PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  B-Cell and Monocyte Contribution to Systemic Lupus Erythematosus Identified by Cell-Type-Specific Differential Expression Analysis in RNA-Seq Data 
Bioinformatics and Biology Insights  2015;9(Suppl 3):11-19.
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by complex interplay among immune cell types. SLE activity is experimentally assessed by several blood tests, including gene expression profiling of heterogeneous populations of cells in peripheral blood. To better understand the contribution of different cell types in SLE pathogenesis, we applied the two methods in cell-type-specific differential expression analysis, csSAM and DSection, to identify cell-type-specific gene expression differences in heterogeneous gene expression measures obtained using RNA-seq technology. We identified B-cell-, monocyte-, and neutrophil-specific gene expression differences. Immunoglobulin-coding gene expression was altered in B-cells, while a ribosomal signature was prominent in monocytes. On the contrary, genes differentially expressed in the heterogeneous mixture of cells did not show any functional enrichment. Our results identify antigen binding and structural constituents of ribosomes as functions altered by B-cell- and monocyte-specific gene expression differences, respectively. Finally, these results position both csSAM and DSection methods as viable techniques for cell-type-specific differential expression analysis, which may help uncover pathogenic, cell-type-specific processes in SLE.
doi:10.4137/BBI.S29470
PMCID: PMC4599594  PMID: 26512198
cell-type-specific; deconvolution; RNA-seq; SLE; csSAM; DSection
2.  Evidence of Dynamically Dysregulated Gene Expression Pathways in Hyperresponsive B Cells from African American Lupus Patients 
PLoS ONE  2013;8(8):e71397.
Recent application of gene expression profiling to the immune system has shown a great potential for characterization of complex regulatory processes. It is becoming increasingly important to characterize functional systems through multigene interactions to provide valuable insights into differences between healthy controls and autoimmune patients. Here we apply an original systematic approach to the analysis of changes in regulatory gene interconnections between in Epstein-Barr virus transformed hyperresponsive B cells from SLE patients and normal control B cells. Both traditional analysis of differential gene expression and analysis of the dynamics of gene expression variations were performed in combination to establish model networks of functional gene expression. This Pathway Dysregulation Analysis identified known transcription factors and transcriptional regulators activated uniquely in stimulated B cells from SLE patients.
doi:10.1371/journal.pone.0071397
PMCID: PMC3744560  PMID: 23977035
3.  Respiratory Magnetogram Detected with a MEMS Device 
Magnetic fields generated by the brain or the heart are very useful in clinical diagnostics. Therefore, magnetic signals produced by other organs are also of considerable interest. Here we show first evidence that thoracic muscles can produce a strong magnetic flux density during respiratory activity, that we name respiratory magnetogram. We used a small magnetometer based on microelectromechanical systems (MEMS), which was positioned inside the open thoracic cage of anaesthetized and ventilated rats. With this new MEMS sensor of about 20 nT resolution, we recorded a strong and rhythmic respiratory magnetogram of about 600 nT.
doi:10.7150/ijms.4732
PMCID: PMC3775099  PMID: 24046516
respiration; thoracic muscles; ribs; thoracic cage; magnetocardiogram; magnetometer.
4.  Effects of IRF5 Lupus Risk Haplotype on Pathways Predicted to Influence B Cell Functions 
Both genetic and environmental interactions affect systemic lupus erythematosus (SLE) development and pathogenesis. One known genetic factor associated with lupus is a haplotype of the interferon regulatory factor 5 (IRF5) gene. Analysis of global gene expression microarray data using gene set enrichment analysis identified multiple interferon- and inflammation-related gene sets significantly overrepresented in cells with the risk haplotype. Pathway analysis using expressed genes from the significant gene sets impacted by the IRF5 risk haplotype confirmed significant correlation with the interferon pathway, Toll-like receptor pathway, and the B-cell receptor pathway. SLE patients with the IRF5 risk haplotype have a heightened interferon signature, even in an unstimulated state (P = 0.011), while patients with the IRF5 protective haplotype have a B cell interferon signature similar to that of controls. These results identify multiple genes in functionally significant pathways which are affected by IRF5 genotype. They also establish the IRF5 risk haplotype as a key determinant of not only the interferon response, but also other B-cell pathways involved in SLE.
doi:10.1155/2012/594056
PMCID: PMC3304673  PMID: 22500098
5.  Genetic Associations of LYN with Systemic Lupus Erythematosus 
Genes and immunity  2009;10(5):397-403.
We targeted LYN, a src-tyosine kinase involved in B cell activation, in case-control association studies using populations of European American, African American and Korean subjects. Our combined European-derived population, consisting of 2463 independent cases and 3131 unrelated controls, demonstrates significant association with rs6983130 in a female-only analysis with 2254 cases and 2228 controls (p=1.1 × 10−4, OR=0.81 (95% CI: 0.73 – 0.90)). This SNP is located in the 5′ UTR within the first intron near the transcription initiation site of LYN. Additional SNPs upstream of the first exon also show weak and sporadic association in subsets of the total European American population. Multivariate logistic regression analysis implicates rs6983130 as a protective factor for SLE susceptibility when anti-dsDNA, anti-chromatin, anti-52 kDa Ro or anti-Sm autoantibody status were used as covariates. Subset analysis of the European American female cases by ACR classification criteria reveals a reduction in the risk of hematologic disorder with rs6983130 compared to cases without hematologic disorders (p=1.5 × 10−3, OR=0.75 (95% C.I.=0.62-0.89)). None of the 90 SNPs tested demonstrate significant association with SLE in the African American or Korean populations. These results support an association of LYN with European-derived individuals with SLE, especially within autoantibody or clinical subsets.
doi:10.1038/gene.2009.19
PMCID: PMC2750001  PMID: 19369946
systemic lupus erythematosus; association; LYN; SNP
6.  Replication of the BANK1 genetic association with systemic lupus erythematosus in a European-Derived Population 
Genes and immunity  2009;10(5):531-538.
Systemic lupus erythematosus (SLE) is an autoimmune disease with highly variable clinical presentation. Patients suffer from immunological abnormalities that target T cell, B cell and accessory cell functions. B cells are hyperactive in SLE patients. An adaptor protein expressed in B cells called BANK1 (B-cell scaffold protein with ankyrin repeats) was reported in a previous study to be associated with SLE in a European population. The objective of this study is to assess the BANK1 genotype-phenotype association in an independent replication sample. We genotyped 38 single nucleotide polymorphisms (SNPs) in BANK1 on 1892 European-derived SLE patients and 2652 European-derived controls. The strongest associations with SLE and BANK1 were at rs17266594 (corrected p-value=1.97 × 10−5, OR=1.22, 95% C.I.(1.12–1.34)) and rs10516487 (corrected p-value=2.59 × 10−5, OR=1.22, 95% C.I.(1.11–1.34)). Our findings suggest that the association is explained by these two SNPs, confirming previous reports that these polymorphisms contribute to the risk of developing lupus. Analysis of patient subsets enriched for hematological, immunological and renal ACR criteria or the levels of autoantibodies, such as anti-RNP A and anti-SmRNP, uncovers additional BANK1 associations. Our results suggest that BANK1 polymorphisms alter immune system development and function to increase the risk for developing lupus.
doi:10.1038/gene.2009.18
PMCID: PMC2736873  PMID: 19339986
systemic lupus erythematosus; replication; association; European; BANK1

Results 1-6 (6)