Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus 
Oncotarget  2014;5(11):3907-3918.
Although apoptotic phenomena have been observed in malignant cells infected by measles virus vaccine strain Edmonston B (MV-Edm), the precise oncolytic mechanisms are poorly defined. In this study we found that MV-Edm induced autophagy and sequestosome 1-mediated mitophagy leading to decreased cytochrome c release, which blocked the pro-apoptotic cascade in non-small cell lung cancer cells (NSCLCs). The decrease of apoptosis by mitophagy favored viral replication. Persistent viral replication sustained by autophagy ultimately resulted in necrotic cell death due to ATP depletion. Importantly, when autophagy was impaired in NSCLCs MV-Edm-induced cell death was significantly abrogated despite of increased apoptosis. Taken together, our results define a novel oncolytic mechanism by which mitophagy switches cell death from apoptosis to more efficient necrosis in NSCLCs following MV-Edm infection. This provides a foundation for future improvement of oncolytic virotherapy or antiviral therapy.
PMCID: PMC4116530  PMID: 25004098
oncolytic measles virus; non-small cell lung cancer; autophagy; mitophagy; apoptosis; necrosis
2.  Interactions between Siglec-7/9 receptors and ligands influence NK cell–dependent tumor immunosurveillance 
The Journal of Clinical Investigation  2014;124(4):1810-1820.
Alteration of the surface glycosylation pattern on malignant cells potentially affects tumor immunity by directly influencing interactions with glycan-binding proteins (lectins) on the surface of immunomodulatory cells. The sialic acid–binding Ig-like lectins Siglec-7 and -9 are MHC class I–independent inhibitory receptors on human NK cells that recognize sialic acid–containing carbohydrates. Here, we found that the presence of Siglec-9 defined a subset of cytotoxic NK cells with a mature phenotype and enhanced chemotactic potential. Interestingly, this Siglec-9+ NK cell population was reduced in the peripheral blood of cancer patients. Broad analysis of primary tumor samples revealed that ligands of Siglec-7 and -9 were expressed on human cancer cells of different histological types. Expression of Siglec-7 and -9 ligands was associated with susceptibility of NK cell–sensitive tumor cells and, unexpectedly, of presumably NK cell–resistant tumor cells to NK cell–mediated cytotoxicity. Together, these observations have direct implications for NK cell–based therapies and highlight the requirement to consider both MHC class I haplotype and tumor-specific glycosylation.
PMCID: PMC3973073  PMID: 24569453
5.  The multikinase inhibitor Sorafenib displays significant antiproliferative effects and induces apoptosis via caspase 3, 7 and PARP in B- and T-lymphoblastic cells 
BMC Cancer  2010;10:560.
Targeted therapy approaches have been successfully introduced into the treatment of several cancers. The multikinase inhibitor Sorafenib has antitumor activity in solid tumors and its effects on acute lymphoblastic leukemia (ALL) cells are still unclear.
ALL cell lines (SEM, RS4;11 and Jurkat) were treated with Sorafenib alone or in combination with cytarabine, doxorubicin or RAD001. Cell count, apoptosis and necrosis rates, cell cycle distribution, protein phosphorylation and metabolic activity were determined.
Sorafenib inhibited the proliferation of ALL cells by cell cycle arrest accompanied by down-regulation of CyclinD3 and CDK4. Furthermore, Sorafenib initiated apoptosis by cleavage of caspases 3, 7 and PARP. Apoptosis and necrosis rates increased significantly with most pronounced effects after 96 h. Antiproliferative effects of Sorafenib were associated with a decreased phosphorylation of Akt (Ser473 and Thr308), FoxO3A (Thr32) and 4EBP-1 (Ser65 and Thr70) as early as 0.5 h after treatment. Synergistic effects were seen when Sorafenib was combined with other cytotoxic drugs or a mTOR inhibitor emphasizing the Sorafenib effect.
Sorafenib displays significant antileukemic activity in vitro by inducing cell cycle arrest and apoptosis. Furthermore, it influences PI3K/Akt/mTOR signaling in ALL cells.
PMCID: PMC2972283  PMID: 20950443

Results 1-5 (5)