Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Early Insights into the Function of KIAA1199, a Markedly Overexpressed Protein in Human Colorectal Tumors 
PLoS ONE  2013;8(7):e69473.
We previously reported that the expression of KIAA1199 in human colorectal tumors (benign and malignant) is markedly higher than that in the normal colonic mucosa. In this study, we investigated the functions of the protein encoded by this gene, which are thus far unknown. Immunostaining studies were used to reveal its subcellular localization, and proteomic and gene expression experiments were conducted to identify proteins that might interact with KIAA1199 and molecular pathways in which it might play roles. Using colon cancer cell lines, we showed that both endogenous and ectopically expressed KIAA1199 is secreted into the extracellular environment. In the cells, it was found mainly in the perinuclear space (probably the ER) and cell membrane. Both cellular compartments were also over-represented in lists of proteins identified by mass spectrometry as putative KIAA1199 interactors and/or proteins encoded by genes whose transcription was significantly changed by KIAA1199 expression. These proteomic and transcriptomic datasets concordantly link KIAA1199 to several genes/proteins and molecular pathways, including ER processes like protein binding, transport, and folding; and Ca2+, G-protein, ephrin, and Wnt signaling. Immunoprecipitation experiments confirmed KIAA1199’s interaction with the cell-membrane receptor ephrin A2 and with the ER receptor ITPR3, a key player in Ca2+ signaling. By modulating Ca2+ signaling, KIAA1199 could affect different branches of the Wnt network. Our findings suggest it may negatively regulate the Wnt/CTNNB1 signaling, and its expression is associated with decreased cell proliferation and invasiveness.
PMCID: PMC3720655  PMID: 23936024
2.  Characterization of recombinant human and bovine thyroid-stimulating hormone preparations by mass spectrometry and determination of their endotoxin content 
The TSH stimulation test to confirm canine hypothyroidism is commonly performed using a recombinant human TSH (rhTSH), as up to date, canine TSH is not yet commercially available. Limiting factors for the use of rhTSH are its high costs and occasional difficulties in product availability. Less expensive bovine TSH preparations (bTSH) purified from bovine pituitary glands are readily commercially available. The aim of this study was to evaluate two different bTSH products as alternative to rhTSH using mass spectrometry.
More than 50 proteins, including other pituitary hormones, bovine albumin, hemoglobin, and tissue proteins were identified in the bTSH preparations. In contrast, rhTSH proved to be a highly pure product. Significantly higher endotoxin levels could be detected in all bTSH products compared to the rhTSH.
Both bTSH products are crude mixtures and therefore not an acceptable alternative to rhTSH. Their use should be discouraged to prevent unintended side effects.
PMCID: PMC3717043  PMID: 23870652
Bovine TSH; Recombinant human TSH; Mass spectrometry; Endotoxin
3.  iTRAQ-Based and Label-Free Proteomics Approaches for Studies of Human Adenovirus Infections 
Both isobaric tags for relative and absolute quantitation (iTRAQ) and label-free methods are widely used for quantitative proteomics. Here, we provide a detailed evaluation of these proteomics approaches based on large datasets from biological samples. iTRAQ-label-based and label-free quantitations were compared using protein lysate samples from noninfected human lung epithelial A549 cells and from cells infected for 24 h with human adenovirus type 3 or type 5. Either iTRAQ-label-based or label-free methods were used, and the resulting samples were analyzed by liquid chromatography (LC) and tandem mass spectrometry (MS/MS). To reduce a possible bias from quantitation software, we applied several software packages for each procedure. ProteinPilot and Scaffold Q+ software were used for iTRAQ-labeled samples, while Progenesis LC-MS and ProgenesisF-T2PQ/T3PQ were employed for label-free analyses. R2 correlation coefficients correlated well between two software packages applied to the same datasets with values between 0.48 and 0.78 for iTRAQ-label-based quantitations and 0.5 and 0.86 for label-free quantitations. Analyses of label-free samples showed higher levels of protein up- or downregulation in comparison to iTRAQ-labeled samples. The concentration differences were further evaluated by Western blotting for four downregulated proteins. These data suggested that the label-free method was more accurate than the iTRAQ method.
PMCID: PMC3608280  PMID: 23555056
4.  Soil metaproteomics – Comparative evaluation of protein extraction protocols 
Soil Biology & Biochemistry  2012;54(15-10):14-24.
Metaproteomics and its potential applications are very promising to study microbial activity in environmental samples and to obtain a deeper understanding of microbial interactions. However, due to the complexity of soil samples the exhaustive extraction of proteins is a major challenge. We compared soil protein extraction protocols in terms of their protein extraction efficiency for two different soil types. Four different protein extraction procedures were applied based on (a) SDS extraction without phenol, (b) NaOH and subsequent phenol extraction, (c) SDS–phenol extraction and (d) SDS–phenol extraction with prior washing steps. To assess the suitability of these methods for the functional analysis of the soil metaproteome, they were applied to a potting soil high in organic matter and a forest soil. Proteins were analyzed by two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC–MS/MS) and the number of unique spectra as well as the number of assigned proteins for each of the respective protocols was compared. In both soil types, extraction with SDS–phenol (c) resulted in “high” numbers of proteins. Moreover, a spiking experiment was conducted to evaluate protein recovery. To this end sterilized forest soil was amended with proteins from pure cultures of Pectobacterium carotovorum and Aspergillus nidulans. The protein recovery in the spiking experiment was almost 50%. Our study demonstrates that a critical evaluation of the extraction protocol is crucial for the quality of the metaproteomics data, especially in highly complex samples like natural soils.
► Comparison of protein recovery from natural soil samples with different protocols. ► Direct soil protein extraction with gel-free separation techniques (2D-LC–MS/MS). ► Unique sets of proteins were observed for individual extraction approaches. ► Only small overlap of unique spectra between four different extraction protocols.
PMCID: PMC3413887  PMID: 23125465
Soil metaproteomics; Soil protein extraction; Microbial communities; Mass spectrometry; Microbiology; Microbial ecology
5.  Antibody Phage Display Assisted Identification of Junction Plakoglobin as a Potential Biomarker for Atherosclerosis 
PLoS ONE  2012;7(10):e47985.
To date, no plaque-derived blood biomarker is available to allow diagnosis, prognosis or monitoring of atherosclerotic vascular diseases. In this study, specimens of thrombendarterectomy material from carotid and iliac arteries were incubated in protein-free medium to obtain plaque and control secretomes for subsequent subtractive phage display. The selection of nine plaque secretome-specific antibodies and the analysis of their immunopurified antigens by mass spectrometry led to the identification of 22 proteins. One of them, junction plakoglobin (JUP-81) and its smaller isoforms (referred to as JUP-63, JUP-55 and JUP-30 by molecular weight) were confirmed by immunohistochemistry and immunoblotting with independent antibodies to be present in atherosclerotic plaques and their secretomes, coronary thrombi of patients with acute coronary syndrome (ACS) and macrophages differentiated from peripheral blood monocytes as well as macrophage-like cells differentiated from THP1 cells. Plasma of patients with stable coronary artery disease (CAD) (n = 15) and ACS (n = 11) contained JUP-81 at more than 2- and 14-fold higher median concentrations, respectively, than plasma of CAD-free individuals (n = 13). In conclusion, this proof of principle study identified and verified JUP isoforms as potential plasma biomarkers for atherosclerosis. Clinical validation studies are needed to determine its diagnostic efficacy and clinical utility as a biomarker for diagnosis, prognosis or monitoring of atherosclerotic vascular diseases.
PMCID: PMC3480477  PMID: 23110151
6.  Insights into the Gene Expression Profile of Uncultivable Hemotrophic Mycoplasma suis during Acute Infection, Obtained Using Proteome Analysis 
Journal of Bacteriology  2012;194(6):1505-1514.
Hemotrophic mycoplasmas, bacteria without cell walls whose niche is the erythrocytes of their hosts, have never been cultivated in vitro. Therefore, knowledge of their pathogenesis is fundamental. Mycoplasma suis infects pigs, causing either acute fatal hemolytic anemia or chronic low-grade anemia, growth retardation, and immune suppression. Recently, the complete genomes of two hemotrophic mycoplasma species, M. suis and M. haemofelis, were sequenced, offering new strategies for the analysis of their pathogenesis. In this study we implemented a proteomic approach to identify M. suis proteins during acute infection by using tandem mass spectrometry. Twenty-two percent of the predicted proteins encoded in M. suis strain KI_3806 were identified. These included nearly all encoded proteins of glycolysis and nucleotide metabolism. The proteins for lipid metabolism, however, were underrepresented. A high proportion of the detected proteins are involved in information storage and processing (72.6%). In addition, several proteins of different functionalities, i.e., posttranslational modification, membrane genesis, signal transduction, intracellular trafficking, inorganic ion transport, and defense mechanisms, were identified. In its reduced genome, M. suis harbors 65.3% (strain Illinois) and 65.9% (strain KI_3806) of the genes encode hypothetical proteins. Of these, only 6.3% were identified at the proteome level. All proteins identified in this study are present in both M. suis strains and are encoded in more highly conserved regions of the genome sequence. In conclusion, our proteome approach is a further step toward the elucidation of the pathogenesis and life cycle of M. suis as well as the establishment of an in vitro cultivation system.
PMCID: PMC3294830  PMID: 22267506
7.  Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions 
The ISME Journal  2012;6(9):1749-1762.
Leaf-litter decomposition is a central process in carbon cycling; however, our knowledge about the microbial regulation of this process is still scarce. Metaproteomics allows us to link the abundance and activity of enzymes during nutrient cycling to their phylogenetic origin based on proteins, the ‘active building blocks' in the system. Moreover, we employed metaproteomics to investigate the influence of environmental factors and nutrients on the decomposer structure and function during beech litter decomposition. Litter was collected at forest sites in Austria with different litter nutrient content. Proteins were analyzed by 1-D-SDS-PAGE followed by liquid-chromatography and tandem mass-spectrometry. Mass spectra were assigned to phylogenetic and functional groups by a newly developed bioinformatics workflow, assignments being validated by complementary approaches. We provide evidence that the litter nutrient content and the stoichiometry of C:N:P affect the decomposer community structure and activity. Fungi were found to be the main producers of extracellular hydrolytic enzymes, with no bacterial hydrolases being detected by our metaproteomics approach. Detailed investigation of microbial succession suggests that it is influenced by litter nutrient content. Microbial activity was stimulated at higher litter nutrient contents via a higher abundance and activity of extracellular enzymes.
PMCID: PMC3498922  PMID: 22402400
extracellular enzymes; leaf-litter decomposition; litter nutrient content; metaproteomics; microbial ecology; microbial succession
8.  Phosphoproteomic Analysis Reveals Interconnected System-Wide Responses to Perturbations of Kinases and Phosphatases in Yeast 
Science signaling  2010;3(153):rs4.
The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an essential regulatory network in eukaryotic cells. This network supports the flow of information from sensors through signaling systems to effector molecules, and ultimately drives the phenotype and function of cells, tissues, and organisms. Dysregulation of this process has severe consequences and is one of the main factors in the emergence and progression of diseases, including cancer. Thus, major efforts have been invested in developing specific inhibitors that modulate the activity of individual kinases or phosphatases; however, it has been difficult to assess how such pharmacological interventions would affect the cellular signaling network as a whole. Here, we used label-free, quantitative phosphoproteomics in a systematically perturbed model organism (Saccharomyces cerevisiae) to determine the relationships between 97 kinases, 27 phosphatases, and more than 1000 phosphoproteins. We identified 8814 regulated phosphorylation events, describing the first system-wide protein phosphorylation network in vivo. Our results show that, at steady state, inactivation of most kinases and phosphatases affected large parts of the phosphorylation-modulated signal transduction machinery, and not only the immediate downstream targets. The observed cellular growth phenotype was often well maintained despite the perturbations, arguing for considerable robustness in the system. Our results serve to constrain future models of cellular signaling and reinforce the idea that simple linear representations of signaling pathways might be insufficient for drug development and for describing organismal homeostasis.
PMCID: PMC3072779  PMID: 21177495
9.  PARP1 ADP-ribosylates lysine residues of the core histone tails 
Nucleic Acids Research  2010;38(19):6350-6362.
The chromatin-associated enzyme PARP1 has previously been suggested to ADP-ribosylate histones, but the specific ADP-ribose acceptor sites have remained enigmatic. Here, we show that PARP1 covalently ADP-ribosylates the amino-terminal histone tails of all core histones. Using biochemical tools and novel electron transfer dissociation mass spectrometric protocols, we identify for the first time K13 of H2A, K30 of H2B, K27 and K37 of H3, as well as K16 of H4 as ADP-ribose acceptor sites. Multiple explicit water molecular dynamics simulations of the H4 tail peptide into the catalytic cleft of PARP1 indicate that two stable intermolecular salt bridges hold the peptide in an orientation that allows K16 ADP-ribosylation. Consistent with a functional cross-talk between ADP-ribosylation and other histone tail modifications, acetylation of H4K16 inhibits ADP-ribosylation by PARP1. Taken together, our computational and experimental results provide strong evidence that PARP1 modifies important regulatory lysines of the core histone tails.
PMCID: PMC2965223  PMID: 20525793
10.  Identification and Functional Characterization of N-Terminally Acetylated Proteins in Drosophila melanogaster 
PLoS Biology  2009;7(11):e1000236.
A new study reveals a functional rule for N-terminal acetylation in higher eukaryotes called the (X)PX rule and describes a generic method that prevents this modification to allow the study of N-terminal acetylation in any given protein.
Protein modifications play a major role for most biological processes in living organisms. Amino-terminal acetylation of proteins is a common modification found throughout the tree of life: the N-terminus of a nascent polypeptide chain becomes co-translationally acetylated, often after the removal of the initiating methionine residue. While the enzymes and protein complexes involved in these processes have been extensively studied, only little is known about the biological function of such N-terminal modification events. To identify common principles of N-terminal acetylation, we analyzed the amino-terminal peptides from proteins extracted from Drosophila Kc167 cells. We detected more than 1,200 mature protein N-termini and could show that N-terminal acetylation occurs in insects with a similar frequency as in humans. As the sole true determinant for N-terminal acetylation we could extract the (X)PX rule that indicates the prevention of acetylation under all circumstances. We could show that this rule can be used to genetically engineer a protein to study the biological relevance of the presence or absence of an acetyl group, thereby generating a generic assay to probe the functional importance of N-terminal acetylation. We applied the assay by expressing mutated proteins as transgenes in cell lines and in flies. Here, we present a straightforward strategy to systematically study the functional relevance of N-terminal acetylations in cells and whole organisms. Since the (X)PX rule seems to be of general validity in lower as well as higher eukaryotes, we propose that it can be used to study the function of N-terminal acetylation in all species.
Author Summary
Widely hailed as the workhorses of the cell, proteins participate in virtually every process within a living organism. How well they perform these diverse tasks depends on successful passage through the intricate course of protein production, from transcription of the protein-encoded DNA template to processing and folding of the nascent amino acid chain. Some of the processing steps—including enzymatic cleavage or the attachment of chemical modifications—take place during protein synthesis, while others occur afterward. One modification that takes place during protein synthesis is the attachment of an acetyl group at the tip (N-terminus) of proteins. Although N-terminal acetylation is found throughout the tree of life and the machinery and mechanisms responsible for this modification are quite well characterized, little is known about how it affects protein function. We analyzed the acetylation state of proteins in the fruit fly Drosophila melanogaster and show that this modification occurs at a lower frequency in flies than in man but at a much higher frequency than in yeast. Based on our dataset we developed a generic method that can analyze the biological relevance of N-terminal protein acetylation in any organism.
PMCID: PMC2762599  PMID: 19885390

Results 1-10 (10)