PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Elongin C is a Mediator of Notch4 Activity in Human Renal Tubule Cells 
Biochimica et biophysica acta  2011;1814(12):1748-1757.
Notch proteins (Notch 1–4) are a family of trans-membrane cell surface receptors that are converted into transcriptional regulators when activated by interactions with cell surface ligands on adjacent cells. Ligand-binding stimulates proteolytic cleavage of the trans-membrane domain, releasing an active intracellular domain (ICD) that translocates to the nucleus and impacts transcription. In transit, the ICD may interact with regulatory proteins that modulate the expression and transcriptional activity. We have found that Notch4ICD expression is enhanced in the tubule cells of fibrotic kidneys from diabetic mice and humans and identified Notch4ICD interacting proteins that could be pertinent to normal and pathological functions. Using proteomic techniques, several components of the Elongin C complex were identified as candidate Notch4ICD interactors. Elongin C complexes can function as ubiquitin ligases capable of regulating proteasomal degradation of specific protein substrates. Our studies indicate that ectopic Elongin C expression stimulates Notch4ICD degradation and inhibits its transcriptional activity in human kidney tubule HK11 cells. Blocking Elongin C mediated degradation by MG132 indicates the potential for ubiquitin-mediated Elongin C regulation of Notch4ICD. Functional interaction of Notch4ICD and Elongin C provides novel insight into regulation of Notch signaling in epithelial cell biology and disease.
doi:10.1016/j.bbapap.2011.09.010
PMCID: PMC3223271  PMID: 22001063
2.  Contributions of mass spectrometry-based proteomics to defining cellular mechanisms and diagnostic markers for systemic lupus erythematosus 
Systematic lupus erythematosus (SLE) is a complex disease for which molecular diagnostics are limited and pathogenesis is not clearly understood. Important information is provided in this regard by identification and characterization of more specific molecular and cellular targets in SLE immune cells and target tissue and markers of early-onset and effective response to treatment of SLE complications. In recent years, advances in proteomic technologies and applications have facilitated such discoveries. Here we provide a review of insights into SLE pathogenesis, diagnosis and treatment that have been provided by mass spectrometry-based proteomic approaches.
doi:10.1186/ar3701
PMCID: PMC3392812  PMID: 22364570

Results 1-2 (2)