Search tips
Search criteria

Results 1-25 (26)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Loss of the Mammalian DREAM Complex Deregulates Chondrocyte Proliferation 
Molecular and Cellular Biology  2014;34(12):2221-2234.
Mammalian DREAM is a conserved protein complex that functions in cellular quiescence. DREAM contains an E2F, a retinoblastoma (RB)-family protein, and the MuvB core (LIN9, LIN37, LIN52, LIN54, and RBBP4). In mammals, MuvB can alternatively bind to BMYB to form a complex that promotes mitotic gene expression. Because BMYB-MuvB is essential for proliferation, loss-of-function approaches to study MuvB have generated limited insight into DREAM function. Here, we report a gene-targeted mouse model that is uniquely deficient for DREAM complex assembly. We have targeted p107 (Rbl1) to prevent MuvB binding and combined it with deficiency for p130 (Rbl2). Our data demonstrate that cells from these mice preferentially assemble BMYB-MuvB complexes and fail to repress transcription. DREAM-deficient mice show defects in endochondral bone formation and die shortly after birth. Micro-computed tomography and histology demonstrate that in the absence of DREAM, chondrocytes fail to arrest proliferation. Since DREAM requires DYRK1A (dual-specificity tyrosine phosphorylation-regulated protein kinase 1A) phosphorylation of LIN52 for assembly, we utilized an embryonic bone culture system and pharmacologic inhibition of (DYRK) kinase to demonstrate a similar defect in endochondral bone growth. This reveals that assembly of mammalian DREAM is required to induce cell cycle exit in chondrocytes.
PMCID: PMC4054284  PMID: 24710275
2.  F-Spondin Deficient Mice Have a High Bone Mass Phenotype 
PLoS ONE  2014;9(5):e98388.
F-spondin is a pericellular matrix protein upregulated in developing growth plate cartilage and articular cartilage during osteoarthritis. To address its function in bone and cartilage in vivo, we generated mice that were deficient for the F-spondin gene, Spon1. Spon1−/− mice were viable and developed normally to adulthood with no major skeletal abnormalities. At 6 months, femurs and tibiae of Spon1−/− mice exhibited increased bone mass, evidenced by histological staining and micro CT analyses, which persisted up to 12 months. In contrast, no major abnormalities were observed in articular cartilage at any age group. Immunohistochemical staining of femurs and tibiae revealed increased levels of periostin, alkaline phosphate and tartrate resistant acid phosphatase (TRAP) activity in the growth plate region of Spon1−/− mice, suggesting elevated bone synthesis and turnover. However, there were no differences in serum levels of TRAP, the bone resorption marker, CTX-1, or osteoclast differentiation potential between genotypes. Knockout mice also exhibited reduced levels of TGF-β1 in serum and cultured costal chondrocytes relative to wild type. This was accompanied by increased levels of the BMP-regulatory SMADs, P-SMAD1/5 in tibiae and chondrocytes. Our findings indicate a previously unrecognized role for Spon1 as a negative regulator of bone mass. We speculate that Spon1 deletion leads to a local and systemic reduction of TGF-β levels resulting in increased BMP signaling and increased bone deposition in adult mice.
PMCID: PMC4038615  PMID: 24875054
3.  Loss of ATRX Does Not Confer Susceptibility to Osteoarthritis 
PLoS ONE  2013;8(12):e85526.
The chromatin remodelling protein ATRX is associated with the rare genetic disorder ATR-X syndrome. This syndrome includes developmental delay, cognitive impairment, and a variety of skeletal deformities. ATRX plays a role in several basic chromatin-mediated cellular events including DNA replication, telomere stability, gene transcription, and chromosome congression and cohesion during cell division. We have used a loss-of-function approach to directly investigate the role of Atrx in the adult skeleton in three different models of selective Atrx loss. We specifically targeted deletion of Atrx to the forelimb mesenchyme, to cartilage and to bone-forming osteoblasts. We previously demonstrated that loss of ATRX in forelimb mesenchyme causes brachydactyly while deletion in chondrocytes had minimal effects during development. We now show that targeted deletion of Atrx in osteoblasts causes minor dwarfism but does not recapitulate most of the skeletal phenotypes seen in ATR-X syndrome patients. In adult mice from all three models, we find that joints lacking Atrx are not more susceptible to osteoarthritis, as determined by OARSI scoring and immunohistochemistry. These results indicate that while ATRX plays limited roles during early stages of skeletal development, deficiency of the protein in adult tissues does not confer susceptibility to osteoarthritis.
PMCID: PMC3875582  PMID: 24386478
4.  Association of cartilage-specific deletion of peroxisome proliferator-activated receptor γ with abnormal endochondral ossification and impaired cartilage growth and development in a murine model 
Arthritis and rheumatism  2012;64(5):1551-1561.
Long bones develop through the strictly regulated process of endochondral ossification within the growth plate, resulting in the replacement of cartilage by bone. Defects in this process result in skeletal abnormalities and can predispose to disease such as osteoarthritis (OA). Studies suggest that activation of the transcription factor peroxisome proliferator activated receptor gamma (PPARγ) is a therapeutic target for OA. In order to devise PPARγ-related therapies in OA and related diseases, it is critical to identify its role in cartilage biology. Therefore, we determined the in vivo role of PPARγ in endochondral ossification and cartilage development using cartilage-specific PPARγ knockout (KO) mice.
Cartilage-specific PPARγ KO mice were generated using LoxP/Cre system. Histomorphometric and immunohistochemical analysis was performed to account for ossification patterns, chondrocyte proliferation, differentiation, hypertrophy, skeletal organization, bone density and calcium deposition. Real-Time PCR and western blotting was performed to determine the expression of key markers involved in endochondral ossification.
PPARγ KO mice exhibited reduced body length, weight, length of long bones, skeletal growth, cellularity, bone density, calcium deposition and trabecular bone thickness, abnormal growth plate organization, loss of columnar organization, shorter hypertrophic zones, and delayed primary and secondary ossification. Immunohistochemistry for Sox9, BrdU, p57, collagen X and PECAM revealed reduction in chondrocyte differentiation and proliferation, and hypertrophy and vascularisation in growth plates of mutant mice. Isolated chondrocytes and cartilage explants from mutant mice showed aberrant expression of ECM markers including aggrecan, collagen II and MMP-13.
PPARγ is required for normal endochondral ossification and cartilage development in vivo.
PMCID: PMC3430604  PMID: 22131019
5.  Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span  
The Journal of Clinical Investigation  2013;123(5):2049-2063.
Human ATRX mutations are associated with cognitive deficits, developmental abnormalities, and cancer. We show that the Atrx-null embryonic mouse brain accumulates replicative damage at telomeres and pericentromeric heterochromatin, which is exacerbated by loss of p53 and linked to ATM activation. ATRX-deficient neuroprogenitors exhibited higher incidence of telomere fusions and increased sensitivity to replication stress–inducing drugs. Treatment of Atrx-null neuroprogenitors with the G-quadruplex (G4) ligand telomestatin increased DNA damage, indicating that ATRX likely aids in the replication of telomeric G4-DNA structures. Unexpectedly, mutant mice displayed reduced growth, shortened life span, lordokyphosis, cataracts, heart enlargement, and hypoglycemia, as well as reduction of mineral bone density, trabecular bone content, and subcutaneous fat. We show that a subset of these defects can be attributed to loss of ATRX in the embryonic anterior pituitary that resulted in low circulating levels of thyroxine and IGF-1. Our findings suggest that loss of ATRX increases DNA damage locally in the forebrain and anterior pituitary and causes tissue attrition and other systemic defects similar to those seen in aging.
PMCID: PMC3635723  PMID: 23563309
6.  The Critical Role of the Epidermal Growth Factor Receptor in Endochondral Ossification 
Loss of epidermal growth factor receptor (EGFR) activity in mice alters growth plate development, impairs endochondral ossification, and retards growth. However, the detailed mechanism by which EGFR regulates endochondral bone formation is unknown. Here, we show that administration of an EGFR-specific small molecule inhibitor, gefitinib, into 1-month-old rats for 7 days produced profound defects in long bone growth plate cartilage characterized by epiphyseal growth plate thickening and massive accumulation of hypertrophic chondrocytes. Immunostaining demonstrated that growth plate chondrocytes express EGFR but endothelial cells and osteoclasts show little to no expression. Gefitinib did not alter chondrocyte proliferation or differentiation and vascular invasion into the hypertrophic cartilage. However, osteoclast recruitment and differentiation at the chondro-osseous junction was attenuated due to decreased RANKL expression in the growth plate. Moreover, gefitinib treatment inhibited the expression of matrix metalloproteinases (MMP9, 13, and 14), increased the amount of collagen fibrils, and decreased degraded extracellular matrix products in the growth plate. In vitro, the EGFR ligand TGFα strongly stimulated RANKL, MMP9 and MMP13 expression and suppressed OPG expression in primary chondrocytes. In addition, a mouse model of cartilage-specific EGFR inactivation exhibited a similar phenotype of hypertrophic cartilage enlargement. Together, our data demonstrate that EGFR signaling supports osteoclastogenesis at the chondro-osseous junction and promotes chondrogenic expression of MMPs in the growth plate. Therefore, we conclude that EGFR signaling plays an essential role in the remodeling of growth plate cartilage extracellular matrix into bone during endochondral ossification.
PMCID: PMC3200483  PMID: 21887704
EGFR; endochondral ossification; growth plate; chondrocytes; MMP
8.  An in vivo investigation of the initiation and progression of subchondral cysts in a rodent model of secondary osteoarthritis 
Subchondral bone cysts (SBC) have been identified in patients with knee osteoarthritis (OA) as a cause of greater pain, loss of cartilage and increased chance of joint replacement surgery. Few studies monitor SBC longitudinally, and clinical research using three-dimensional imaging techniques, such as magnetic resonance imaging (MRI), is limited to retrospective analyses as SBC are identified within an OA patient cohort. The purpose of this study was to use dual-modality, preclinical imaging to monitor the initiation and progression of SBC occurring within an established rodent model of knee OA.
Eight rodents underwent anterior cruciate ligament transection and partial medial meniscectomy (ACLX) of the right knee. In vivo 9.4 T MRI and micro-computed tomography (micro-CT) scans were performed consecutively prior to ACLX and 4, 8, and 12 weeks post-ACLX. Resultant images were co-registered using anatomical landmarks, which allowed for precise tracking of SBC size and composition throughout the study. The diameter of the SBC was measured, and the volumetric bone mineral density (vBMD) was calculated within the bone adjacent to SBC. At 12 weeks, the ACLX and contralateral knees were processed for histological analysis, immunohistochemistry, and Osteoarthritis Research Society International (OARSI) pathological scoring.
At 4 weeks post-ACLX, 75% of the rodent knees had at least 1 cyst that formed in the medial tibial plateau; by 12 weeks all ACLX knees contained SBC. Imaging data revealed that the SBC originate in the presence of a subchondral bone plate breach, with evolving composition over time. The diameter of the SBC increased significantly over time (P = 0.0033) and the vBMD significantly decreased at 8 weeks post-ACLX (P = 0.033). Histological analysis demonstrated positive staining for bone resorption and formation surrounding the SBC, which were consistently located beneath the joint surface with the greatest cartilage damage. Trabecular bone adjacent the SBC lacked viable osteocytes and, combined with bone marrow changes, indicated osteonecrosis.
This study provides insight into the mechanisms leading to SBC formation in knee OA. The expansion of these lesions is due to stress-induced bone resorption from the incurred mechanical instability. Therefore, we suggest these lesions can be more accurately described as a form of OA-induced osteonecrosis, rather than 'subchondral cysts'.
PMCID: PMC3392819  PMID: 22304985
9.  Biology and Pathology of Rho GTPase, PI-3 Kinase-Akt and MAP Kinase Signaling Pathways in Chondrocytes 
Journal of cellular biochemistry  2010;110(3):573-580.
Chondrocytes provide the framework for the developing skeleton and regulate long-bone growththrough the activity of the growth plate. Chondrocytes in the articular cartilage, found at the ends of bones in diarthroidial joints, are responsible for maintenance of the tissue through synthesis and degradation of the extracellular matrix. The processes of growth, differentiation, cell death and matrix remodeling are regulated by a network of cell signaling pathways in response to a variety of extracellular stimuli. These stimuli consist of soluble ligands, including growth factors and cytokines, extracellular matrix proteins, and mechanical factors that act in concert to regulate chondrocyte function through a variety of canonical and non-canonical signaling pathways. Key chondrocyte signaling pathways include, but are not limited to, the p38, JNK and ERK MAP kinases, the PI-3 kinase-Akt pathway, the Jak-STAT pathway, Rho GTPases and Wnt-β-catenin and Smad pathways. Modulation of the activity of any of these pathways has been associated with various pathological states in cartilage. This review focuses on the Rho GTPases, the PI-3 kinase-Akt pathway, and some selected aspects of MAP kinase signaling. Most studies to date have examined these pathways in isolation but it is becoming clear that there is significant cross talk among the pathways and that the overall effects on chondrocyte function depend on the balance in activity of multiple signaling proteins.
PMCID: PMC2883292  PMID: 20512918
10.  Regulation of Gene Expression by PI3K in Mouse Growth Plate Chondrocytes 
PLoS ONE  2010;5(1):e8866.
Endochondral ossification, the process through which long bones are formed, involves chondrocyte proliferation and hypertrophic differentiation in the cartilage growth plate. In a previous publication we showed that pharmacological inhibition of the PI3K signaling pathway results in reduced endochondral bone growth, and in particular, shortening of the hypertrophic zone in a tibia organ culture system. In this current study we aimed to investigate targets of the PI3K signaling pathway in hypertrophic chondrocytes.
Methodology/Principal Findings
Through the intersection of two different microarray analyses methods (classical single gene analysis and GSEA) and two different chondrocyte differentiation systems (primary chondrocytes treated with a pharmacological inhibitor of PI3K and microdissected growth plates), we were able to identify a high number of genes grouped in GSEA functional categories regulated by the PI3K signaling pathway. Genes such as Phlda2 and F13a1 were down-regulated upon PI3K inhibition and showed increased expression in the hypertrophic zone compared to the proliferative/resting zone of the growth plate. In contrast, other genes including Nr4a1 and Adamts5 were up-regulated upon PI3K inhibition and showed reduced expression in the hypertrophic zone. Regulation of these genes by PI3K signaling was confirmed by quantitative RT-PCR. We focused on F13a1 as an interesting target because of its known role in chondrocyte hypertrophy and osteoarthritis. Mouse E15.5 tibiae cultured with LY294002 (PI3K inhibitor) for 6 days showed decreased expression of factor XIIIa in the hypertrophic zone compared to control cultures.
Discovering targets of signaling pathways in hypertrophic chondrocytes could lead to targeted therapy in osteoarthritis and a better understanding of the cartilage environment for tissue engineering.
PMCID: PMC2810323  PMID: 20111593
11.  Genome-Wide Analyses of Gene Expression during Mouse Endochondral Ossification 
PLoS ONE  2010;5(1):e8693.
Endochondral ossification is a complex process involving a series of events that are initiated by the establishment of a chondrogenic template and culminate in its replacement through the coordinated activity of osteoblasts, osteoclasts and endothelial cells. Comprehensive analyses of in vivo gene expression profiles during these processes are essential to obtain a complete understanding of the regulatory mechanisms involved.
Methodology/Principal Findings
To address these issues, we completed a microarray screen of three zones derived from manually segmented embryonic mouse tibiae. Classification of genes differentially expressed between each respective zone, functional categorization as well as characterization of gene expression patterns, cytogenetic loci, signaling pathways and functional motifs both confirmed reported data and provided novel insights into endochondral ossification. Parallel comparisons of the microdissected tibiae data set with our previously completed micromass culture screen further corroborated the suitability of micromass cultures for modeling gene expression in chondrocyte development. The micromass culture system demonstrated striking similarities to the in vivo microdissected tibiae screen; however, the micromass system was unable to accurately distinguish gene expression differences in the hypertrophic and mineralized zones of the tibia.
These studies allow us to better understand gene expression patterns in the growth plate and endochondral bones and provide an important technical resource for comparison of gene expression in diseased or experimentally-manipulated cartilages. Ultimately, this work will help to define the genomic context in which genes are expressed in long bones and to understand physiological and pathological ossification.
PMCID: PMC2805713  PMID: 20084171
12.  Loss of ATRX in Chondrocytes Has Minimal Effects on Skeletal Development 
PLoS ONE  2009;4(9):e7106.
Mutations in the human ATRX gene cause developmental defects, including skeletal deformities and dwarfism. ATRX encodes a chromatin remodeling protein, however the role of ATRX in skeletal development is currently unknown.
Methodology/Principal Findings
We induced Atrx deletion in mouse cartilage using the Cre-loxP system, with Cre expression driven by the collagen II (Col2a1) promoter. Growth rate, body size and weight, and long bone length did not differ in AtrxCol2cre mice compared to control littermates. Histological analyses of the growth plate did not reveal any differences between control and mutant mice. Expression patterns of Sox9, a transcription factor required for cartilage morphogenesis, and p57, a marker of cell cycle arrest and hypertrophic chondrocyte differentiation, was unaffected. However, loss of ATRX in cartilage led to a delay in the ossification of the hips in some mice. We also observed hindlimb polydactily in one out of 61 mutants.
These findings indicate that ATRX is not directly required for development or growth of cartilage in the mouse, suggesting that the short stature in ATR-X patients is caused by defects in cartilage-extrinsic mechanisms.
PMCID: PMC2744333  PMID: 19774083
13.  Nitric oxide, C-type natriuretic peptide and cGMP as regulators of endochondral ossification 
Developmental biology  2008;319(2):171-178.
Coordinated proliferation and differentiation of growth plate chondrocytes is required for endochondral bone growth, but the mechanisms and pathways that control these processes are not completely understood. Recent data demonstrate important roles for nitric oxide (NO) and C-type natriuretic peptide (CNP) in the regulation of cartilage development. Both NO and CNP stimulate the synthesis of cGMP and thus the activation of common downstream pathways. One of these downstream mediators, cGMP-dependent kinase II (cGKII), has itself been shown to be essential for normal endochondral bone formation. This review summarizes our knowledge of the roles and mechanisms of NO, CNP and cGKII signaling in cartilage and endochondral bone development.
PMCID: PMC2526053  PMID: 18514181
nitric oxide; C-type natriuretic peptide; cGMP; cGMP-dependent kinase; cartilage; endochondral bone; MAPK pathways
14.  The Pattern Recognition Receptor CD36 Is a Chondrocyte Hypertrophy Marker Associated with Suppression of Catabolic Responses and Promotion of Repair Responses to Inflammatory Stimuli1 
Multiple inflammatory mediators in osteoarthritis (OA) cartilage, including S100/calgranulin ligands of receptor for advanced glycation end products (RAGE), promote chondrocyte hypertrophy, a differentiation state associated with matrix catabolism. In this study, we observed that RAGE knockout was not chondroprotective in instability-induced knee OA in 8-wk-old mice. Hence, we tested the hypothesis that expression of the alternative S100/calgranulin and patterning receptor CD36, identified here as a marker of growth plate chondrocyte hypertrophy, mediates chondrocyte inflammatory and differentiation responses that promote OA. In rat knee joint destabilization-induced OA, RAGE expression was initially sparse throughout cartilage but increased diffusely by 4 wk after surgery. In contrast, CD36 expression focally increased at sites of cartilage injury and colocalized with developing chondrocyte hypertrophy and aggrecan cleavage NITEGE neoepitope formation. However, CD36 transfection in normal human knee-immortalized chondrocytes (CH-8 cells) was associated with decreased capacity of S100A11 and TNF-α to induce chondrocyte hypertrophy and ADAMTS-4 and matrix metalloproteinase 13 expression. S100A11 lost the capacity to inhibit proteoglycans synthesis and gained the capacity to induce proteoglycan synthesis in CD36-transfected CH-8 cells. Moreover, S100A11 required the p38 MAPK pathway kinase MKK3 to induce NITEGE development in mouse articular cartilage explants. However, CH-8 cells transfected with CD36 demonstrated decreased S100A11-induced MKK3 and p38 phosphorylation. Therefore, RAGE and CD36 patterning receptor expression were linked with opposing effects on inflammatory, procatabolic responses to S100A11 and TNF-α in chondrocytes.
PMCID: PMC2698125  PMID: 19342682
15.  The retinoic acid binding protein CRABP2 is increased in murine models of degenerative joint disease 
Osteoarthritis (OA) is a debilitating disease with poorly defined aetiology. Multiple signals are involved in directing the formation of cartilage during development and the vitamin A derivatives, the retinoids, figure prominently in embryonic cartilage formation. In the present study, we examined the expression of a retinoid-regulated gene in murine models of OA.
Mild and moderate forms of an OA-like degenerative disease were created in the mouse stifle joint by meniscotibial transection (MTX) and partial meniscectomy (PMX), respectively. Joint histopathology was scored using an Osteoarthritis Research Society International (OARSI) system and gene expression (Col1a1, Col10a1, Sox9 and Crabp2) in individual joints was determined using TaqMan quantitative PCR on RNA from microdissected articular knee cartilage.
For MTX, there was a significant increase in the joint score at 10 weeks (n = 4, p < 0.001) in comparison to sham surgeries. PMX surgery was slightly more severe and produced significant changes in joint score at six (n = 4, p < 0.01), eight (n = 4, p < 0.001) and 10 (n = 4, p < 0.001) weeks. The expression of Col1a1 was increased in both surgical models at two, four and six weeks post-surgery. In contrast, Col10a1 and Sox9 for the most part showed no significant difference in expression from two to six weeks post-surgery. Crabp2 expression is induced upon activation of the retinoid signalling pathway. At two weeks after surgery in the MTX and PMX animals, Crabp2 expression was increased about 18-fold and about 10-fold over the sham control, respectively. By 10 weeks, Crabp2 expression was increased about three-fold (n = 7, not significant) in the MTX animals and about five-fold (n = 7, p < 0.05) in the PMX animals in comparison to the contralateral control joint.
Together, these findings suggest that the retinoid signalling pathway is activated early in the osteoarthritic process and is sustained during the course of the disease.
PMCID: PMC2688246  PMID: 19173746
17.  The PI3K pathway regulates endochondral bone growth through control of hypertrophic chondrocyte differentiation 
The majority of our bones develop through the process of endochondral ossification that involves chondrocyte proliferation and hypertrophic differentiation in the cartilage growth plate. A large number of growth factors and hormones have been implicated in the regulation of growth plate biology, however, less is known about the intracellular signaling pathways involved. PI3K/Akt has been identified as a major regulator of cellular proliferation, differentiation and death in multiple cell types.
Results and Discussion
Employing an organ culture system of embryonic mouse tibiae and LY294002, a pharmacological inhibitor of PI3K, we show that inhibition of the pathway results in significant growth reduction, demonstrating that PI3K is required for normal endochondral bone growth in vitro. PI3K inhibition reduces the length of the proliferating and particularly of the hypertrophic zone. Studies with organ cultures and primary chondrocytes in micromass culture show delayed hypertrophic differentiation of chondrocytes and increased apoptosis in the presence of LY294002. Surprisingly, PI3K inhibition had no strong effect on IGF1-induced bone growth, but partially blocked the anabolic effects of C-type natriuretic peptide.
Our data demonstrate an essential role of PI3K signaling in chondrocyte differentiation and as a consequence of this, in the endochondral bone growth process.
PMCID: PMC2329617  PMID: 18405384
18.  The ANKH ΔE490Mutation in Calcium Pyrophosphate Dihydrate Crystal Deposition Disease (CPPDD) Affects Tissue Non-specific Alkaline Phosphatase (TNAP) Activities 
ANKH (human homolog of progressive ankylosis) regulates inorganic pyrophosphate (PPi) transport. Dominant ANKH mutations were detected in at least five multiplex families with calcium pyrophosphate dihydrate crystal deposition disease (CPPPD). The objective of this study is to assess the functional consequences of one CPPDD-associated ANKH mutation (ΔE490) in chondrogenic ATDC5 cells. Stable ATDC5 transfectants bearing myc-tagged constructs of wild-type ANKH, mutant ANKH (ΔE490) and neo controls were generated. Upon ITS (insulin, transferrin and selenium) induction, expression of chondrocyte markers including alkaline phosphatase activity in the various transfectants was assessed. The ANKH ΔE490- transfectants had low alkaline phosphatase activities throughout ITS treatment due to lower TNAP protein expression and the presence of intracellular low-molecular-weight inhibitors. Our results suggest that the interplay of ANKH and TNAP activities is tightly regulated.
PMCID: PMC2577949  PMID: 19088867
19.  Src kinase inhibition promotes the chondrocyte phenotype 
Regulated differentiation of chondrocytes is essential for both normal skeletal development and maintenance of articular cartilage. The intracellular pathways that control these events are incompletely understood, and our ability to modulate the chondrocyte phenotype in vivo or in vitro is therefore limited. Here we examine the role played by one prominent group of intracellular signalling proteins, the Src family kinases, in regulating the chondrocyte phenotype. We show that the Src family kinase Lyn exhibits a dynamic expression pattern in the chondrogenic cell line ATDC5 and in a mixed population of embryonic mouse chondrocytes in high-density monolayer culture. Inhibition of Src kinase activity using the pharmacological compound PP2 (4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine) strongly reduced the number of primary mouse chondrocytes. In parallel, PP2 treatment increased the expression of both early markers (such as Sox9, collagen type II, aggrecan and xylosyltransferases) and late markers (collagen type X, Indian hedgehog and p57) markers of chondrocyte differentiation. Interestingly, PP2 repressed the expression of the Src family members Lyn, Frk and Hck. It also reversed morphological de-differentiation of chondrocytes in monolayer culture and induced rounding of chondrocytes, and reduced stress fibre formation and focal adhesion kinase phosphorylation. We conclude that the Src kinase inhibitor PP2 promotes chondrogenic gene expression and morphology in monolayer culture. Strategies to block Src activity might therefore be useful both in tissue engineering of cartilage and in the maintenance of the chondrocyte phenotype in diseases such as osteoarthritis.
PMCID: PMC2212572  PMID: 17927818
20.  Expression profiling of Dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development 
BMC Genomics  2007;8:205.
Glucocorticoids (GCs) are widely used anti-inflammatory drugs. While useful in clinical practice, patients taking GCs often suffer from skeletal side effects including growth retardation in children and adolescents, and decreased bone quality in adults. On a physiological level, GCs have been implicated in the regulation of chondrogenesis and osteoblast differentiation, as well as maintaining homeostasis in cartilage and bone. We identified the glucocorticoid receptor (GR) as a potential regulator of chondrocyte hypertrophy in a microarray screen of primary limb bud mesenchyme micromass cultures. Some targets of GC regulation in chondrogenesis are known, but the global effects of pharmacological GC doses on chondrocyte gene expression have not been comprehensively evaluated.
This study systematically identifies a spectrum of GC target genes in embryonic growth plate chondrocytes treated with a synthetic GR agonist, dexamethasone (DEX), at 6 and 24 hrs. Conventional analysis of this data set and gene set enrichment analysis (GSEA) was performed. Transcripts associated with metabolism were enriched in the DEX condition along with extracellular matrix genes. In contrast, a subset of growth factors and cytokines were negatively correlated with DEX treatment. Comparing DEX-induced gene expression data to developmental changes in gene expression in micromass cultures revealed an additional layer of complexity in which DEX maintains the expression of certain chondrocyte marker genes while inhibiting factors that promote vascularization and ultimately ossification of the cartilaginous template.
Together, these results provide insight into the mechanisms and major molecular classes functioning downstream of DEX in primary chondrocytes. In addition, comparison of our data with microarray studies of DEX treatment in other cell types demonstrated that the majority of DEX effects are tissue-specific. This study provides novel insights into the effects of pharmacological GC on chondrocyte gene transcription and establishes the foundation for subsequent functional studies.
PMCID: PMC1929075  PMID: 17603917
21.  C-type natriuretic peptide regulates endochondral bone growth through p38 MAP kinase-dependent and – independent pathways 
C-type natriuretic peptide (CNP) has recently been identified as an important anabolic regulator of endochondral bone growth, but the molecular mechanisms mediating its effects are not completely understood.
We demonstrate in a tibia organ culture system that pharmacological inhibition of p38 blocks the anabolic effects of CNP. We further show that CNP stimulates endochondral bone growth largely through expansion of the hypertrophic zone of the growth plate, while delaying mineralization. Both effects are reversed by p38 inhibition. We also performed Affymetrix microarray analyses on micro-dissected tibiae to identify CNP target genes. These studies confirmed that hypertrophic chondrocytes are the main targets of CNP signaling in the growth plate, since many more genes were regulated by CNP in this zone than in the others. While CNP receptors are expressed at similar levels in all three zones, cGMP-dependent kinases I and II, important transducers of CNP signaling, are expressed at much higher levels in hypertrophic cells than in other areas of the tibia, providing a potential explanation for the spatial distribution of CNP effects. In addition, our data show that CNP induces the expression of NPR3, a decoy receptor for natriuretic peptides, suggesting the existence of a feedback loop to limit CNP signaling. Finally, detailed analyses of our microarray data showed that CNP regulates numerous genes involved in BMP signaling and cell adhesion.
Our data identify novel target genes of CNP and demonstrate that the p38 pathway is a novel, essential mediator of CNP effects on endochondral bone growth, with potential implications for understanding and treatment of numerous skeletal diseases.
PMCID: PMC1847438  PMID: 17374144
22.  Forced mobilization accelerates pathogenesis: characterization of a preclinical surgical model of osteoarthritis 
Preclinical osteoarthritis (OA) models are often employed in studies investigating disease-modifying OA drugs (DMOADs). In this study we present a comprehensive, longitudinal evaluation of OA pathogenesis in a rat model of OA, including histologic and biochemical analyses of articular cartilage degradation and assessment of subchondral bone sclerosis. Male Sprague-Dawley rats underwent joint destabilization surgery by anterior cruciate ligament transection and partial medial meniscectomy. The contralateral joint was evaluated as a secondary treatment, and sham surgery was performed in a separate group of animals (controls). Furthermore, the effects of walking on a rotating cylinder (to force mobilization of the joint) on OA pathogenesis were assessed. Destabilization-induced OA was investigated at several time points up to 20 weeks after surgery using Osteoarthritis Research Society International histopathology scores, in vivo micro-computed tomography (CT) volumetric bone mineral density analysis, and biochemical analysis of type II collagen breakdown using the CTX II biomarker. Expression of hypertrophic chondrocyte markers was also assessed in articular cartilage. Cartilage degradation, subchondral changes, and subchondral bone loss were observed as early as 2 weeks after surgery, with considerable correlation to that seen in human OA. We found excellent correlation between histologic changes and micro-CT analysis of underlying bone, which reflected properties of human OA, and identified additional molecular changes that enhance our understanding of OA pathogenesis. Interestingly, forced mobilization exercise accelerated OA progression. Minor OA activity was also observed in the contralateral joint, including proteoglycan loss. Finally, we observed increased chondrocyte hypertrophy during pathogenesis. We conclude that forced mobilization accelerates OA damage in the destabilized joint. This surgical model of OA with forced mobilization is suitable for longitudinal preclinical studies, and it is well adapted for investigation of both early and late stages of OA. The time course of OA progression can be modulated through the use of forced mobilization.
PMCID: PMC1860072  PMID: 17284317
23.  Dexamethasone stimulates expression of C-type Natriuretic Peptide in chondrocytes 
Growth of endochondral bones is regulated through the activity of cartilaginous growth plates. Disruption of the physiological patterns of chondrocyte proliferation and differentiation – such as in endocrine disorders or in many different genetic diseases (e.g. chondrodysplasias) – generally results in dwarfism and skeletal defects. For example, glucocorticoid administration in children inhibits endochondral bone growth, but the molecular targets of these hormones in chondrocytes remain largely unknown. In contrast, recent studies have shown that C-type Natriuretic Peptide (CNP) is an important anabolic regulator of cartilage growth, and loss-of-function mutations in the human CNP receptor gene cause dwarfism. We asked whether glucocorticoids could exert their activities by interfering with the expression of CNP or its downstream signaling components.
Primary mouse chondrocytes in monolayer where incubated with the synthetic glucocorticoid Dexamethasone (DEX) for 12 to 72 hours. Cell numbers were determined by counting, and real-time PCR was performed to examine regulation of genes in the CNP signaling pathway by DEX.
We show that DEX does influence expression of key genes in the CNP pathway. Most importantly, DEX significantly increases RNA expression of the gene encoding CNP itself (Nppc). In addition, DEX stimulates expression of Prkg2 (encoding cGMP-dependent protein kinase II) and Npr3 (natriuretic peptide decoy receptor) genes. Conversely, DEX was found to down-regulate the expression of the gene encoding its receptor, Nr3c1 (glucocorticoid receptor), as well as the Npr2 gene (encoding the CNP receptor).
Our data suggest that the growth-suppressive activities of DEX are not due to blockade of CNP signaling. This study reveals a novel, unanticipated relationship between glucocorticoid and CNP signaling and provides the first evidence that CNP expression in chondrocytes is regulated by endocrine factors.
PMCID: PMC1660540  PMID: 17116261
24.  The transcription factor ATF3 is upregulated during chondrocyte differentiation and represses cyclin D1 and A gene transcription 
Coordinated chondrocyte proliferation and differentiation are required for normal endochondral bone growth. Transcription factors binding to the cyclicAMP response element (CRE) are known to regulate these processes. One member of this family, Activating Tanscription Factor 3 (ATF3), is expressed during skeletogenesis and acts as a transcriptional repressor, but the function of this protein in chondrogenesis is unknown.
Here we demonstrate that Atf3 mRNA levels increase during mouse chondrocyte differentiation in vitro and in vivo. In addition, Atf3 mRNA levels are increased in response to cytochalasin D treatment, an inducer of chondrocyte maturation. This is accompanied by increased Atf3 promoter activity in cytochalasin D-treated chondrocytes. We had shown earlier that transcription of the cell cycle genes cyclin D1 and cyclin A in chondrocytes is dependent on CREs. Here we demonstrate that overexpression of ATF3 in primary mouse chondrocytes results in reduced transcription of both genes, as well as decreased activity of a CRE reporter plasmid. Repression of cyclin A transcription by ATF3 required the CRE in the cyclin A promoter. In parallel, ATF3 overexpression reduces the activity of a SOX9-dependent promoter and increases the activity of a RUNX2-dependent promoter.
Our data suggest that transcriptional induction of the Atf3 gene in maturing chondrocytes results in down-regulation of cyclin D1 and cyclin A expression as well as activation of RUNX2-dependent transcription. Therefore, ATF3 induction appears to facilitate cell cycle exit and terminal differentiation of chondrocytes.
PMCID: PMC1584246  PMID: 16984628
25.  Microarray Analyses of Gene Expression during Chondrocyte Differentiation Identifies Novel Regulators of Hypertrophy 
Molecular Biology of the Cell  2005;16(11):5316-5333.
Ordered chondrocyte differentiation and maturation is required for normal skeletal development, but the intracellular pathways regulating this process remain largely unclear. We used Affymetrix microarrays to examine temporal gene expression patterns during chondrogenic differentiation in a mouse micromass culture system. Robust normalization of the data identified 3300 differentially expressed probe sets, which corresponds to 1772, 481, and 249 probe sets exhibiting minimum 2-, 5-, and 10-fold changes over the time period, respectively. GeneOntology annotations for molecular function show changes in the expression of molecules involved in transcriptional regulation and signal transduction among others. The expression of identified markers was confirmed by RT-PCR, and cluster analysis revealed groups of coexpressed transcripts. One gene that was up-regulated at later stages of chondrocyte differentiation was Rgs2. Overexpression of Rgs2 in the chondrogenic cell line ATDC5 resulted in accelerated hypertrophic differentiation, thus providing functional validation of microarray data. Collectively, these analyses provide novel information on the temporal expression of molecules regulating endochondral bone development.
PMCID: PMC1266429  PMID: 16135533

Results 1-25 (26)