PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  IL-10 produced by iTreg cells controls colitis and pathogenic ex-iTreg cells during immunotherapy1 
“Natural” regulatory T (nTreg) cells that express the transcription factor Foxp3 and produce IL-10 are required for systemic immunological tolerance. “Induced” Treg (iTreg) cells are non-redundant and essential for tolerance at mucosal surfaces, yet their mechanisms of suppression and stability are unknown. We investigated the role of iTreg cell-produced IL-10 and iTreg cell fate in a treatment model of inflammatory bowel disease. Colitis was induced in Rag1−/− mice by the adoptive transfer of naïve CD4+ T cells carrying a non-functional Foxp3 allele. At the onset of weight loss, mice were treated with both iTreg and nTreg cells where one marked subset was selectively IL-10-deficient. Body weight assessment, histological scoring, cytokine analysis, and flow cytometry were used to monitor disease activity. Transcriptional profiling and TCR repertoire analysis were used to track cell fate. When nTreg cells were present but IL-10 deficient, iTreg cell-produced IL-10 was necessary and sufficient for the treatment of disease, and vice versa. Invariably, ~85% of the transferred iTreg cells lost Foxp3 expression (ex-iTreg) but retained a portion of the iTreg transcriptome, which failed to limit their pathogenic potential upon retransfer. TCR repertoire analysis revealed no clonal relationships between iTreg and ex-iTreg cells, either within mice or between mice treated with the same cells. These data identify a dynamic IL-10-dependent functional reciprocity between Treg subsets that maintains mucosal tolerance. The niche supporting stable iTreg cells is limited and readily saturated, which promotes a large population of ex-iTreg cells with pathogenic potential during immunotherapy.
doi:10.4049/jimmunol.1200936
PMCID: PMC3537488  PMID: 23125413
2.  The Cholinergic Anti-Inflammatory Pathway Delays TLR-Induced Skin Allograft Rejection in Mice: Cholinergic Pathway Modulates Alloreactivity 
PLoS ONE  2013;8(11):e79984.
Activation of innate immunity through Toll-like receptors (TLR) can abrogate transplantation tolerance by revealing hidden T cell alloreactivity. Separately, the cholinergic anti-inflammatory pathway has the capacity to dampen macrophage activation and cytokine release during endotoxemia and ischemia reperfusion injury. However, the relevance of the α7 nicotinic acetylcholine receptor (α7nAChR)-dependent anti-inflammatory pathway in the process of allograft rejection or maintenance of tolerance remains unknown. The aim of our study is to investigate whether the cholinergic pathway could impact T cell alloreactivity and transplant outcome in mice. For this purpose, we performed minor-mismatched skin allografts using donor/recipient combinations genetically deficient for the α7nAChR. Minor-mismatched skin grafts were not rejected unless the mice were housed in an environment with endogenous pathogen exposure or the graft was treated with direct application of imiquimod (a TLR7 ligand). The α7nAChR-deficient recipient mice showed accelerated rejection compared to wild type recipient mice under these conditions of TLR activation. The accelerated rejection was associated with enhanced IL-17 and IFN-γ production by alloreactive T cells. An α7nAChR-deficiency in the donor tissue facilitated allograft rejection but not in recipient mice. In addition, adoptive T cell transfer experiments in skin-grafted lymphopenic animals revealed a direct regulatory role for the α7nAChR on T cells. Taken together, our data demonstrate that the cholinergic pathway regulates alloreactivity and transplantation tolerance at multiple levels. One implication suggested by our work is that, in an organ transplant setting, deliberate α7nAChR stimulation of brain dead donors might be a valuable approach for preventing donor tissue inflammation prior to transplant.
doi:10.1371/journal.pone.0079984
PMCID: PMC3836989  PMID: 24278228
3.  IL-17A and IL-2-Expanded Regulatory T Cells Cooperate to Inhibit Th1-Mediated Rejection of MHC II Disparate Skin Grafts 
PLoS ONE  2013;8(10):e76040.
Several evidences suggest that regulatory T cells (Treg) promote Th17 differentiation. Based on this hypothesis, we tested the effect of IL-17A neutralization in a model of skin transplantation in which long-term graft survival depends on a strong in vivo Treg expansion induced by transient exogenous IL-2 administration. As expected, IL-2 supplementation prevented rejection of MHC class II disparate skin allografts but, surprisingly, not in IL-17A-deficient recipients. We attested that IL-17A was not required for IL-2-mediated Treg expansion, intragraft recruitment or suppressive capacities. Instead, IL-17A prevented allograft rejection by inhibiting Th1 alloreactivity independently of Tregs. Indeed, T-bet expression of naive alloreactive CD4+ T cells and the subsequent Th1 immune response was significantly enhanced in IL-17A deficient mice. Our results illustrate for the first time a protective role of IL-17A in CD4+-mediated allograft rejection process.
doi:10.1371/journal.pone.0076040
PMCID: PMC3795694  PMID: 24146810
4.  IL-17A Mediates Early Post-Transplant Lesions after Heterotopic Trachea Allotransplantation in Mice 
PLoS ONE  2013;8(7):e70236.
Primary graft dysfunction (PGD) and bronchiolitis obliterans (BO) are the leading causes of morbidity and mortality after lung transplantation. Reports from clinical and rodent models suggest the implication of IL-17A in either PGD or BO. We took advantage of the heterotopic trachea transplantation model in mice to study the direct role of IL-17A in post-transplant airway lesions. Across full MHC barrier, early lesions were controlled in IL-17A-/- or anti-IL17 treated recipients. In contrast, IL-17A deficiency did not prevent subsequent obliterative airway disease (OAD). Interestingly, this early protection occurred also in syngeneic grafts and was accompanied by a decrease in cellular stress, as attested by lower HSP70 mRNA levels, suggesting the involvement of IL-17A in ischemia-reperfusion injury (IRI). Furthermore, persistence of multipotent CK14+ epithelial stem cells underlined allograft protection afforded by IL-17A deficiency or neutralisation. Recipient-derived γδ+ and CD4+ T cells were the major source of IL-17A. However, lesions still occurred in the absence of each subset, suggesting a high redundancy between the innate and adaptive IL-17A producing cells. Notably, a double depletion significantly diminished lesions. In conclusion, this work implicated IL-17A as mediator of early post-transplant airway lesions and could be considered as a potential therapeutic target in clinical transplantation.
doi:10.1371/journal.pone.0070236
PMCID: PMC3728020  PMID: 23936171

Results 1-5 (5)