Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Processing of CXCL12 by Different Osteoblast-Secreted Cathepsins 
Stem Cells and Development  2011;21(11):1924-1935.
Hematopoietic stem and progenitor cells (HSPCs) are known to reside in specialized niches at the endosteum in the trabecular bone. Osteoblasts are the major cell type of the endosteal niche. It is well established that secreted proteases are involved in cytokine-induced mobilization processes that release stem cell from their niches. However, migratory processes such as the regular trafficking of HSPCs between their niches and the periphery are not fully understood. In the current study we analyzed whether osteoblast-secreted cysteine cathepsins are able to reduce the direct interaction of HSPCs with bone-forming osteoblasts. Isolated human osteoblasts were shown to secrete proteolytically active cysteine cathepsins, such as cathepsins B, K, L, and X. All of these cathepsins were able to digest, although with different efficacy, the chemokine CXCL12, which is known to be important for retaining HSPCs in their niches. Of the 4 identified cathepsins, only cathepsin X was able to reduce binding of HSPCs to osteoblasts. Interestingly, nonactivated pro-cathepsin X and mature cathepsin X did not interfere with HSPC–osteoblast interactions. Only pro-cathepsin X treated with dithiothreitol, which unfolds but does not lead to full maturation of cathepsin X, significantly reduced HSPC adhesion to osteoblasts. These observations argue for a role of the accessible cathepsin X prodomain in diminishing cell binding. Our findings strongly suggest that the cysteine cathepsins B, K, and L constitutively secreted by osteoblasts are part of the fine-tuned regulation of CXCL12 in the bone marrow, whereas pro-cathepsin X with its prodomain can affect HSPC trafficking in the niche.
PMCID: PMC3396142  PMID: 22066471
2.  Regulation of Hematopoietic Stem Cell Behavior by the Nanostructured Presentation of Extracellular Matrix Components 
PLoS ONE  2013;8(2):e54778.
Hematopoietic stem cells (HSCs) are maintained in stem cell niches, which regulate stem cell fate. Extracellular matrix (ECM) molecules, which are an essential part of these niches, can actively modulate cell functions. However, only little is known on the impact of ECM ligands on HSCs in a biomimetic environment defined on the nanometer-scale level. Here, we show that human hematopoietic stem and progenitor cell (HSPC) adhesion depends on the type of ligand, i.e., the type of ECM molecule, and the lateral, nanometer-scaled distance between the ligands (while the ligand type influenced the dependency on the latter). For small fibronectin (FN)–derived peptide ligands such as RGD and LDV the critical adhesive interligand distance for HSPCs was below 45 nm. FN-derived (FN type III 7–10) and osteopontin-derived protein domains also supported cell adhesion at greater distances. We found that the expression of the ECM protein thrombospondin-2 (THBS2) in HSPCs depends on the presence of the ligand type and its nanostructured presentation. Functionally, THBS2 proved to mediate adhesion of HSPCs. In conclusion, the present study shows that HSPCs are sensitive to the nanostructure of their microenvironment and that they are able to actively modulate their environment by secreting ECM factors.
PMCID: PMC3566109  PMID: 23405094
3.  Cadherin-9 Regulates Synapse-Specific Differentiation in the Developing Hippocampus 
Neuron  2011;71(4):640-655.
Our understanding of mechanisms that regulate the differentiation of specific classes of synapses is limited. Here, we investigate the formation of synapses between hippocampal dentate gyrus (DG) neurons and their target CA3 neurons and find that DG neurons preferentially form synapses with CA3 rather than DG or CA1 neurons in culture, suggesting that specific interactions between DG and CA3 neurons drive synapse formation. Cadherin-9 is expressed selectively in DG and CA3 neurons, and downregulation of cadherin-9 in CA3 neurons leads to a selective decrease in the number and size of DG synapses onto CA3 neurons. In addition, loss of cadherin-9 from DG or CA3 neurons in vivo leads to striking defects in the formation and differentiation of the DG-CA3 mossy fiber synapse. These observations indicate that cadherin-9 bidirectionally regulates DG-CA3 synapse development and highlight the critical role of differentially expressed molecular cues in establishing specific connections in the mammalian brain.
PMCID: PMC3272880  PMID: 21867881
4.  Transforming Growth Factor-β1 and Laminin-111 Cooperate in the Regulation of Expression of Interleukin-6 and Interleukin-8 in Synovial Fibroblasts 
In a recent study we showed that binding of synovial fibroblasts (SF) to laminin-111 (LM-111) in the presence of TGF-β1 induced a significant production of IL-16. Here we go on to investigate the regulation of IL-6 and IL-8 in SF by LM-111 and TGF-β1. Changes in steady state mRNA levels encoding the interleukins were investigated by quantitative RT-PCR. We screened for interleukin production by a multiplexed immunoarray and quantified it with ELISA. The biological activity of IL-6 and IL-8 was corroborated by B-lymphocyte proliferation and cell migration assays, respectively. Growth of SF on LM-111 in presence of TGF-β1 induced significant mRNA responses for IL-6 (mean 3.72-fold increase, ± 1.6, p<0.003) and IL-8 (mean 4.5-fold increase, ± 1.6, p<0.001). In the supernatants significantly elevated concentrations of IL-6 (mean 7.9 ± 5 ng/mL, p<0.005) and IL-8 (mean 73.0 ng/mL ± 51, p<0.05) were detected, and they were shown to be biologically active. Binding to LM-111 in the presence of TGF-β1 activates SF for expression of IL-6 and IL-8 and thus may contribute to synovial inflammation and to infiltration of leukocytes.
PMCID: PMC3615287  PMID: 23675204
arthritis; inflammation; IL-6; IL-8; TGF-β synovial fibroblast
5.  Attachment to laminin‐111 facilitates transforming growth factor β‐induced expression of matrix metalloproteinase‐3 in synovial fibroblasts 
Annals of the Rheumatic Diseases  2006;66(4):446-451.
In the synovial membrane of patients with rheumatoid arthritis (RA), a strong expression of laminins and matrix degrading proteases was reported.
To investigate the regulation of matrix metalloproteinases (MMPs) in synovial fibroblasts (SFs) of patients with osteoarthritis (OA) and RA by attachment to laminin‐1 (LM‐111) and in the presence or absence of costimulatory signals provided by transforming growth factor β (TGFβ).
SFs were seeded in laminin‐coated flasks and activated by addition of TGFβ. The expression of genes was investigated by quantitative reverse transcriptase‐polymerase chain reaction (qRT‐PCR), immunocytochemistry and ELISA, and intracellular signalling pathways by immunoblotting, and by poisoning p38MAPK by SB203580, MEK‐ERK by PD98059 and SMAD2 by A‐83‐01.
Attachment of SF to LM‐111 did not activate the expression of MMPs, but addition of TGFβ induced a fivefold higher expression of MMP‐3. Incubation of SF on LM‐111 in the presence of TGFβ induced a significant 12‐fold higher expression of MMP‐3 mRNA, and secretion of MMP‐3 was elevated 20‐fold above controls. Functional blocking of LM‐111–integrin interaction reduced the laminin‐activated MMP‐3 expression significantly. Stimulation of SF by LM‐111 and TGFβ activated the p38MAPK, ERK and SMAD2 pathways, and inhibition of these pathways by using SB203580, PD98059 or A‐83‐01 confirmed the involvement of these pathways in the regulation of MMP‐3.
Attachment of SF to LM‐111 by itself has only minor effects on the expression of MMP‐1 or MMP‐3, but it facilitates the TGFβ‐induced expression of MMP‐3 significantly. This mode of MMP‐3 induction may therefore contribute to inflammatory joint destruction in RA independent of the proinflammatory cytokines interleukin (IL)1β or tumour necrosis factor (TNF)α.
PMCID: PMC1856036  PMID: 17124250
6.  Cadherin-9 Is a Novel Cell Surface Marker for the Heterogeneous Pool of Renal Fibroblasts 
PLoS ONE  2007;2(8):e657.
Interstitial fibroblasts are a minor, but nevertheless very important, component of the kidney. They secrete and remodel extracellular matrix and they produce active compounds such as erythropoietin. However, studying human renal fibroblasts has been hampered by the lack of appropriate surface markers.
Methods and Findings
The expression of cadherin-9 in various human renal cell lines and tissues was studied on the mRNA level by RT-PCR and on the protein level with the help of newly generated cadherin-9 antibodies. The classical type II cadherin-9, so far only described in the neural system, was identified as a reliable surface marker for renal fibroblasts. Compared to FSP1, a widely-used cytosolic renal fibroblast marker, cadherin-9 showed a more restricted expression pattern in human kidney. Under pathological conditions, cadherin-9 was expressed in the stroma of renal cell carcinoma, but not in the tumor cells themselves, and in renal fibrosis the percentage of cadherin-9-positive cells was clearly elevated 3 to 5 times compared to healthy kidney tissue. Induction of epithelial mesenchymal transition in renal epithelial cells with cyclosporin-A, which causes renal fibrosis as a side effect, induced cadherin-9 expression. Functional studies following siRNA-mediated knockdown of cadherin-9 revealed that it acts in the kidney like a typical classical cadherin. It was found to be associated with catenins and to mediate homophilic but not heterophilic cell interactions.
Cadherin-9 represents a novel and reliable cell surface marker for fibroblasts in healthy and diseased kidneys. Together with the established marker molecules FSP1, CD45 and α smooth muscle actin, cadherin-9 can now be used to differentiate the heterogenic pool of renal fibroblasts into resident and activated fibroblasts, immigrated bone marrow derived fibroblast precursors and cells in different stages of epithelial mesenchymal transition.
PMCID: PMC1924602  PMID: 17668045

Results 1-6 (6)