PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (28)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  HLA Class II Genotyping of African American Type 1 Diabetic Patients Reveals Associations Unique to African Haplotypes 
Diabetes  2013;62(9):3292-3299.
HLA genotyping was performed in African American type 1 diabetic patients (n = 772) and controls (n = 1,641) in the largest study of African Americans and type 1 diabetes reported to date. Cases were from Children’s Hospital and Research Center Oakland and from existing collections (Type 1 Diabetes Genetics Consortium [T1DGC], Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications [DCCT/EDIC], and Genetics of Kidneys in Diabetes [GoKinD]). Controls were from the T1DGC and from newborn bloodspot cards. The diversity of HLA DRB1-DQA1-DQB1 haplotypes and genotypes is far greater than that found in Europeans and European Americans. Association analyses replicated many type 1 diabetes risk effects of European-derived haplotypes but also revealed novel effects for African-derived haplotypes. Notably, the African-specific “DR3” haplotype DRB1*03:02-DQA1*04:01-DQB1*04:02 is protective for type 1 diabetes, in contrast to the common and highly-susceptible DR3 DRB1*03:01-DQA1*05:01-DQB1*02:01. Both DRB1*07:01 and DRB1*13:03 haplotypes are predisposing when they include DQA1*03:01-DQB1*02:01g but are protective with DQA1*02:01-DQB1*02:01g. The heterozygous DR4/DR9 genotype, containing the African-derived “DR9” haplotype DRB1*09:01-DQA1*03:01-DQB1*02:01g, exhibits extremely high risk (odds ratio = 30.88), approaching that for DR3/DR4 in European populations. Disease risk assessment for African Americans differs greatly from risk assessment in European populations. This has profound implications on risk screening programs and underscores the need for high-resolution genotyping of multiple populations for the rational design of screening programs with tests that will fairly represent the population being screened.
doi:10.2337/db13-0094
PMCID: PMC3749336  PMID: 23801574
2.  Receiver Operating Characteristic Analysis of HLA, CTLA4, and Insulin Genotypes for Type 1 Diabetes 
Diabetes Care  2013;36(9):2504-2507.
OBJECTIVE
This study assessed the ability to distinguish between type 1 diabetes–affected individuals and their unaffected relatives using HLA and single nucleotide polymorphism (SNP) genotypes.
RESEARCH DESIGN AND METHODS
Eight models, ranging from only the high-risk DR3/DR4 genotype to all significantly associated HLA genotypes and two SNPs mapping to the cytotoxic T-cell–associated antigen-4 gene (CTLA4) and insulin (INS) genes, were fitted to high-resolution class I and class II HLA genotyping data for patients from the Type 1 Diabetes Genetics Consortium collection. Pairs of affected individuals and their unaffected siblings were divided into a “discovery” (n = 1,015 pairs) and a “validation” set (n = 318 pairs). The discriminating performance of various combinations of genetic information was estimated using receiver operating characteristic (ROC) curve analysis.
RESULTS
The use of only the presence or absence of the high-risk DR3/DR4 genotype achieved very modest discriminating ability, yielding an area under the curve (AUC) of 0.62 in the discovery set and 0.59 in the validation set. The full model—which included HLA information from the class II loci DPB1, DRB1, and DQB1; selected alleles from HLA class I loci A and B; and SNPs from the CTLA4 and INS genes—increased the AUC to 0.74 in the discovery set and to 0.71 in the validation set. A cost-effective alternative is proposed, using genotype information equivalent to typing four SNPs (DR3, DR4-DQB1*03:02, CTLA-4, and INS), which achieved an AUC of 0.72 in the discovery set and 0.69 in the validation set.
CONCLUSIONS
Genotyping data sufficient to tag DR3, DR4-DQB1*03:02, CTLA4, and INS were shown to distinguish between subjects with type 1 diabetes and their unaffected siblings adequately to achieve clinically utility to identify children in multiplex families to be considered for early intervention.
doi:10.2337/dc12-2284
PMCID: PMC3747897  PMID: 23628620
3.  One year remission of type 1 diabetes mellitus in a patient treated with sitagliptin 
Summary
Type 1 diabetes mellitus (T1DM) is a chronic disease characterized by the autoimmune destruction of pancreatic β-cells. This paper describes the case of a 19-year-old male patient who presented with glutamic acid decarboxylase (GAD) antibody positive and diabetic ketoacidosis, which mandated intensive insulin treatment. Once the ketoacidosis was controlled, an oral dose of 100 mg of sitagliptin was administered once a day. Ketoacidosis was managed by insulin and insulin daily requirement began to dwindle after one month, until its complete withdrawal at 8 weeks, when partial remission was reached. The patient has now remained on sitagliptin treatment alone for a year, without requiring insulin. The benefit observed with this medication is possibly associated with its immunological effects. Inhibition of dipeptidyl peptidase 4 in animal models deregulates the Th1 immune response, increases secretion of Th2 cytokines, activates CD4+CD25+FoxP3+ regulatory T-cells, and prevents IL17 production.
Learning points
The use of insulin-dose-adjusted HbA1c constitutes the best way to define partial remission in T1DM patients.The use of sitagliptin in T1DM patients could help to decrease daily requirement of insulin by delaying β-cell loss and improving endogenous insulin production.The determination of antibodies against insulin, islet cells, and GAD permits differentiation of T1DM patients from those with atypical or ketosis-prone diabetes.
doi:10.1530/EDM-14-0072
PMCID: PMC4190822  PMID: 25332771
4.  HLA DR-DQ Haplotypes and Genotypes and Type 1 Diabetes Risk 
Diabetes  2008;57(4):1084-1092.
OBJECTIVE
The Type 1 Diabetes Genetics Consortium has collected type 1 diabetic families worldwide for genetic analysis. The major genetic determinants of type 1 diabetes are alleles at the HLA-DRB1 and DQB1 loci, with both susceptible and protective DR-DQ haplotypes present in all human populations. The aim of this study is to estimate the risk conferred by specific DR-DQ haplotypes and genotypes.
RESEARCH DESIGN AND METHODS
Six hundred and seven Caucasian families and 38 Asian families were typed at high resolution for the DRB1, DQA1, and DQB1 loci. The association analysis was performed by comparing the frequency of DR-DQ haplotypes among the chromosomes transmitted to an affected child with the frequency of chromosomes not transmitted to any affected child.
RESULTS
A number of susceptible, neutral, and protective DR-DQ haplotypes have been identified, and a statistically significant hierarchy of type 1 diabetes risk has been established. The most susceptible haplotypes are the DRB1*0301-DQA1*0501-DQB1*0201 (odds ratio [OR] 3.64) and the DRB1*0405-DQA1*0301-DQB1*0302, DRB1*0401-DQA1*0301-DQB*0302, and DRB1*0402-DQA1*0301-DQB1*0302 haplotypes (ORs 11.37, 8.39, and 3.63), followed by the DRB1*0404-DQA1*0301-DQB1*0302 (OR 1.59) and the DRB1*0801-DQB1*0401-DQB1*0402 (OR 1.25) haplotypes. The most protective haplotypes are DRB1*1501-DQA1*0102-DQB1*0602 (OR 0.03), DRB1*1401-DQA1*0101-DQB1*0503 (OR 0.02), and DRB1*0701-DQA1*0201-DQB1*0303 (OR 0.02).
CONCLUSIONS
Specific combinations of alleles at the DRB1, DQA1, and DQB1 loci determine the extent of haplotypic risk. The comparison of closely related DR-DQ haplotype pairs with different type 1 diabetes risks allowed identification of specific amino acid positions critical in determining disease susceptibility. These data also indicate that the risk associated with specific HLA haplotypes can be influenced by the genotype context and that the trans-complementing heterodimer encoded by DQA1*0501 and DQB1*0302 confers very high risk.
doi:10.2337/db07-1331
PMCID: PMC4103420  PMID: 18252895
5.  Next Generation Sequencing Reveals the Association of DRB3*02:02 With Type 1 Diabetes 
Diabetes  2013;62(7):2618-2622.
The primary associations of the HLA class II genes, HLA-DRB1 and HLA-DQB1, and the class I genes, HLA-A and HLA-B, with type 1 diabetes (T1D) are well established. However, the role of polymorphism at the HLA-DRB3, HLA-DRB4, and HLA-DRB5 loci remains unclear. In two separate studies, one of 500 subjects and 500 control subjects and one of 366 DRB1*03:01–positive samples from selected multiplex T1D families, we used Roche 454 sequencing with Conexio Genomics ASSIGN ATF 454 HLA genotyping software analysis to analyze sequence variation at these three HLA-DRB loci. Association analyses were performed on the two HLA-DRB loci haplotypes (DRB1-DRB3, -DRB4, or -DRB5). Three common HLA-DRB3 alleles (*01:01, *02:02, *03:01) were observed. DRB1*03:01 haplotypes carrying DRB3*02:02 conferred a higher T1D risk than did DRB1*03:01 haplotypes carrying DRB3*01:01 in DRB1*03:01/*03:01 homozygotes with two DRB3*01:01 alleles (odds ratio [OR] 3.4 [95% CI 1.46–8.09]), compared with those carrying one or two DRB3*02:02 alleles (OR 25.5 [3.43–189.2]) (P = 0.033). For DRB1*03:01/*04:01 heterozygotes, however, the HLA-DRB3 allele did not significantly modify the T1D risk of the DRB1*03:01 haplotype (OR 7.7 for *02:02; 6.8 for *01:01). These observations were confirmed by sequence analysis of HLA-DRB3 exon 2 in a targeted replication study of 281 informative T1D family members and 86 affected family-based association control (AFBAC) haplotypes. The frequency of DRB3*02:02 was 42.9% in the DRB1*03:01/*03:01 patients and 27.6% in the DRB1*03:01/*04 (P = 0.005) compared with 22.6% in AFBAC DRB1*03:01 chromosomes (P = 0.001). Analysis of T1D-associated alleles at other HLA loci (HLA-A, HLA-B, and HLA-DPB1) on DRB1*03:01 haplotypes suggests that DRB3*02:02 on the DRB1*03:01 haplotype can contribute to T1D risk.
doi:10.2337/db12-1387
PMCID: PMC3712046  PMID: 23462545
6.  The HLA Class I A Locus Affects Susceptibility to Type 1 Diabetes 
Human immunology  2002;63(8):657-664.
Human leukocyte antigen A (HLA-A) genotypes were determined for samples from 283 multiplex, Caucasian, type 1 diabetes families from the Human Biological Data Interchange (HBDI) using an immobilized probe assay. Distribution of HLA-A alleles transmitted to patients was significantly different from that in affected family-based controls (AFBAC) (p = 0.004). Transmission disequilibrium test (TDT) analysis revealed differential transmission of several HLA-A alleles from parents to affected offspring. HLA class II DRB1 and DQB1 loci were also typed, allowing assignment of HLA-A alleles to haplotypes and calculation of linkage disequilibrium values. Some of the apparent effects of HLA-A alleles on type 1 diabetes susceptibility were attributable to linkage disequilibrium with DR and DQ alleles, although others were not. The differences in frequencies between patients and controls of alleles A*0101, A*2402, and A*3002 could not be explained by linkage disequilibrium alone. Our results suggest an important role for class I antigens in modulating susceptibility to type 1 diabetes.
PMCID: PMC4049513  PMID: 12121673
HLA-A genotypes; type 1 diabetes
7.  Human Leukocyte Antigen Class I B and C Loci Contribute to Type 1 Diabetes (T1D) Susceptibility and Age at T1D Onset 
Human immunology  2005;66(3):301-313.
Alleles of human leukocyte antigen (HLA) class II genes are well known to affect susceptibility to type 1 diabetes (T1D), but less is known about the contribution of HLA class I alleles to T1D susceptibility. In this study, molecular genotyping was performed at the HLA-B and HLA-C loci for 283 multiplex Caucasian families, previously typed for HLA-A and the class II loci. Allele frequencies were compared between affected siblings and affected family-based controls. Linkage disequilibrium coefficients were calculated for HLA-B–HLA-C haplotypes and for class I–class II haplotypes. After adjustment for linkage disequilibrium, the following alleles remain associated with T1D: B*1801, B*3906, B*4403, C*0303, C*0802, and C*1601. B and C allele associations were tested for certain T1D-associated DRB1-DQB1 haplotypes, with the following results: B*3801 is protective on DRB1*0401-DQB1*0302 haplotypes, both C*0701 and C*0702 are predisposing on DRB1*0404-DQB1*0302 haplotypes, and B*3906 is predisposing on DRB1*0801-DQB1*0402 haplotypes. As with previous results for HLA-A, HLA-B and HLA-C are associated with age at T1D onset (mean 11.6 ± 0.3 years). The protective allele B*4403 was associated with older age at onset (15.1 years; p < 0.04), and the predisposing alleles C*0702 and B*3906 were associated with younger age at onset (9.5 years, p < 0.001; and 7.8 years, p < 0.002, respectively). These data support a role for HLA class I alleles in susceptibility to and age at onset of T1D.
doi:10.1016/j.humimm.2004.12.001
PMCID: PMC4049521  PMID: 15784469
type 1 diabetes; HLA class I; HLA-B; HLA-C; age at onset
8.  Prediction of Type 1 Diabetes 
Diabetes  2013;62(4):1020-1021.
doi:10.2337/db12-1593
PMCID: PMC3609574  PMID: 23520277
9.  Report from the Immunogenomic Data Analysis Working Group (IDAWG) 16th International HLA and Immunogenetics Workshop (IHIW) Project: Immunogenomic Data-Management Methods 
Summary
The goal of the IDAWG is to facilitate the consistent analysis of HLA and KIR data, and the sharing of those data among the immunogenomic and larger genomic communities. However, the data-management approaches currently applied by immunogenomic researchers are not widely discussed or reported in the literature, and the effect of different approaches on data-analyses is not known.
With ASHI’s support, the IDAWG developed a forty-five question survey on HLA and KIR data-generation, data-management, and data-analysis practices. Survey questions detailed the loci genotyped, typing systems used, nomenclature versions reported, computer operating systems and software used to manage and transmit data, the approaches applied to resolve HLA ambiguity, and the methods used for basic population-level analyses. Respondents were invited to demonstrate their HLA ambiguity resolution approaches in simulated data sets.By May 2012, 156 respondents from 35 nations had completed the survey . These survey respondents represent a broad sampling of the Immunogenomic community; 52% were European, 30% North American, 10% Asian, 4% South American, and 4% from the Pacific.
The project will continue in conjunction with the 17th Workshop, with the aim of developing community data-sharing standards, ambiguity resolution documentation formats, single-task data-Management tools, and, novel data-analysis methods and applications. While additional project details and plans for the 17th IHIW will be forthcoming, we welcome the input and participation in these projects from the histocompatibility and immunogenetics community.
doi:10.1111/iji.12026
PMCID: PMC3789600  PMID: 23280068
Meta-analysis; Statistics; HLA; Genetics
10.  Report from the 16th International Histocompatibility and Immunogenetics Workshop (IHIW) Component: Population Global Distribution of Killer Immunoglobulin-like Receptor (KIR) and Ligands 
In the last fifteen years published reports have described KIR gene-content frequency distributions in more than 120 populations worldwide. However, there have been limited studies examining these data in aggregate in order to detect overall patterns of variation at regional and global levels. Here, we present a summary of the collection of KIR gene-content data for 105 worldwide populations collected as part of the 15th and 16th International Histocompatibility and Immunogenetics Workshops, and preliminary results for data analysis.
The data were contributed by thirty-four laboratories during the four-year course of this project, including data for the HGDP-CEPH populations. Additionally, data from the 15th IHIW and data contributed to the allelefrequencies.net (AFND) database were combined with the current workshop dataset
doi:10.1111/iji.12028
PMCID: PMC3789603  PMID: 23280119
KIR; HLA; workshop; report
11.  Fine-Mapping the Genetic Association of the Major Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects 
PLoS Genetics  2013;9(11):e1003926.
The major histocompatibility complex (MHC) region is strongly associated with multiple sclerosis (MS) susceptibility. HLA-DRB1*15:01 has the strongest effect, and several other alleles have been reported at different levels of validation. Using SNP data from genome-wide studies, we imputed and tested classical alleles and amino acid polymorphisms in 8 classical human leukocyte antigen (HLA) genes in 5,091 cases and 9,595 controls. We identified 11 statistically independent effects overall: 6 HLA-DRB1 and one DPB1 alleles in class II, one HLA-A and two B alleles in class I, and one signal in a region spanning from MICB to LST1. This genomic segment does not contain any HLA class I or II genes and provides robust evidence for the involvement of a non-HLA risk allele within the MHC. Interestingly, this region contains the TNF gene, the cognate ligand of the well-validated TNFRSF1A MS susceptibility gene. The classical HLA effects can be explained to some extent by polymorphic amino acid positions in the peptide-binding grooves. This study dissects the independent effects in the MHC, a critical region for MS susceptibility that harbors multiple risk alleles.
Author Summary
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease with a heritable component. Although it has been known for a long time that the strongest MS risk factor maps to the major histocompatibility complex (MHC) on chromosome 6, there are still many unresolved questions as to the identity and the nature of the risk variants within the MHC. Because the MHC has a complex structure, systematic investigation across this region has been challenging. In this study, we used state-of-the-art imputation methods coupled to statistical regression to query variants in the human leukocyte antigen (HLA) class I and II genes for a role in MS risk. Starting from available SNP genotype data, we replicated the strongest risk factor, the HLA-DRB1*15:01 allele, and were able to identify 11 independent effects in total. Functional studies are now needed to understand their mechanism in MS etiology.
doi:10.1371/journal.pgen.1003926
PMCID: PMC3836799  PMID: 24278027
12.  Defining multiple common “completely” conserved major histocompatibility complex SNP haplotypes 
Clinical immunology (Orlando, Fla.)  2009;132(2):203-214.
The availability of both HLA data and genotypes for thousands of SNPs across the major histocompatibility complex (MHC) in 1240 complete families of the Type 1 Diabetes Genetics Consortium allowed us to analyze the occurrence and extent of megabase contiguous identity for founder chromosomes from unrelated individuals. We identified 82 HLA-defined haplotype groups, and within these groups, megabase regions of SNP identity were readily apparent. The conserved chromosomes within the 82 haplotype groups comprise approximately one third of the founder chromosomes. It is currently unknown whether such frequent conservation for groups of unrelated individuals is specific to the MHC, or if initial binning by highly polymorphic HLA alleles facilitated detection of a more general phenomenon within the MHC. Such common identity, specifically across the MHC, impacts type 1 diabetes susceptibility and may impact transplantation between unrelated individuals.
doi:10.1016/j.clim.2009.03.530
PMCID: PMC3740523  PMID: 19427271
Type 1 diabetes; MHC; HLA; Extended haplotypes; SNP; 8.1; DR8
13.  The Missing Heritability in T1D and Potential New Targets for Prevention 
Journal of Diabetes Research  2013;2013:737485.
Type 1 diabetes (T1D) is a T cell-mediated disease. It is strongly associated with susceptibility haplotypes within the major histocompatibility complex, but this association accounts for an estimated 50% of susceptibility. Other studies have identified as many as 50 additional susceptibility loci, but the effect of most is very modest (odds ratio (OR) <1.5). What accounts for the “missing heritability” is unknown and is often attributed to environmental factors. Here we review new data on the cognate ligand of MHC molecules, the T cell receptor (TCR). In rats, we found that one allele of a TCR variable gene, Vβ13A, is strongly associated with T1D (OR >5) and that deletion of Vβ13+ T cells prevents diabetes. A role for the TCR is also suspected in NOD mice, but TCR regions have not been associated with human T1D. To investigate this disparity, we tested the hypothesis in silico that previous studies of human T1D genetics were underpowered to detect MHC-contingent TCR susceptibility. We show that stratifying by MHC markedly increases statistical power to detect potential TCR susceptibility alleles. We suggest that the TCR regions are viable candidates for T1D susceptibility genes, could account for “missing heritability,” and could be targets for prevention.
doi:10.1155/2013/737485
PMCID: PMC3647582  PMID: 23691517
14.  Genetics of the HLA Region in the Prediction of Type 1 Diabetes 
Current diabetes reports  2011;11(6):533-542.
Type 1 diabetes (T1D) is one of the most widely studied complex genetic disorders, and the genes in HLA are reported to account for approximately 40% to 50% of the familial aggregation of T1D. The major genetic determinants of this disease are polymorphisms of class II HLA genes encoding DQ and DR. The DR-DQ haplotypes conferring the highest risk are DRB1*03:01-DQA1*05:01-DQB1*02:01 (abbreviated “DR3”) and DRB1*04:01/02/04/05/08-DQA1*03:01-DQB1*03:02/04 (or DQB1*02; abbreviated “DR4”). The risk is much higher for the heterozygote formed by these two haplotypes (OR = 16.59; 95% CI, 13.7–20.1) than for either of the homozygotes (DR3/DR3, OR = 6.32; 95% CI, 5.12–7.80; DR4/DR4, OR = 5.68; 95% CI, 3.91). In addition, some haplotypes confer strong protection from disease, such as DRB1*15:01-DQA1*01:02-DQB1*06:02 (abbreviated “DR2”; OR = 0.03; 95% CI, 0.01–0.07). After adjusting for the genetic correlation with DR and DQ, significant associations can be seen for HLA class II DPB1 alleles, in particular, DPB1*04:02, DPB1*03:01, and DPB1*02:02. Outside of the class II region, the strongest susceptibility is conferred by allele B*39:06 (OR =10.31; 95% CI, 4.21–25.1) and other HLA-B alleles. In addition, several loci in the class III region are reported to be associated with T1D, as are some loci telomeric to class I. Not surprisingly, current approaches for the prediction of T1D in screening studies take advantage of genotyping HLA-DR and HLA-DQ loci, which is then combined with family history and screening for autoantibodies directed against islet-cell antigens. Inclusion of additional moderate HLA risk haplotypes may help identify the majority of children with T1D before the onset of the disease.
doi:10.1007/s11892-011-0223-x
PMCID: PMC3233362  PMID: 21912932
Type 1 diabetes; Genetic risk; HLA class II; HLA class I; HLA class III; Risk prediction
15.  Race-Specific Type 1 Diabetes Risk of HLA-DR7 Haplotypes 
Tissue antigens  2011;78(5):348-351.
Objective
To test the hypothesis that closely-related HLA haplotypes containing the DRB1*07:01 gene (“DR7” haplotypes) derived from European and African populations differ in their genetic susceptibility for type 1 diabetes (T1D) depending on the DQ-α molecule present.
Research Design and Methods
A combined total of ninety-eight African American T1D patients from the Type 1 Diabetes Genetics Consortium and from Children’s Hospital and Research Center Oakland were genotyped for the HLA class II loci DRB1, DQA1, and DQB1. DNA samples extracted from newborn blood spot cards from African Americans born in California (n=947) were used as a population-based control group.
Results
Among African American cases, the European-derived DRB1*07:01-DQA1*02:01-DQB1*02:01g haplotype was protective for T1D risk (odds ratio (OR)=0.34; 95% CI 0.14 - 0.78; p<0.011), but the African-derived DRB1*07:01-DQA1*03:01-DQB1*02:01g haplotype increased T1D risk (OR=3.96; 95% CI 1.94 - 8.08; p<5.5E-05).
Conclusions
The effect of DRB1*07:01-DQB1*02:01g on T1D susceptibility depends on the DQA1 allele. DRB1*07:01-DQA1*02:01-DQB1*02:01g is protective for T1D however, the presence of DQA1*03:01 on the DRB1*07:01-DQB1*02:01g haplotype not only renders the DR7 haplotype not protective, it creates a haplotype with significant T1D risk. These data underscore the importance of assessing genetic effects within ethnic context.
doi:10.1111/j.1399-0039.2011.01772.x
PMCID: PMC3193161  PMID: 21988721
type 1 diabetes; genetic risk; HLA class II; HLA DR7; African American
16.  The rs4774 CIITA missense variant is associated with risk of systemic lupus erythematosus 
Genes and Immunity  2011;12(8):667-671.
The major histocompatibility complex (MHC) class II transactivator gene (CIITA) encodes an important transcription factor required for HLA class II MHC-restricted antigen presentation. MHC genes, including the HLA class II DRB1*03:01 allele, are strongly associated with systemic lupus erythematosus (SLE). Recently the rs4774 CIITA missense variant (+1632G/C) was reported to be associated with susceptibility to multiple sclerosis. In the current study, we investigated CIITA, DRB1*03:01 and risk of SLE using a multi-stage analysis. In stage 1, 9 CIITA variants were tested in 658 cases and 1,363 controls (N = 2,021). In stage 2, rs4774 was tested in 684 cases and 2,938 controls (N = 3,622). We also performed a meta-analysis of the pooled 1,342 cases and 4,301 controls (N = 5,643). In stage 1, rs4774*C was associated with SLE (odds ratio [OR] = 1.24, 95% confidence interval [95% CI] = 1.07–1.44, P = 4.2 × 10−3). Similar results were observed in stage 2 (OR = 1.16, 95% CI = 1.02–1.33, P = 8.5×10−3) and the meta-analysis of the combined dataset (OR = 1.20, 95% CI = 1.09–1.33, Pmeta = 2.5×10−4). In all three analyses, the strongest evidence for association between rs4774*C and SLE was present in individuals who carried at least one copy of DRB1*03:01 (Pmeta= 1.9×10−3). Results support a role for CIITA in SLE, which appears to be stronger in the presence of DRB1*03:01.
doi:10.1038/gene.2011.36
PMCID: PMC3387803  PMID: 21614020
systemic lupus erythematosus; autoimmunity; major histocompatibility complex; HLA; CIITA; MHC2TA
17.  Distinguishing Type 2 Diabetes from Type 1 Diabetes in African American and Hispanic American Pediatric Patients 
PLoS ONE  2012;7(3):e32773.
Objective
To test the hypothesis that clinical observations made at patient presentation can distinguish type 2 diabetes (T2D) from type 1 diabetes (T1D) in pediatric patients aged 2 to 18.
Subjects and Methods
Medical records of 227 African American and 112 Hispanic American pediatric patients diagnosed as T1D or T2D were examined to compare parameters in the two diseases. Age at presentation, BMI z-score, and gender were the variables used in logistic regression analysis to create models for T2D prediction.
Results
The regression-based model created from African American data had a sensitivity of 92% and a specificity of 89%; testing of a replication cohort showed 91% sensitivity and 93% specificity. A model based on the Hispanic American data showed 92% sensitivity and 90% specificity. Similarities between African American and Hispanic American patients include: (1) age at onset for both T1D and T2D decreased from the 1980s to the 2000s; (2) risk of T2D increased markedly with obesity. Racial/ethnic-specific observations included: (1) in African American patients, the proportion of females was significantly higher than that of males for T2D compared to T1D (p<0.0001); (2) in Hispanic Americans, the level of glycated hemoglobin (HbA1c) was significantly higher in T1D than in T2D (p<0.002) at presentation; (3) the strongest contributor to T2D risk was female gender in African Americans, while the strongest contributor to T2D risk was BMI z-score in Hispanic Americans.
Conclusions
Distinction of T2D from T1D at patient presentation was possible with good sensitivity and specificity using only three easily-assessed variables: age, gender, and BMI z-score. In African American pediatric diabetes patients, gender was the strongest predictor of T2D, while in Hispanic patients, BMI z-score was the strongest predictor. This suggests that race/ethnic specific models may be useful to optimize distinction of T1D from T2D at presentation.
doi:10.1371/journal.pone.0032773
PMCID: PMC3296728  PMID: 22412923
18.  Genetics of Type 1 Diabetes 
Genetic susceptibility to type 1 diabetes (T1D) has been a subject of intensive study for nearly four decades. This article will present the history of these studies, beginning with observations of the Human Leukocyte Antigen (HLA) association in the 1970s, through the advent of DNA-based genotyping methodologies, through recent large, international collaborations and genome-wide association studies. More than 40 genetic loci have been associated with T1D in multiple studies; however, the HLA region, with its multiple genes and extreme polymorphism at those loci, remains by far the greatest contributor to the genetic susceptibility to T1D. Even after decades of study, the complete story has yet to unfold, and exact mechanisms by which HLA and other associated loci confer T1D susceptibility remain elusive.
More than 40 genetic loci have been associated with type 1 diabetes (T1D). Human leukocyte antigen (HLA) is, by far, the strongest predictor of T1D risk.
doi:10.1101/cshperspect.a007732
PMCID: PMC3253030  PMID: 22315720
19.  HLA Class I and Genetic Susceptibility to Type 1 Diabetes 
Diabetes  2010;59(11):2972-2979.
OBJECTIVE
We report here genotyping data and type 1 diabetes association analyses for HLA class I loci (A, B, and C) on 1,753 multiplex pedigrees from the Type 1 Diabetes Genetics Consortium (T1DGC), a large international collaborative study.
RESEARCH DESIGN AND METHODS
Complete eight-locus HLA genotyping data were generated. Expected patient class I (HLA-A, -B, and -C) allele frequencies were calculated, based on linkage disequilibrium (LD) patterns with observed HLA class II DRB1-DQA1-DQB1 haplotype frequencies. Expected frequencies were compared to observed allele frequencies in patients.
RESULTS
Significant type 1 diabetes associations were observed at all class I HLA loci. After accounting for LD with HLA class II, the most significantly type 1 diabetes–associated alleles were B*5701 (odds ratio 0.19; P = 4 × 10−11) and B*3906 (10.31; P = 4 × 10−10). Other significantly type 1 diabetes–associated alleles included A*2402, A*0201, B*1801, and C*0501 (predisposing) and A*1101, A*3201, A*6601, B*0702, B*4403, B*3502, C*1601, and C*0401 (protective). Some alleles, notably B*3906, appear to modulate the risk of all DRB1-DQA1-DQB1 haplotypes on which they reside, suggesting a class I effect that is independent of class II. Other class I type 1 diabetes associations appear to be specific to individual class II haplotypes. Some apparent associations (e.g., C*1601) could be attributed to strong LD to another class I susceptibility locus (B*4403).
CONCLUSIONS
These data indicate that HLA class I alleles, in addition to and independently from HLA class II alleles, are associated with type 1 diabetes.
doi:10.2337/db10-0699
PMCID: PMC2963558  PMID: 20798335
20.  HLA DPA1, DPB1 Alleles and Haplotypes Contribute to the Risk Associated With Type 1 Diabetes 
Diabetes  2010;59(8):2055-2062.
OBJECTIVE
To determine the relative risk associated with DPA1 and DPB1 alleles and haplotypes in type 1 diabetes.
RESEARCH DESIGN AND METHODS
The frequency of DPA1 and DPB1 alleles and haplotypes in type 1 diabetic patients was compared to the family based control frequency in 1,771 families directly and conditional on HLA (B)-DRB1-DQA1-DQB1 linkage disequilibrium. A relative predispositional analysis (RPA) was performed in the presence or absence of the primary HLA DR-DQ associations and the contribution of DP haplotype to individual DR-DQ haplotype risks examined.
RESULTS
Eight DPA1 and thirty-eight DPB1 alleles forming seventy-four DPA1-DPB1 haplotypes were observed; nineteen DPB1 alleles were associated with multiple DPA1 alleles. Following both analyses, type 1 diabetes susceptibility was significantly associated with DPB1*0301 (DPA1*0103-DPB1*0301) and protection with DPB1*0402 (DPA1*0103-DPB1*0402) and DPA1*0103-DPB1*0101 but not DPA1*0201-DPB1*0101. In addition, DPB1*0202 (DPA1*0103-DPB1*0202) and DPB1*0201 (DPA1*0103-DPB1*0201) were significantly associated with susceptibility in the presence of the high risk and protective DR-DQ haplotypes. Three associations (DPB1*0301, *0402, and *0202) remained statistically significant when only the extended HLA-A1-B8-DR3 haplotype was considered, suggesting that DPB1 alone may delineate the risk associated with this otherwise conserved haplotype.
CONCLUSIONS
HLA DP allelic and haplotypic diversity contributes significantly to the risk for type 1 diabetes; DPB1*0301 (DPA1*0103-DPB1*0301) is associated with susceptibility and DPB1*0402 (DPA1*0103-DPB1*0402) and DPA1*0103-DPB1*0101 with protection. Additional evidence is presented for the susceptibility association of DPB1*0202 (DPA1*0103-DPB1*0202) and for a contributory role of individual amino acids and DPA1 or a gene in linkage disequilibrium in DR3-DPB1*0101 positive haplotypes.
doi:10.2337/db09-0680
PMCID: PMC2911060  PMID: 20424227
21.  Maximizing Deoxyribonucleic Acid Yield from Dried Blood Spots 
Background
One source of deoxyribonucleic acid (DNA) for genetic studies is the utilization of dried blood spots stored on paper cards (Guthrie cards) collected shortly after birth. These cards represent an important source of material for epidemiologic and population-based genetic studies. Extraction of DNA from these cards can lead to variable amounts of recovered DNA. We report here results of our efforts to maximize yield from this valuable, but nonrenewable, resource.
Method
Commercial methods of DNA extraction from blood cards were used, and protocol modifications were introduced that enhanced DNA yield.
Results
Use of a commercial solvent prior to DNA extraction steps gave greater yields than extraction without the solvent. Modification of the elution step by use of prewarmed extraction buffer and a soaking step at an elevated temperature increased yield by 6- to 10-fold.
Conclusions
The modified DNA extraction method yielded as much as 660 ng of DNA from a single 5-mm-diameter punch of a blood spot card. The DNA performed well in downstream, polymerase chain reaction-based applications.
PMCID: PMC2864159  PMID: 20307384
blood spot; DNA sample preparation; Guthrie card; HLA genotyping
22.  Anticitrullinated protein antibody (ACPA) in rheumatoid arthritis: influence of an interaction between HLA-DRB1 shared epitope and a deletion polymorphism in glutathione s-transferase in a cross-sectional study 
Arthritis Research & Therapy  2010;12(6):R213.
Introduction
A deletion polymorphism in glutathione S-transferase Mu-1 (GSTM1-null) has previously been implicated to play a role in rheumatoid arthritis (RA) risk and progression, although no prior investigations have examined its associations with anticitrullinated protein antibody (ACPA) positivity. The purpose of this study was to examine the associations of GSTM1-null with ACPA positivity in RA and to assess for evidence of interaction between GSTM1 and HLA-DRB1 shared epitope (SE).
Methods
Associations of GSTM1-null with ACPA positivity were examined separately in two RA cohorts, the Veterans Affairs Rheumatoid Arthritis (VARA) registry (n = 703) and the Study of New-Onset RA (SONORA; n = 610). Interactions were examined by calculating an attributable proportion (AP) due to interaction.
Results
A majority of patients in the VARA registry (76%) and SONORA (69%) were positive for ACPA with a similar frequency of GSTM1-null (53% and 52%, respectively) and HLA-DRB1 SE positivity (76% and 71%, respectively). The parameter of patients who had ever smoked was more common in the VARA registry (80%) than in SONORA (65%). GSTM1-null was significantly associated with ACPA positivity in the VARA registry (odds ratio (OR), 1.45; 95% confidence interval (CI), 1.02 to 2.05), but not in SONORA (OR, 1.00; 95% CI, 0.71 to 1.42). There were significant additive interactions between GSTM1 and HLA-DRB1 SE in the VARA registry (AP, 0.49; 95% CI, 0.21 to 0.77; P < 0.001) in ACPA positivity, an interaction replicated in SONORA (AP, 0.38; 95% CI, 0.00 to 0.76; P = 0.050).
Conclusions
This study is the first to show that the GSTM1-null genotype, a common genetic variant, exerts significant additive interaction with HLA-DRB1 SE on the risk of ACPA positivity in RA. Since GSTM1 has known antioxidant functions, these data suggest that oxidative stress may be important in the development of RA-specific autoimmunity in genetically susceptible individuals.
doi:10.1186/ar3190
PMCID: PMC3046521  PMID: 21087494
23.  Analysis of Maternal–Offspring HLA Compatibility, Parent-of-Origin Effects, and Noninherited Maternal Antigen Effects for HLA–DRB1 in Systemic Lupus Erythematosus 
Arthritis and rheumatism  2010;62(6):1712-1717.
Objective
Genetic susceptibility to systemic lupus erythematosus (SLE) is well established, with the HLA class II DRB1 and DQB1 loci demonstrating the strongest association. However, HLA may also influence SLE through novel biologic mechanisms in addition to genetic transmission of risk alleles. Evidence for increased maternal–offspring HLA class II compatibility in SLE and differences in maternal versus paternal transmission rates (parent-of-origin effects) and nontransmission rates (noninherited maternal antigen [NIMA] effects) in other autoimmune diseases have been reported. Thus, we investigated maternal–offspring HLA compatibility, parent-of-origin effects, and NIMA effects at DRB1 in SLE.
Methods
The cohort comprised 707 SLE families and 188 independent healthy maternal–offspring pairs (total of 2,497 individuals). Family-based association tests were conducted to compare transmitted versus nontransmitted alleles (transmission disequilibrium test) and both maternally versus paternally transmitted (parent-of-origin) and nontransmitted alleles (using the chi-square test of heterogeneity). Analyses were stratified according to the sex of the offspring. Maternally affected offspring DRB1 compatibility in SLE families was compared with paternally affected offspring compatibility and with independent control maternal–offspring pairs (using Fisher’s test) and was restricted to male and nulligravid female offspring with SLE.
Results
As expected, DRB1 was associated with SLE (P < 1 × 10−4). However, mothers of children with SLE had similar transmission and nontransmission frequencies for DRB1 alleles when compared with fathers, including those for the known SLE risk alleles HLA–DRB1*0301, *1501, and *0801. No association between maternal–offspring compatibility and SLE was observed.
Conclusion
Maternal–offspring HLA compatibility, parent-of-origin effects, and NIMA effects at DRB1 are unlikely to play a role in SLE.
doi:10.1002/art.27426
PMCID: PMC2948464  PMID: 20191587
24.  Variation in the ATP-binding cassette transporter 2 gene is a separate risk factor for Systemic Lupus Erythematosus within the MHC 
Genes and immunity  2009;10(4):350-355.
The ATP-binding cassette transporter (TAP) proteins are functionally relevant candidates for predisposition to Systemic Lupus Erythematosus (SLE) by virtue of their role in autoantigen presentation and location in the MHC. We tested if variation in the TAP genes (TAP1 and TAP2) is associated with SLE. We genotyped tag single nucleotide polymorphisms (SNPs) and performed family-based association analysis on 390 Caucasian pedigrees. We found significant evidence of association between TAP2 and SLE (rs241453, P = 1.33 × 10-6). Conditional logistic regression analysis suggests that this TAP2 effect is separate from the HLA-DRB1 alleles. Our analyses show that both rs241453 (P = 1.6 × 10-4) and HLA-DRB1*03xx (P = 2.3 × 10-4) have significant autonomous effects not due to linkage disequilibrium. Moreover, these loci exhibit a significant statistical interaction (P < 1.0 × 10-6), demonstrated by an increase in the odds ratio for the TAP2 association from OR = 2.00 (CI=1.17-3.42) in HLA-DRB1*03xx-negative subjects to OR = 4.29 (CI=1.88-9.76) in the subjects with at least one HLA-DRB1*03xx allele group. We report the largest association study of the TAP genes with SLE to date, and the first to test for its separate effect and interaction with the HLA alleles consistently associated with SLE.
doi:10.1038/gene.2009.21
PMCID: PMC2927958  PMID: 19387463
Systemic Lupus Erythematosus; TAP2; HLA-DRB1; family-based association analysis; conditional logistic regression analysis; interaction analysis
25.  HLA genotyping in the international Type 1 Diabetes Genetics Consortium 
Clinical Trials (London, England)  2010;7(1_supplement):S75-S87.
Background Although human leukocyte antigen (HLA) DQ and DR loci appear to confer the strongest genetic risk for type 1 diabetes, more detailed information is required for other loci within the HLA region to understand causality and stratify additional risk factors. The Type 1 Diabetes Genetics Consortium (T1DGC) study design included high-resolution genotyping of HLA-A, B, C, DRB1, DQ, and DP loci in all affected sibling pair and trio families, and cases and controls, recruited from four networks worldwide, for analysis with clinical phenotypes and immunological markers.
Purpose In this article, we present the operational strategy of training, classification, reporting, and quality control of HLA genotyping in four laboratories on three continents over nearly 5 years.
Methods Methods to standardize HLA genotyping at eight loci included: central training and initial certification testing; the use of uniform reagents, protocols, instrumentation, and software versions; an automated data transfer; and the use of standardized nomenclature and allele databases. We implemented a rigorous and consistent quality control process, reinforced by repeated workshops, yearly meetings, and telephone conferences.
Results A total of 15,246 samples have been HLA genotyped at eight loci to four-digit resolution; an additional 6797 samples have been HLA genotyped at two loci. The genotyping repeat rate decreased significantly over time, with an estimated unresolved Mendelian inconsistency rate of 0.21%. Annual quality control exercises tested 2192 genotypes (4384 alleles) and achieved 99.82% intra-laboratory and 99.68% inter-laboratory concordances.
Limitations The chosen genotyping platform was unable to distinguish many allele combinations, which would require further multiple stepwise testing to resolve. For these combinations, a standard allele assignment was agreed upon, allowing further analysis if required.
Conclusions High-resolution HLA genotyping can be performed in multiple laboratories using standard equipment, reagents, protocols, software, and communication to produce consistent and reproducible data with minimal systematic error. Many of the strategies used in this study are generally applicable to other large multi-center studies.
doi:10.1177/1740774510373494
PMCID: PMC2917849  PMID: 20595243

Results 1-25 (28)