injection of polymers can improve the overall transduction efficiency of systemically administered AAV2 and reduce the humoral response against the capsid proteins.
doi:10.1371/journal.pone.0015576
PMCID: PMC3011005  PMID: 21203395
16.  A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair 
BMC Biotechnology  2009;9:35.
Background
Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1). Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome.
Results
In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin.
Conclusion
Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments.
doi:10.1186/1472-6750-9-35
PMCID: PMC2676283  PMID: 19379497
17.  Housekeeping while brain's storming Validation of normalizing factors for gene expression studies in a murine model of traumatic brain injury 
Background
Traumatic brain injury models are widely studied, especially through gene expression, either to further understand implied biological mechanisms or to assess the efficiency of potential therapies. A large number of biological pathways are affected in brain trauma models, whose elucidation might greatly benefit from transcriptomic studies. However the suitability of reference genes needed for quantitative RT-PCR experiments is missing for these models.
Results
We have compared five potential reference genes as well as total cDNA level monitored using Oligreen reagent in order to determine the best normalizing factors for quantitative RT-PCR expression studies in the early phase (0–48 h post-trauma (PT)) of a murine model of diffuse brain injury. The levels of 18S rRNA, and of transcripts of β-actin, glyceraldehyde-3P-dehydrogenase (GAPDH), β-microtubulin and S100β were determined in the injured brain region of traumatized mice sacrificed at 30 min, 3 h, 6 h, 12 h, 24 h and 48 h post-trauma.
The stability of the reference genes candidates and of total cDNA was evaluated by three different methods, leading to the following rankings as normalization factors, from the most suitable to the less: by using geNorm VBA applet, we obtained the following sequence: cDNA(Oligreen); GAPDH > 18S rRNA > S100β > β-microtubulin > β-actin; by using NormFinder Excel Spreadsheet, we obtained the following sequence: GAPDH > cDNA(Oligreen) > S100β > 18S rRNA > β-actin > β-microtubulin; by using a Confidence-Interval calculation, we obtained the following sequence: cDNA(Oligreen) > 18S rRNA; GAPDH > S100β > β-microtubulin > β-actin.
Conclusion
This work suggests that Oligreen cDNA measurements, 18S rRNA and GAPDH or a combination of them may be used to efficiently normalize qRT-PCR gene expression in mouse brain trauma injury, and that β-actin and β-microtubulin should be avoided.
The potential of total cDNA as measured by Oligreen as a first-intention normalizing factor with a broad field of applications is highlighted. Pros and cons of the three methods of normalization factors selection are discussed. A generic time- and cost-effective procedure for normalization factor validation is proposed.
doi:10.1186/1471-2199-9-62
PMCID: PMC2500043  PMID: 18611280
18.  Careful adjustment of Epo non-viral gene therapy for β-thalassemic anaemia treatment 
Background
In situ production of a secreted therapeutic protein is one of the major gene therapy applications. Nevertheless, the plasmatic secretion peak of transgenic protein may be deleterious in many gene therapy applications including Epo gene therapy. Epo gene transfer appears to be a promising alternative to recombinant Epo therapy for severe anaemia treatment despite polycythemia was reached in many previous studies. Therefore, an accurate level of transgene expression is required for Epo application safety. The aim of this study was to adapt posology and administration schedule of a chosen therapeutic gene to avoid this potentially toxic plasmatic peak and maintain treatment efficiency. The therapeutic potential of repeated muscular electrotransfer of light Epo-plasmid doses was evaluated for anaemia treatment in β-thalassemic mice.
Methods
Muscular electrotransfer of 1 μg, 1.5 μg, 2 μg 4 μg or 6 μg of Epo-plasmid was performed in β-thalassemic mice. Electrotransfer was repeated first after 3.5 or 5 weeks first as a initiating dose and then according to hematocrit evolution.
Results
Muscular electrotransfer of the 1.5 μg Epo-plasmid dose repeated first after 5 weeks and then every 3 months was sufficient to restore a subnormal hematrocrit in β-thalassemic mice for more than 9 months.
Conclusion
This strategy led to efficient, long-lasting and non-toxic treatment of β-thalassemic mouse anaemia avoiding the deleterious initial hematocrit peak and maintaining a normal hematocrit with small fluctuation amplitude. This repeat delivery protocol of light doses of therapeutic gene could be applied to a wide variety of candidate genes as it leads to therapeutic effect reiterations and increases safety by allowing careful therapeutic adjustments.
doi:10.1186/1479-0556-6-10
PMCID: PMC2276190  PMID: 18334017
19.  CD36 Deficiency Leads to Choroidal Involution via COX2 Down-Regulation in Rodents 
PLoS Medicine  2008;5(2):e39.
Background
In the Western world, a major cause of blindness is age-related macular degeneration (AMD). Recent research in angiogenesis has furthered the understanding of choroidal neovascularization, which occurs in the “wet” form of AMD. In contrast, very little is known about the mechanisms of the predominant, “dry” form of AMD, which is characterized by retinal atrophy and choroidal involution. The aim of this study is to elucidate the possible implication of the scavenger receptor CD36 in retinal degeneration and choroidal involution, the cardinal features of the dry form of AMD.
Methods and Findings
We here show that deficiency of CD36, which participates in outer segment (OS) phagocytosis by the retinal pigment epithelium (RPE) in vitro, leads to significant progressive age-related photoreceptor degeneration evaluated histologically at different ages in two rodent models of CD36 invalidation in vivo (Spontaneous hypertensive rats (SHR) and CD36−/− mice). Furthermore, these animals developed significant age related choroidal involution reflected in a 100%–300% increase in the avascular area of the choriocapillaries measured on vascular corrosion casts of aged animals. We also show that proangiogenic COX2 expression in RPE is stimulated by CD36 activating antibody and that CD36-deficient RPE cells from SHR rats fail to induce COX2 and subsequent vascular endothelial growth factor (VEGF) expression upon OS or antibody stimulation in vitro. CD36−/− mice express reduced levels of COX2 and VEGF in vivo, and COX2−/− mice develop progressive choroidal degeneration similar to what is seen in CD36 deficiency.
Conclusions
CD36 deficiency leads to choroidal involution via COX2 down-regulation in the RPE. These results show a novel molecular mechanism of choroidal degeneration, a key feature of dry AMD. These findings unveil a pathogenic process, to our knowledge previously undescribed, with important implications for the development of new therapies.
Florian Sennelaub and colleagues show that CD36 deficiency leads to choroidal involution, a key feature of "dry" age-related macular degeneration, via COX-2 down-regulation in the retinal pigment epithelium.
Editors' Summary
Background.
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly in industrialized countries. The macula is the central region of the retina, the tissue at the back of the eye that detects light and converts it into electrical messages that are sent to the brain. In the commonest form of AMD—“dry” AMD—the light-sensitive cells in the retina (the photoreceptors) gradually die. This degeneration might occur because of damage to the retinal pigment epithelium (RPE). This layer of dark cells lies between the photoreceptors and the choroid, the layer of the eye that contains blood vessels and brings oxygen to the retina. The RPE keeps the retina healthy by transferring the right amount of oxygen and nutrients from the choroid to the retina and by removing worn-out photoreceptor outer segments (the part of the photoreceptor that actually absorbs light) in a process called phagocytosis (engulfment and digestion). In addition to photoreceptor degeneration and RPE shrinkage, a layer of the choroid rich in small blood vessels (the choriocapillaris) also shrinks in dry AMD. For affected individuals, all these changes (which experts describe as retinal atrophy and choroidal involution) mean that the sharp central vision that is needed for reading and driving is destroyed, leaving only dim, burred images or a black hole at the center of the vision.
Why Was This Study Done?
Little is known about the molecular mechanisms that underlie dry AMD and, consequently, there is no cure for it. In this study, the researchers have tested whether a molecule called CD36, which is expressed on the surface of RPE cells, is involved in dry AMD. CD36 is a scavenger receptor—which means it binds many potentially harmful molecules including oxidized fats (which are present in the photoreceptor outer segments) and is involved in their phagocytosis. Phagocytosis itself induces the expression of several proteins in the RPE cells, including COX2, a “proangiogenic” protein that stimulates the growth of blood vessels. Putting this information together, the researchers hypothesized that a defect in CD36 might cause the characteristic retinal atrophy (by preventing the phagocytosis of worn-out photoreceptor outer segments) and choroidal involution (by preventing the induction of COX2 expression and consequently the maintenance of the blood vessels in the choroid) of dry AMD.
What Did the Researchers Do and Find?
The researchers first show that retinal degeneration occurs in rats and mice that express no CD36. This degeneration (which included a reduction in the thickness of the retina, the presence of irregularly shaped photoreceptor outer segments, and the detachment of these structures from the RPE) was seen in old but not young animals. Choroidal involution was also seen in these CD36-deficient animals. This change was present in young mice and rats but increased with age so that by one year old, the choriocapillaris looked moth-eaten. Next, the researchers show that although RPE cells taken from normal animals and grown in dishes were able to make COX2 in response to exposure to purified photoreceptor outer segments, RPE cells from CD36-deficient animals did not. The expression of vascular endothelial growth factor (VEGF; a protein that is needed for normal choroidal development and whose expression is controlled by COX2) showed a similar pattern. Finally, the researchers report that COX2 deficiency in mice caused similar age-dependent choroidal involution and similar effects on VEGF expression in RPE cells as CD36 deficiency.
What Do These Findings Mean?
These findings show that CD36 deficiency leads to progressive, age-related degeneration of photoreceptors and choroidal involution in rats and mice. They also show that CD36 deficiency causes this choroidal involution, the key feature of dry AMD, because it leads to down-regulation of COX2 expression (and subsequently reduced VEGF expression) in the RPE. Researchers now need to find out whether this mechanism for the development of dry AMD holds in people—what happens in animals does not necessarily happen in people. If it does, pharmacological activation of CD36 or restoration of CD36 expression in the RPE might eventually provide a way to treat dry AMD.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050039.
MedlinePlus provides links to information on macular degeneration and an encyclopedia page on macular degeneration (in English and Spanish)
Pages on the US National Institutes of Health NIH SeniorHealth site provides text and spoken information about AMD
The US National Eye Institute and the UK Royal National Institute of Blind People also provide information about AMD
Wikipedia has pages on the retina, photoreceptor cells, retinal pigment epithelium, and choroid (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.0050039
PMCID: PMC2245984  PMID: 18288886
20.  Regulatable systemic production of monoclonal antibodies by in vivo muscle electroporation 
The clinical application of monoclonal antibodies (mAbs) potentially concerns a wide range of diseases including, among others, viral infections, cancer and autoimmune diseases. Although intravenous infusion appears to be the simplest and most obvious mode of administration, it is very often not applicable to long-term treatments because of the restrictive cost of mAbs certified for human use and the side effects associated with injection of massive doses of antibodies. Gene/cell therapies designed for sustained and, possibly, regulatable in vivo production and systemic delivery of mAbs might permit to advantageously replace it. We have already shown that several such approaches allow month- to year-long ectopic antibody production by non-B cells in living organisms. Those include grafting of ex vivo genetically modified cells of various types, in vivo adenoviral gene transfer and implantation of encapsulated antibody-producing cells. Because intramuscular electrotransfer of naked DNA has already been used for in vivo production of a variety of proteins, we have wanted to test whether it could be adapted to that of ectopic mAbs as well. We report here that this is actually the case since both long-term and regulatable production of an ectopic mAb could be obtained in the mouse taken as a model animal. Although serum antibody concentrations obtained were relatively low, these data are encouraging in the perspective of future therapeutical applications of this technology in mAb-based immunotherapies, especially in developing countries where cost-effective and easily implementable technologies would be required for large-scale applications in the context of severe chronic viral diseases such as HIV and HCV infections.
doi:10.1186/1479-0556-2-2
PMCID: PMC394348  PMID: 15038826
gene therapy / DNA electrotransfer / Muscle / Monoclonal antibody / Immunotherapy
21.  Coupling of importin beta binding peptide on plasmid DNA: transfection efficiency is increased by modification of lipoplex's physico-chemical properties 
BMC Biotechnology  2003;3:14.
Background
Non-viral vectors for gene transfer are less immunogenic than viral vectors but also less efficient. Significant effort has focused on enhancing non-viral gene transfer efficiency by increasing nuclear import of plasmid DNA, particularly by coupling nuclear localization peptidic sequences to plasmid DNA.
Results
We have coupled a 62-aminoacid peptide derived from hSRP1α importin beta binding domain, called the IBB peptide to plasmid DNA by using the heterobifunctional linker N-(4-azido-2,3,5,6 tetrafluorobenzyl)-6-maleimidyl hexanamide (TFPAM-6). When covalently coupled to plasmid DNA, IBB peptide did not increase the efficiency of cationic lipid mediated transfection. The IBB peptide was still able to interact with its nuclear import receptor, importin β, but non-specifically. However, we observed a 20-fold increase in reporter gene expression with plasmid DNA / IBB peptide complexes under conditions of inefficient transfection. In which case, IBB was associated with plasmid DNA through self assembling ionic interaction.
Conclusions
The improvement of transfection activity was not due to an improved nuclear import of DNA, but rather by the modification of physicochemical properties of IBB peptide / plasmid complexes. IBB peptide increased lipoplex size and these larger complexes were more efficient for gene transfer.
doi:10.1186/1472-6750-3-14
PMCID: PMC212318  PMID: 12969505

Results 1-21 (21)