Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Crystallographic characterization of the DIX domain of the Wnt signalling positive regulator Ccd1 
The DIX domain of Ccd1 was purified and crystallized.
Coiled-coil DIX1 (Ccd1) is a positive regulator that activates the canonical Wnt signalling pathway by inhibiting the degradation of the key signal transducer β-­catenin. The C-terminal DIX domain of Ccd1 plays an important role in the regulation of signal transduction through homo-oligomerization and protein complex formation with other DIX domain-containing proteins, i.e. axin and dishevelled proteins. Here, the expression, purification, crystallization and X-ray data collection of the Ccd1 DIX domain are reported. The crystals of the Ccd1 DIX domain belonged to space group P212121, with unit-cell parameters a = 72.9, b = 75.7, c = 125.6 Å. An X-ray diffraction data set was collected at 3.0 Å resolution.
PMCID: PMC3144790  PMID: 21795788
Wnt signalling; Ccd1; DIX domain
2.  ErbB2 Dephosphorylation and Anti-Proliferative Effects of Neuregulin-1 in ErbB2-Overexpressing Cells; Re-evaluation of Their Low-Affinity Interaction 
Scientific Reports  2013;3:1402.
Neuregulin-1 binds to ErbB3 and ErbB4 and regulates cancer proliferation and differentiation. Neuregulin-1 had been suggested to also react with ErbB2, but this argument becomes controversial. Here, we re-evaluated the cellular responses and ErbB2 interaction of neuregulin-1 in ErbB2 overexpressing cell lines. In a competitive ligand-binding assay, we detected significant replacement of [35S]-labeled neuregulin-1 with nano molar ranges of cold neuregulin-1 in L929 cells expressing ErbB2 alone and SKOV3 cells carrying sulf-1 cDNA but not in these parental cells. The concentration of neuregulin-1 significantly decreased thymidine incorporation and phosphorylation of ErbB2 (Tyr877, Tyr1396, and Tyr1121) in ErbB2-overexpressing cancer cells as well as in L929 cells expressing ErbB2. A crosslinking assay ascertained the presence of neuregulin-1 immunoreactivity in the ErbB2 immune complexes of L929 expressing ErbB2 alone. These results suggest that the higher concentrations of neuregulin-1 exert an anti-oncogenic activity to attenuate ErbB2 auto-phosphorylation potentially through its low-affinity interaction with ErbB2.
PMCID: PMC3590560  PMID: 23466678
3.  Autotaxin expression from synovial fibroblasts is essential for the pathogenesis of modeled arthritis 
Synovial fibroblasts from patients and mice with arthritis express autotaxin, and ablation of autotaxin in fibroblasts ameliorates disease.
Rheumatoid arthritis is a destructive arthropathy characterized by chronic synovial inflammation that imposes a substantial socioeconomic burden. Under the influence of the proinflammatory milieu, synovial fibroblasts (SFs), the main effector cells in disease pathogenesis, become activated and hyperplastic, releasing proinflammatory factors and tissue-remodeling enzymes. This study shows that activated arthritic SFs from human patients and animal models express significant quantities of autotaxin (ATX; ENPP2), a lysophospholipase D that catalyzes the conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA). ATX expression from SFs was induced by TNF, and LPA induced SF activation and effector functions in synergy with TNF. Conditional genetic ablation of ATX in mesenchymal cells, including SFs, resulted in disease attenuation in animal models of arthritis, establishing the ATX/LPA axis as a novel player in chronic inflammation and the pathogenesis of arthritis and a promising therapeutic target.
PMCID: PMC3348105  PMID: 22493518
4.  A SnoN-Ccd1 Pathway Promotes Axonal Morphogenesis in the Mammalian Brain 
The transcriptional corepressor SnoN is a critical regulator of axonal morphogenesis, but how SnoN drives axonal growth is unknown. Here, we report that gene-profiling analyses in cerebellar granule neurons reveal that the large majority of genes altered upon SnoN knockdown are surprisingly downregulated, suggesting that SnoN may activate transcription in neurons. Accordingly, we find that the transcriptional coactivator p300 interacts with SnoN, and p300 plays a critical role in SnoN-induced axon growth. We also identify the gene encoding the signaling scaffold protein Ccd1 as a critical target of SnoN in neurons. Ccd1 localizes to the actin cytoskeleton, is enriched at axon terminals in neurons, and activates the axon growth-promoting kinase JNK. Knockdown of Ccd1 in neurons reduces axonal length, and suppresses the ability of SnoN to promote axonal growth. Importantly, Ccd1 knockdown in rat pups profoundly impairs the formation of granule neuron parallel fiber axons in the rat cerebellar cortex in vivo. These findings define a novel SnoN-Ccd1 link that promotes axonal growth in the mammalian brain, with important implications for axonal development and regeneration.
PMCID: PMC2853192  PMID: 19339625
Axon growth; Transcription; Cerebellar cortex
5.  Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling 
The Journal of Cell Biology  2006;174(6):773-778.
Specific sulfation sequence of heparan sulfate (HS) contributes to the selective interaction between HS and various proteins in vitro. To clarify the in vivo importance of HS fine structures, we characterized the functions of the Drosophila HS 2-O and 6-O sulfotransferase (Hs2st and Hs6st) genes in FGF-mediated tracheal formation. We found that mutations in Hs2st or Hs6st had unexpectedly little effect on tracheal morphogenesis. Structural analysis of mutant HS revealed not only a loss of corresponding sulfation, but also a compensatory increase of sulfation at other positions, which maintains the level of HS total charge. The restricted phenotypes of Hsst mutants are ascribed to this compensation because FGF signaling is strongly disrupted by Hs2st; Hs6st double mutation, or by overexpression of 6-O sulfatase, an extracellular enzyme which removes 6-O sulfate groups without increasing 2-O sulfation. These findings suggest that the overall sulfation level is more important than strictly defined HS fine structures for FGF signaling in some developmental contexts.
PMCID: PMC2064332  PMID: 16966419

Results 1-5 (5)