Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  An Accurate Scalable Template-based Alignment Algorithm 
The rapid determination of nucleic acid sequences is increasing the number of sequences that are available. Inherent in a template or seed alignment is the culmination of structural and functional constraints that are selecting those mutations that are viable during the evolution of the RNA. While we might not understand these structural and functional, template-based alignment programs utilize the patterns of sequence conservation to encapsulate the characteristics of viable RNA sequences that are aligned properly. We have developed a program that utilizes the different dimensions of information in rCAD, a large RNA informatics resource, to establish a profile for each position in an alignment. The most significant include sequence identity and column composition in different phylogenetic taxa. We have compared our methods with a maximum of eight alternative alignment methods on different sets of 16S and 23S rRNA sequences with sequence percent identities ranging from 50% to 100%. The results showed that CRWAlign outperformed the other alignment methods in both speed and accuracy. A web-based alignment server is available at
PMCID: PMC3999978  PMID: 24772376
RNA sequence alignment; template-based alignment; comparative analysis; phylogenetic-based alignment
2.  Two accurate sequence, structure, and phylogenetic template-based RNA alignment systems 
BMC Systems Biology  2013;7(Suppl 4):S13.
The analysis of RNA sequences, once a small niche field for a small collection of scientists whose primary emphasis was the structure and function of a few RNA molecules, has grown most significantly with the realizations that 1) RNA is implicated in many more functions within the cell, and 2) the analysis of ribosomal RNA sequences is revealing more about the microbial ecology within all biological and environmental systems. The accurate and rapid alignment of these RNA sequences is essential to decipher the maximum amount of information from this data.
Two computer systems that utilize the Gutell lab's RNA Comparative Analysis Database (rCAD) were developed to align sequences to an existing template alignment available at the Gutell lab's Comparative RNA Web (CRW) Site. Multiple dimensions of cross-indexed information are contained within the relational database - rCAD, including sequence alignments, the NCBI phylogenetic tree, and comparative secondary structure information for each aligned sequence. The first program, CRWAlign-1 creates a phylogenetic-based sequence profile for each column in the alignment. The second program, CRWAlign-2 creates a profile based on phylogenetic, secondary structure, and sequence information. Both programs utilize their profiles to align new sequences into the template alignment.
The accuracies of the two CRWAlign programs were compared with the best template-based rRNA alignment programs and the best de-novo alignment programs. We have compared our programs with a total of eight alternative alignment methods on different sets of 16S rRNA alignments with sequence percent identities ranging from 50% to 100%. Both CRWAlign programs were superior to these other programs in accuracy and speed.
Both CRWAlign programs can be used to align the very extensive amount of RNA sequencing that is generated due to the rapid next-generation sequencing technology. This latter technology is augmenting the new paradigm that RNA is intimately implicated in a significant number of functions within the cell. In addition, the use of bacterial 16S rRNA sequencing in the identification of the microbiome in many different environmental systems creates a need for rapid and highly accurate alignment of bacterial 16S rRNA sequences.
PMCID: PMC3854672  PMID: 24565058
3.  Specificity between Lactobacilli and Hymenopteran Hosts Is the Exception Rather than the Rule 
Lactobacilli (Lactobacillales: Lactobacillaceae) are well known for their roles in food fermentation, as probiotics, and in human health, but they can also be dominant members of the microbiota of some species of Hymenoptera (ants, bees, and wasps). Honey bees and bumble bees associate with host-specific lactobacilli, and some evidence suggests that these lactobacilli are important for bee health. Social transmission helps maintain associations between these bees and their respective microbiota. To determine whether lactobacilli associated with social hymenopteran hosts are generally host specific, we gathered publicly available Lactobacillus 16S rRNA gene sequences, along with Lactobacillus sequences from 454 pyrosequencing surveys of six other hymenopteran species (three sweat bees and three ants). We determined the comparative secondary structural models of 16S rRNA, which allowed us to accurately align the entire 16S rRNA gene, including fast-evolving regions. BLAST searches and maximum-likelihood phylogenetic reconstructions confirmed that honey and bumble bees have host-specific Lactobacillus associates. Regardless of colony size or within-colony oral sharing of food (trophallaxis), sweat bees and ants associate with lactobacilli that are closely related to those found in vertebrate hosts or in diverse environments. Why honey and bumble bees associate with host-specific lactobacilli while other social Hymenoptera do not remains an open question. Lactobacilli are known to inhibit the growth of other microbes and can be beneficial whether they are coevolved with their host or are recruited by the host from environmental sources through mechanisms of partner choice.
PMCID: PMC3592248  PMID: 23291551
4.  RNA2DMap: A Visual Exploration Tool of the Information in RNA’s Higher-Order Structure 
A new and emerging paradigm in molecular biology is revealing that RNA is implicated in nearly every aspect of the metabolism in the cell. To enhance our understanding of the function of these RNA molecules in the cell, it is essential that we have a complete understanding of their higher-order structures. While many computational tools have been developed to predict and analyse these higher-order RNA structures, few are able to visualize them for analytical purposes. In this paper, we present an interactive visualization tool of the secondary structure of RNA, named RNA2DMap. This program enables multiple-dimensions of information about RNA structure to be selected, customized and displayed to visually identify patterns and relationships. RNA2DMap facilitates the comparative analysis and understanding of RNAs that cannot be readily obtained with other graphical or text output from computer programs. Three use cases are presented to illustrate how RNA2DMap aids structural analysis.
PMCID: PMC3440442  PMID: 22983261
Biological Data Visulation; RNA Struaral Analysis; Interative Application
5.  The Fragmented Mitochondrial Ribosomal RNAs of Plasmodium falciparum 
PLoS ONE  2012;7(6):e38320.
The mitochondrial genome in the human malaria parasite Plasmodium falciparum is most unusual. Over half the genome is composed of the genes for three classic mitochondrial proteins: cytochrome oxidase subunits I and III and apocytochrome b. The remainder encodes numerous small RNAs, ranging in size from 23 to 190 nt. Previous analysis revealed that some of these transcripts have significant sequence identity with highly conserved regions of large and small subunit rRNAs, and can form the expected secondary structures. However, these rRNA fragments are not encoded in linear order; instead, they are intermixed with one another and the protein coding genes, and are coded on both strands of the genome. This unorthodox arrangement hindered the identification of transcripts corresponding to other regions of rRNA that are highly conserved and/or are known to participate directly in protein synthesis.
Principal Findings
The identification of 14 additional small mitochondrial transcripts from P. falcipaurm and the assignment of 27 small RNAs (12 SSU RNAs totaling 804 nt, 15 LSU RNAs totaling 1233 nt) to specific regions of rRNA are supported by multiple lines of evidence. The regions now represented are highly similar to those of the small but contiguous mitochondrial rRNAs of Caenorhabditis elegans. The P. falciparum rRNA fragments cluster on the interfaces of the two ribosomal subunits in the three-dimensional structure of the ribosome.
All of the rRNA fragments are now presumed to have been identified with experimental methods, and nearly all of these have been mapped onto the SSU and LSU rRNAs. Conversely, all regions of the rRNAs that are known to be directly associated with protein synthesis have been identified in the P. falciparum mitochondrial genome and RNA transcripts. The fragmentation of the rRNA in the P. falciparum mitochondrion is the most extreme example of any rRNA fragmentation discovered.
PMCID: PMC3382252  PMID: 22761677
6.  Fragmentation of the large subunit ribosomal RNA gene in oyster mitochondrial genomes 
BMC Genomics  2010;11:485.
Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA) genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters.
In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters C. virginica, C. gigas, and C. hongkongensis. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes.
Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.
PMCID: PMC2996981  PMID: 20813041
7.  The limits of nuclear encoded SSU rDNA for resolving the diatom phylogeny 
European journal of phycology  2009;44(3):277-290.
A recent reclassification of diatoms based on phylogenies recovered using the nuclear-encoded SSU rRNA gene contains three major classes, Coscinodiscophyceae, Mediophyceae and the Bacillariophyceae (the CMB hypothesis). We evaluated this with a sequence alignment of 1336 protist and heterokont algae SSU rRNAs, which includes 673 diatoms. Sequences were aligned to maintain structural elements conserved within this dataset. Parsimony analysis rejected the CMB hypothesis, albeit weakly. Morphological data are also incongruent with this recent CMB hypothesis of three diatom clades. We also reanalyzed a recently published dataset which purports to support the CMB hypothesis. Our reanalysis found that the original analysis had not converged on the true bipartition posterior probability distribution, and rejected the CMB hypothesis. Thus we conclude that a reclassification of the evolutionary relationships of the diatoms according to the CMB hypothesis is premature.
PMCID: PMC2835975  PMID: 20224747
SSU; diatom phylogeny; diatom classification; Coscinodiscophyceae; Mediophyceae; Bacillariophyceae
8.  Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction 
BMC Bioinformatics  2004;5:105.
A detailed understanding of an RNA's correct secondary and tertiary structure is crucial to understanding its function and mechanism in the cell. Free energy minimization with energy parameters based on the nearest-neighbor model and comparative analysis are the primary methods for predicting an RNA's secondary structure from its sequence. Version 3.1 of Mfold has been available since 1999. This version contains an expanded sequence dependence of energy parameters and the ability to incorporate coaxial stacking into free energy calculations. We test Mfold 3.1 by performing the largest and most phylogenetically diverse comparison of rRNA and tRNA structures predicted by comparative analysis and Mfold, and we use the results of our tests on 16S and 23S rRNA sequences to assess the improvement between Mfold 2.3 and Mfold 3.1.
The average prediction accuracy for a 16S or 23S rRNA sequence with Mfold 3.1 is 41%, while the prediction accuracies for the majority of 16S and 23S rRNA structures tested are between 20% and 60%, with some having less than 20% prediction accuracy. The average prediction accuracy was 71% for 5S rRNA and 69% for tRNA. The majority of the 5S rRNA and tRNA sequences have prediction accuracies greater than 60%. The prediction accuracy of 16S rRNA base-pairs decreases exponentially as the number of nucleotides intervening between the 5' and 3' halves of the base-pair increases.
Our analysis indicates that the current set of nearest-neighbor energy parameters in conjunction with the Mfold folding algorithm are unable to consistently and reliably predict an RNA's correct secondary structure. For 16S or 23S rRNA structure prediction, Mfold 3.1 offers little improvement over Mfold 2.3. However, the nearest-neighbor energy parameters do work well for shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact distance between the base-pairs is less than 100 nucleotides.
PMCID: PMC514602  PMID: 15296519
9.  The exon context and distribution of Euascomycetes rRNA spliceosomal introns 
We have studied spliceosomal introns in the ribosomal (r)RNA of fungi to discover the forces that guide their insertion and fixation.
Comparative analyses of flanking sequences at 49 different spliceosomal intron sites showed that the G – intron – G motif is the conserved flanking sequence at sites of intron insertion. Information analysis showed that these rRNA introns contain significant information in the flanking exons. Analysis of all rDNA introns in the three phylogenetic domains and two organelles showed that group I introns are usually located after the most conserved sites in rRNA, whereas spliceosomal introns occur at less conserved positions. The distribution of spliceosomal and group I introns in the primary structure of small and large subunit rRNAs was tested with simulations using the broken-stick model as the null hypothesis. This analysis suggested that the spliceosomal and group I intron distributions were not produced by a random process. Sequence upstream of rRNA spliceosomal introns was significantly enriched in G nucleotides. We speculate that these G-rich regions may function as exonic splicing enhancers that guide the spliceosome and facilitate splicing.
Our results begin to define some of the rules that guide the distribution of rRNA spliceosomal introns and suggest that the exon context is of fundamental importance in intron fixation.
PMCID: PMC156610  PMID: 12716459
11.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs 
BMC Bioinformatics  2002;3:2.
Comparative analysis of RNA sequences is the basis for the detailed and accurate predictions of RNA structure and the determination of phylogenetic relationships for organisms that span the entire phylogenetic tree. Underlying these accomplishments are very large, well-organized, and processed collections of RNA sequences. This data, starting with the sequences organized into a database management system and aligned to reveal their higher-order structure, and patterns of conservation and variation for organisms that span the phylogenetic tree, has been collected and analyzed. This type of information can be fundamental for and have an influence on the study of phylogenetic relationships, RNA structure, and the melding of these two fields.
We have prepared a large web site that disseminates our comparative sequence and structure models and data. The four major types of comparative information and systems available for the three ribosomal RNAs (5S, 16S, and 23S rRNA), transfer RNA (tRNA), and two of the catalytic intron RNAs (group I and group II) are: (1) Current Comparative Structure Models; (2) Nucleotide Frequency and Conservation Information; (3) Sequence and Structure Data; and (4) Data Access Systems.
This online RNA sequence and structure information, the result of extensive analysis, interpretation, data collection, and computer program and web development, is accessible at our Comparative RNA Web (CRW) Site In the future, more data and information will be added to these existing categories, new categories will be developed, and additional RNAs will be studied and presented at the CRW Site.
PMCID: PMC65690  PMID: 11869452

Results 1-11 (11)