Search tips
Search criteria

Results 1-25 (54)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Genetic Modifiers of Age at Onset in Carriers of the G206A Mutation in PSEN1 With Familial Alzheimer Disease Among Caribbean Hispanics 
JAMA neurology  2015;72(9):1043-1051.
The present study identified potential genetic modifiers that may delay or accelerate age at onset of familial Alzheimer disease (AD) by examining age at onset in PSEN1 mutation carrier families, and further investigation of these modifiers may provide insight into the pathobiology of AD and potential therapeutic measures.
To identify genetic variants that modify age at onset of AD.
Design, Setting, And Participants
Using a subset of Caribbean Hispanic families that carry the PSEN1 p.G206A mutation, we performed a 2-stage genome study. The mutation carrier families from an ongoing genetic study served as a discovery set, and the cohort of those with LOAD served as a confirmation set. To identify candidate loci, we performed linkage analysis using 5 p.G206A carrier families (n = 56), and we also performed whole-exome association analysis using 31 p.G206A carriers from 26 families. To confirm the genetic modifiers identified from the p.G206A carrier families, we analyzed the GWAS data for 2888 elderly individuals with LOAD. All study participants were Caribbean Hispanics.
Main Outcomes and Measures
Age at onset of AD.
Linkage analysis of AD identified the strongest linkage support at 4q35 (LOD [logarithm of odds] score, 3.69), and the GWAS of age at onset identified variants on 1p13.1, 2q13, 4q25, and 17p11. In the confirmation stage, genewise analysis identified SNX25, PDLIM3, and 3 SH3 domain genes (SORBS2, SH3RF3, and NPHP1) to be significantly associated with LOAD. Subsequent allelic association analysis confirmed SNX25, PDLIM3, and SORBS2 as genetic modifiers of age at onset of EOAD and LOAD and provided modest support for SH3RF3 and NPHP1.
Conclusions and Relevance
Our 2-stage analysis revealed that SNX25, PDLIM3, and SORBS2 may serve as genetic modifiers of age at onset in both EOAD and LOAD.
PMCID: PMC5010776  PMID: 26214276
2.  Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus 
Nature genetics  2015;47(12):1457-1464.
Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry: a new GWAS, meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including 10 novel associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n=16) of transcription factors among SLE susceptibility genes. This supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE.
PMCID: PMC4668589  PMID: 26502338
3.  RAC2 Loss-of-function Mutation in Two Siblings with Characteristics of Common Variable Immunodeficiency 
Short summary
We report the first patients with a homozygous loss of function mutation in the RAC2 gene, presenting with clinical features of common variable immunodeficiency. In addition, the patients suffered from glomerulonephritis, coagulopathy, multiple hormone deficiencies potentially on the autoimmune basis and abnormalities of neutrophil granules.
PMCID: PMC4426222  PMID: 25512081
Ras-related C3 botulinum toxin substrate 2 (RAC2); common variable immunodeficiency (CVID); kappa-deleting recombination excision circles (KRECs); T-cell receptor excision circles (TRECs); neutrophil granules
4.  Thinking differently about lupus 
eLife  null;5:e15352.
A search for the genetic causes of an autoimmune disease called systemic lupus erythematosus reveals a new twist on an old story.
PMCID: PMC4821793  PMID: 27023642
targeted sequencing; SLE risk; haplotype; HLA; LD; risk allele; Human
5.  Rarity of the Alzheimer Disease–Protective APP A673T Variant in the United States 
JAMA neurology  2015;72(2):209-216.
Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
To determine the frequency of the APP A673T variant in a large group of elderly cognitively normal controls and AD cases from the United States and in 2 case-control cohorts from Sweden.
Case-control association analysis of variant APP A673T in US and Swedish white individuals comparing AD cases with cognitively intact elderly controls. Participants were ascertained at multiple university-associated medical centers and clinics across the United States and Sweden by study-specific sampling methods. They were from case-control studies, community-based prospective cohort studies, and studies that ascertained multiplex families from multiple sources.
Genotypes for the APP A673T variant were determined using the Infinium HumanExome V1 Beadchip (Illumina, Inc) and by TaqMan genotyping (Life Technologies).
The A673T variant genotypes were evaluated in 8943 US AD cases, 10 480 US cognitively normal controls, 862 Swedish AD cases, and 707 Swedish cognitively normal controls. We identified 3 US individuals heterozygous for A673T, including 1 AD case (age at onset, 89 years) and 2 controls (age at last examination, 82 and 77 years). The remaining US samples were homozygous for the alanine (A673) allele. In the Swedish samples, 3 controls were heterozygous for A673T and all AD cases were homozygous for the A673 allele. We also genotyped a US family previously reported to harbor the A673T variant and found a mother-daughter pair, both cognitively normal at ages 72 and 84 years, respectively, who were both heterozygous for A673T; however, all individuals with AD in the family were homozygous for A673.
The A673T variant is extremely rare in US cohorts and does not play a substantial role in risk for AD in this population. This variant may be primarily restricted to Icelandic and Scandinavian populations.
PMCID: PMC4324097  PMID: 25531812
6.  Association of Endogenous Anti–Interferon-α Autoantibodies With Decreased Interferon-Pathway and Disease Activity in Patients With Systemic Lupus Erythematosus 
Arthritis and rheumatism  2011;63(8):2407-2415.
Numerous observations implicate interferon-α (IFNα) in the pathophysiology of systemic lupus erythematosus (SLE); however, the potential impact of endogenous anti-IFNα autoantibodies (AIAAs) on IFN-pathway and disease activity is unclear. The aim of this study was to characterize IFN-pathway activity and the serologic and clinical profiles of AIAA-positive patients with SLE.
Sera obtained from patients with SLE (n = 49), patients with rheumatoid arthritis (n = 25), and healthy control subjects (n = 25) were examined for the presence of AIAAs, using a biosensor immunoassay. Serum type I IFN bioactivity and the ability of AIAA-positive sera to neutralize IFNα activity were determined using U937 cells. Levels of IFN-regulated gene expression in peripheral blood were determined by microarray, and serum levels of BAFF, IFN-inducible chemokines, and other autoantibodies were measured using immunoassays.
AIAAs were detected in 27% of the serum samples from patients with SLE, using a biosensor immunoassay. Unsupervised hierarchical clustering analysis identified 2 subgroups of patients, IFNlow and IFNhigh, that differed in the levels of serum type I IFN bioactivity, IFN-regulated gene expression, BAFF, anti-ribosomal P, and anti-chromatin autoantibodies, and in AIAA status. The majority of AIAA-positive patients had significantly lower levels of serum type I IFN bioactivity, reduced downstream IFN-pathway activity, and lower disease activity compared with the IFNhigh patients. AIAA-positive sera were able to effectively neutralize type I IFN activity in vitro.
Patients with SLE commonly harbor AIAAs. AIAA-positive patients have lower levels of serum type I IFN bioactivity and evidence for reduced downstream IFN-pathway and disease activity. AIAAs may influence the clinical course in SLE by blunting the effects produced by IFNα.
PMCID: PMC4028124  PMID: 21506093
7.  Using Gene Expression to Improve the Power of Genome-Wide Association Analysis 
Human heredity  2014;78(2):94-103.
Genome-wide association (GWA) studies have reported susceptible regions in the human genome for many common diseases and traits, however, these loci only explain a minority of trait heritability. To boost the power of a GWA study, substantial research endeavors have been focused on integrating other available genomic information in the analysis. Advances in high through-put technologies have generated a wealth of genomic data, and made combining SNP and gene expression data become feasible.
In this paper we propose a novel procedure to incorporate gene expression information into GWA analysis. This procedure utilizes weights constructed by gene expression measurements to adjust p values from a GWA analysis. Results from simulation analyses indicate that the proposed procedures may achieve substantial power gains while controlling family-wise type I error rate (FWER) at the nominal level. To demonstrate the implementation of our proposed approach, we apply the weight adjustment procedure to a GWA study for serum interferon-regulated chemokine levels in systemic lupus erythematosus (SLE) patients. The study results can provide valuable insights for the functional interpretation of GWA signals.
The R source code for implementing the proposed weighting procedure is available at
PMCID: PMC4152945  PMID: 25096029
p value weighting; family-wise error rate; statistical power; integrative genomic analysis; SLE
8.  A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE 
Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease in which the type I interferon pathway has a crucial role. We have previously shown that three genes in this pathway, IRF5, TYK2 and STAT4, are strongly associated with risk for SLE. Here, we investigated 78 genes involved in the type I interferon pathway to identify additional SLE susceptibility loci. First, we genotyped 896 single-nucleotide polymorphisms in these 78 genes and 14 other candidate genes in 482 Swedish SLE patients and 536 controls. Genes with P<0.01 in the initial screen were then followed up in 344 additional Swedish patients and 1299 controls. SNPs in the IKBKE, TANK, STAT1, IL8 and TRAF6 genes gave nominal signals of association with SLE in this extended Swedish cohort. To replicate these findings we extracted data from a genomewide association study on SLE performed in a US cohort. Combined analysis of the Swedish and US data, comprising a total of 2136 cases and 9694 controls, implicates IKBKE and IL8 as SLE susceptibility loci (Pmeta=0.00010 and Pmeta=0.00040, respectively). STAT1 was also associated with SLE in this cohort (Pmeta=3.3 × 10−5), but this association signal appears to be dependent of that previously reported for the neighbouring STAT4 gene. Our study suggests additional genes from the type I interferon system in SLE, and highlights genes in this pathway for further functional analysis.
PMCID: PMC3060320  PMID: 21179067
systemic lupus erythematosus; type I interferon system; candidate gene study; single nucleotide polymorphism; IKBKE; IL8
9.  Systematic Comparison of Gene Expression between Murine Memory and Naive B Cells Demonstrates That Memory B Cells Have Unique Signaling Capabilities1 
Memory B cells play essential roles in the maintenance of long-term immunity and may be important in the pathogenesis of autoimmune disease, but how these cells are distinguished from their naive precursors is poorly understood. To address this, it would be important to understand how gene expression differs between memory and naive B cells to elucidate memory-specific functions. Using model systems that help overcome the lack of murine memory-specific markers and the low frequency of Agspecific memory and naive cells, we undertook a global comparison of gene expression between memory B cells and their naive precursors. We identified genes with differential expression and confirmed the differential expression of many of these by quantitative RT-PCR and of some of these at the protein level. Our initial analysis revealed differential expression patterns of genes that regulate signaling. Memory B cells have increased expression of genes important in regulating adenosine signaling and in modulating cAMP responses. Furthermore, memory B cells up-regulate receptors that are essential for embryonic stem cell self-renewal. We further demonstrate that one of these, leukemia inhibitory factor receptor, can initiate functional signaling in memory B cells whereas it does not in naive B cells. Thus, memory and naive B cells are intrinsically wired to signal differently from one another and express a functional signaling pathway that is known to maintain stem cells in other lineages.
PMCID: PMC4437802  PMID: 18566367
10.  Association of the interferon signature metric with serological disease manifestations but not global activity scores in multiple cohorts of patients with SLE 
Lupus Science & Medicine  2015;2(1):e000080.
The interferon (IFN) signature (IS) in patients with systemic lupus erythematosus (SLE) includes over 100 genes induced by type I IFN pathway activation. We developed a method to quantify the IS using three genes—the IS metric (ISM)—and characterised the clinical characteristics of patients with SLE with different ISM status from multiple clinical trials.
Blood microarray expression data from a training cohort of patients with SLE confirmed the presence of the IS and identified surrogate genes. We assayed these genes in a quantitative PCR (qPCR) assay, yielding an ISM from the IS. The association of ISM status with clinical disease characteristics was assessed in patients with extrarenal lupus and lupus nephritis from four clinical trials.
Three genes, HERC5, EPSTI and CMPK2, correlated well with the IS (p>0.96), and composed the ISM qPCR assay. Using the 95th centile for healthy control data, patients with SLE from different studies were classified into two ISM subsets—ISM-Low and ISM-High—that are longitudinally stable over 36 weeks. Significant associations were identified between ISM-High status and higher titres of anti-dsDNA antibodies, presence of anti extractable nuclear antigen autoantibodies, elevated serum B cell activating factor of the tumour necrosis factor family (BAFF) levels, and hypocomplementaemia. However, measures of overall clinical disease activity were similar for ISM-High and ISM-Low groups.
The ISM is an IS biomarker that divides patients with SLE into two subpopulations—ISM-High and ISM-Low—with differing serological manifestations. The ISM does not distinguish between high and low disease activity, but may have utility in identifying patients more likely to respond to treatment(s) targeting IFN-α. registration number
PMCID: PMC4379884  PMID: 25861459
Interferon; serological manifestations; SLE
11.  Genetics of rheumatoid arthritis contributes to biology and drug discovery 
Okada, Yukinori | Wu, Di | Trynka, Gosia | Raj, Towfique | Terao, Chikashi | Ikari, Katsunori | Kochi, Yuta | Ohmura, Koichiro | Suzuki, Akari | Yoshida, Shinji | Graham, Robert R. | Manoharan, Arun | Ortmann, Ward | Bhangale, Tushar | Denny, Joshua C. | Carroll, Robert J. | Eyler, Anne E. | Greenberg, Jeffrey D. | Kremer, Joel M. | Pappas, Dimitrios A. | Jiang, Lei | Yin, Jian | Ye, Lingying | Su, Ding-Feng | Yang, Jian | Xie, Gang | Keystone, Ed | Westra, Harm-Jan | Esko, Tõnu | Metspalu, Andres | Zhou, Xuezhong | Gupta, Namrata | Mirel, Daniel | Stahl, Eli A. | Diogo, Dorothée | Cui, Jing | Liao, Katherine | Guo, Michael H. | Myouzen, Keiko | Kawaguchi, Takahisa | Coenen, Marieke J.H. | van Riel, Piet L.C.M. | van de Laar, Mart A.F.J. | Guchelaar, Henk-Jan | Huizinga, Tom W.J. | Dieudé, Philippe | Mariette, Xavier | Bridges, S. Louis | Zhernakova, Alexandra | Toes, Rene E.M. | Tak, Paul P. | Miceli-Richard, Corinne | Bang, So-Young | Lee, Hye-Soon | Martin, Javier | Gonzalez-Gay, Miguel A. | Rodriguez-Rodriguez, Luis | Rantapää-Dahlqvist, Solbritt | Ärlestig, Lisbeth | Choi, Hyon K. | Kamatani, Yoichiro | Galan, Pilar | Lathrop, Mark | Eyre, Steve | Bowes, John | Barton, Anne | de Vries, Niek | Moreland, Larry W. | Criswell, Lindsey A. | Karlson, Elizabeth W. | Taniguchi, Atsuo | Yamada, Ryo | Kubo, Michiaki | Liu, Jun S. | Bae, Sang-Cheol | Worthington, Jane | Padyukov, Leonid | Klareskog, Lars | Gregersen, Peter K. | Raychaudhuri, Soumya | Stranger, Barbara E. | De Jager, Philip L. | Franke, Lude | Visscher, Peter M. | Brown, Matthew A. | Yamanaka, Hisashi | Mimori, Tsuneyo | Takahashi, Atsushi | Xu, Huji | Behrens, Timothy W. | Siminovitch, Katherine A. | Momohara, Shigeki | Matsuda, Fumihiko | Yamamoto, Kazuhiko | Plenge, Robert M.
Nature  2013;506(7488):376-381.
A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological datasets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here, we performed a genome-wide association study (GWAS) meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single nucleotide polymorphisms (SNPs). We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 1012–4. We devised an in-silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci (cis-eQTL)6, and pathway analyses7–9 – as well as novel methods based on genetic overlap with human primary immunodeficiency (PID), hematological cancer somatic mutations and knock-out mouse phenotypes – to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
PMCID: PMC3944098  PMID: 24390342
12.  DNA Microarray Gene Expression Profile of Marginal Zone versus Follicular B cells and Idiotype Positive Marginal Zone B cells Before and After Immunization with Streptococcus pneumoniae 1 
Marginal Zone (MZ) B cells play an important role in the clearance of blood-borne bacterial infections via rapid T-independent IgM responses. We have previously demonstrated that MZ B cells respond rapidly and robustly to bacterial particulates. To determine the MZ-specific genes that are expressed to allow for this response, MZ and Follicular (FO) B cells were sort-purified and analyzed via DNA microarray analysis. We identified 181 genes that were significantly different between the two B cell populations. 99 genes were more highly expressed in MZ B cells while 82 genes were more highly expressed in FO B cells. To further understand the molecular mechanisms by which MZ B cells respond so rapidly to bacterial challenge, idiotype positive and negative MZ B cells were sort-purified before (0 hour) or after (1 hour) i.v. immunization with heat killed Streptococcus pneumoniae, R36A, and analyzed via DNA microarray analysis. We identified genes specifically up regulated or down regulated at 1 hour following immunization in the idiotype positive MZ B cells. These results give insight into the gene expression pattern in resting MZ vs. FO B cells and the specific regulation of gene expression in antigen-specific MZ B cells following interaction with antigen.
PMCID: PMC3966313  PMID: 18453586
MZ B cell; FO B cell; microarray; cytokine; idiotype
13.  European Population Substructure Correlates with Systemic Lupus Erythematosus Endophenotypes in North Americans of European Descent 
Genes and immunity  2009;11(6):515-521.
Previous work has demonstrated that northern and southern European ancestries are associated with specific systemic lupus erythematosus (SLE) manifestations. Here, 1855 SLE cases of European descent were genotyped for 4965 single nucleotide polymorphisms and principal components analysis of genotype information was used to define population substructure. The first principal component (PC1) distinguished northern from southern European ancestry, PC2 differentiated eastern from western European ancestry, and PC3 delineated Ashkenazi Jewish ancestry. Compared to northern European ancestry, southern European ancestry was associated with autoantibody production (OR=1.40, 95% CI 1.07-1.83) and renal involvement (OR 1.41, 95% CI 1.06-1.87), and was protective for discoid rash (OR=0.51, 95% CI 0.32-0.82) and photosensitivity (OR=0.74, 95% CI 0.56-0.97). Both serositis (OR=1.46, 95% CI 1.12-1.89) and autoantibody production (OR=1.38, 95% CI 1.06-1.80) were associated with Western compared to Eastern European ancestry. Ashkenazi Jewish ancestry was protective against neurologic manifestations of SLE (OR=0.62, 95% CI 0.40-0.94). Homogeneous clusters of cases defined by multiple PCs demonstrated stronger phenotypic associations. Genetic ancestry may contribute to the development of SLE endophenotypes and should be accounted for in genetic studies of disease characteristics.
PMCID: PMC3951966  PMID: 19847193
Systemic lupus erythematosus; epidemiology; population substructure; genetics
14.  Heritability and Genome-wide Association Study To Assess Genetic Differences Between Advanced Age-Related Macular Degeneration Subtypes  
Ophthalmology  2012;119(9):1874-1885.
To investigate whether the two subtypes of advanced age-related macular degeneration (AMD), choroidal neovascularization (CNV) and geographic atrophy (GA), segregate separately in families and to identify which genetic variants are associated with these two subtypes.
Sibling correlation study and genome-wide association study (GWAS)
For the sibling correlation study, we included 209 sibling pairs with advanced AMD. For the GWAS, we included 2594 participants with advanced AMD subtypes and 4134 controls. Replication cohorts included 5383 advanced AMD participants and 15,240 controls.
Participants had AMD grade assigned based on fundus photography and/or examination. To determine heritability of advanced AMD subtypes, we performed a sibling correlation study. For the GWAS, we conducted genome-wide genotyping and imputed 6,036,699 single nucleotide polymorphism (SNPs). We then analyzed SNPs with a generalized linear model controlling for genotyping platform and genetic ancestry. The most significant associations were evaluated in independent cohorts.
Main Outcome Measures
Concordance of advanced AMD subtypes in sibling pairs and associations between SNPs with GA and CNV advanced AMD subtypes.
The difference between the observed and expected proportion of siblings concordant for the same subtype of advanced AMD was different to a statistically significant degree (P=4.2 x 10−5) meaning that siblings of probands with CNV or GA are more likely to develop CNV or GA, respectively. In the analysis comparing participants with CNV to those with GA, we observed a statistically significant association at the ARMS2/HTRA1 locus [rs10490924, odds ratio (OR)=1.47, P=4.3 ×10−9] which was confirmed in the replication samples (OR=1.38, P=7.4 x 10−14 for combined discovery and replication analysis).
Whether a patient with AMD develops CNV vs. GA is determined in part by genetic variation. In this large GWAS meta-analysis and replication analysis, the ARMS2/HTRA1 locus confers increased risk for both advanced AMD subtypes but imparts greater risk for CNV than for GA. This locus explains a small proportion of the excess sibling correlation for advanced AMD subtype. Other loci were detected with suggestive associations which differ for advanced AMD subtypes and deserve follow-up in additional studies.
PMCID: PMC3899891  PMID: 22705344
15.  Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus 
Nature genetics  2008;40(9):1062-1064.
The TNFAIP3 (tumor necrosis factor alpha–induced protein 3) gene encodes a ubiquitin editing enzyme, A20, that restricts NF-κB–dependent signaling and prevents inflammation. We show that three independent SNPs in the TNFAIP3 region (rs13192841, rs2230926 and rs6922466) are associated with systemic lupus erythematosus (SLE) among individuals of European ancestry. These findings provide critical links between A20 and the etiology of SLE.
PMCID: PMC3897246  PMID: 19165919
16.  European Genetic Ancestry is Associated with a Decreased Risk of Lupus Nephritis 
Arthritis and rheumatism  2012;64(10):10.1002/art.34567.
African Americans, East Asians, and Hispanics with systemic lupus erythematosus (SLE) are more likely to develop renal disease than SLE patients of European descent. We investigated whether European genetic ancestry protects against the development of lupus nephritis and explored genetic and socioeconomic factors that might explain this effect.
This was a cross-sectional study of 1906 adults with SLE. Participants were genotyped for 126 single nucleotide polymorphisms (SNPs) informative for ancestry. A subset of participants was also genotyped for 80 SNPs in 14 candidate genes for renal disease in SLE. We used logistic regression to test the association between European ancestry and renal disease. Analyses adjusted for continental ancestries, socioeconomic status, and candidate genes.
Participants (n=1906) had on average 62.4% European, 15.8% African, 11.5% East Asian, 6.5% Amerindian, and 3.8% South Asian ancestry. Among participants, 34% (n=656) had renal disease. A 10% increase in European ancestry was associated with a 15% reduction in the odds of having renal disease after adjustment for disease duration and sex (OR 0.85, 95% CI 0.82-0.87, p=1.9 × 10−30). Adjusting for other genetic ancestries, measures of socioeconomic status, or SNPs in genes most associated with renal disease (IRF5 (rs4728142), BLK (rs2736340), STAT4 (rs3024912), ITGAM (rs9937837) and HLA-DRB1*0301 and DRB1*1501, p<0.05) did not substantively alter this relationship.
European ancestry is protective against the development of renal disease in SLE, an effect independent of other genetic ancestries, common risk alleles, and socioeconomic status.
PMCID: PMC3865923  PMID: 23023776
17.  Genes identified in Asian SLE GWASs are also associated with SLE in Caucasian populations 
Recent genome-wide association studies (GWASs) conducted in Asian populations have identified novel risk loci for systemic lupus erythematosus (SLE). Here, we genotyped 10 single-nucleotide polymorphisms (SNPs) in eight such loci and investigated their disease associations in three independent Caucasian SLE case–control cohorts recruited from Sweden, Finland and the United States. The disease associations of the SNPs in ETS1, IKZF1, LRRC18-WDFY4, RASGRP3, SLC15A4, TNIP1 and 16p11.2 were replicated, whereas no solid evidence of association was observed for the 7q11.23 locus in the Caucasian cohorts. SLC15A4 was significantly associated with renal involvement in SLE. The association of TNIP1 was more pronounced in SLE patients with renal and immunological disorder, which is corroborated by two previous studies in Asian cohorts. The effects of all the associated SNPs, either conferring risk for or being protective against SLE, were in the same direction in Caucasians and Asians. The magnitudes of the allelic effects for most of the SNPs were also comparable across different ethnic groups. On the contrary, remarkable differences in allele frequencies between Caucasian and Asian populations were observed for all associated SNPs. In conclusion, most of the novel SLE risk loci identified by GWASs in Asian populations were also associated with SLE in Caucasian populations. We observed both similarities and differences with respect to the effect sizes and risk allele frequencies across ethnicities.
PMCID: PMC3746253  PMID: 23249952
systemic lupus erythematosus; genetic-association study; Asian; Caucasian
18.  CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B cell signaling and activation 
Nature genetics  2012;44(11):1227-1230.
C-src tyrosine kinase, Csk, physically interacts with the intracellular phosphatase Lyp (PTPN22) and can modify the activation state of downstream Src kinases, such as Lyn, in lymphocytes. We identified an association of Csk with systemic lupus erythematosus (SLE) and refined its location to an intronic polymorphism rs34933034 (OR 1.32, p = 1.04 × 10−9). The risk allele is associated with increased CSK expression and augments inhibitory phosphorylation of Lyn. In carriers of the risk allele, B cell receptor (BCR)-mediated activation of mature B cells, as well as plasma IgM, are increased. Moreover, the fraction of transitional B cells is doubled in the cord blood of carriers of the risk allele compared to non-risk haplotypes due to an expansion of the late transitional cells, a stage targeted by selection mechanisms. This suggests that the Lyp-Csk complex increases susceptibility to lupus at multiple maturation and activation points of B cells.
PMCID: PMC3715052  PMID: 23042117
19.  Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci 
Nature genetics  2008;40(2):204-210.
Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (λS = ~30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 × 10−7 < Poverall < 1.6 × 10−23; odds ratio 0.82–1.62)in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 × 10−5) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at ≥9 other loci (P < 2 × 10−7). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.
PMCID: PMC3712260  PMID: 18204446
20.  Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus 
Nature genetics  2007;40(1):83-89.
Systemic lupus erythematosus (SLE) is a multisystem complex autoimmune disease of uncertain etiology (OMIM 152700). Over recent years a genetic component to SLE susceptibility has been established1–3. Recent successes with association studies in SLE have identified genes including IRF5 (refs. 4,5) and FCGR3B6. Two tumor necrosis factor (TNF) superfamily members located within intervals showing genetic linkage with SLE are TNFSF4 (also known as OX40L; 1q25), which is expressed on activated antigen-presenting cells (APCs)7,8 and vascular endothelial cells9, and also its unique receptor, TNFRSF4 (also known as OX40; 1p36), which is primarily expressed on activated CD4+ T cells10. TNFSF4 produces a potent co-stimulatory signal for activated CD4+ T cells after engagement of TNFRSF4 (ref. 11). Using both a family-based and a case-control study design, we show that the upstream region of TNFSF4 contains a single risk haplotype for SLE, which is correlated with increased expression of both cell-surface TNFSF4 and the TNFSF4 transcript. We hypothesize that increased expression of TNFSF4 predisposes to SLE either by quantitatively augmenting T cell–APC interaction or by influencing the functional consequences of T cell activation via TNFRSF4.
PMCID: PMC3705866  PMID: 18059267
21.  Rheumatoid Arthritis Risk Allele PTPRC Is Also Associated With Response to Anti–Tumor Necrosis Factor α Therapy 
Arthritis and rheumatism  2010;62(7):1849-1861.
Anti–tumor necrosis factor α (anti-TNF) therapy is a mainstay of treatment in rheumatoid arthritis (RA). The aim of the present study was to test established RA genetic risk factors to determine whether the same alleles also influence the response to anti-TNF therapy.
A total of 1,283 RA patients receiving etanercept, infliximab, or adalimumab therapy were studied from among an international collaborative consortium of 9 different RA cohorts. The primary end point compared RA patients with a good treatment response according to the European League Against Rheumatism (EULAR) response criteria (n = 505) with RA patients considered to be nonresponders (n = 316). The secondary end point was the change from baseline in the level of disease activity according to the Disease Activity Score in 28 joints (ΔDAS28). Clinical factors such as age, sex, and concomitant medications were tested as possible correlates of treatment response. Thirty-one single-nucleotide polymorphisms (SNPs) associated with the risk of RA were genotyped and tested for any association with treatment response, using univariate and multivariate logistic regression models.
Of the 31 RA-associated risk alleles, a SNP at the PTPRC (also known as CD45) gene locus (rs10919563) was associated with the primary end point, a EULAR good response versus no response (odds ratio [OR] 0.55, P = 0.0001 in the multivariate model). Similar results were obtained using the secondary end point, the ΔDAS28 (P = 0.0002). There was suggestive evidence of a stronger association in autoantibody-positive patients with RA (OR 0.55, 95% confidence interval [95% CI] 0.39–0.76) as compared with autoantibody-negative patients (OR 0.90, 95% CI 0.41–1.99).
Statistically significant associations were observed between the response to anti-TNF therapy and an RA risk allele at the PTPRC gene locus. Additional studies will be required to replicate this finding in additional patient collections.
PMCID: PMC3652476  PMID: 20309874
22.  The rs4774 CIITA missense variant is associated with risk of systemic lupus erythematosus 
Genes and Immunity  2011;12(8):667-671.
The major histocompatibility complex (MHC) class II transactivator gene (CIITA) encodes an important transcription factor required for HLA class II MHC-restricted antigen presentation. MHC genes, including the HLA class II DRB1*03:01 allele, are strongly associated with systemic lupus erythematosus (SLE). Recently the rs4774 CIITA missense variant (+1632G/C) was reported to be associated with susceptibility to multiple sclerosis. In the current study, we investigated CIITA, DRB1*03:01 and risk of SLE using a multi-stage analysis. In stage 1, 9 CIITA variants were tested in 658 cases and 1,363 controls (N = 2,021). In stage 2, rs4774 was tested in 684 cases and 2,938 controls (N = 3,622). We also performed a meta-analysis of the pooled 1,342 cases and 4,301 controls (N = 5,643). In stage 1, rs4774*C was associated with SLE (odds ratio [OR] = 1.24, 95% confidence interval [95% CI] = 1.07–1.44, P = 4.2 × 10−3). Similar results were observed in stage 2 (OR = 1.16, 95% CI = 1.02–1.33, P = 8.5×10−3) and the meta-analysis of the combined dataset (OR = 1.20, 95% CI = 1.09–1.33, Pmeta = 2.5×10−4). In all three analyses, the strongest evidence for association between rs4774*C and SLE was present in individuals who carried at least one copy of DRB1*03:01 (Pmeta= 1.9×10−3). Results support a role for CIITA in SLE, which appears to be stronger in the presence of DRB1*03:01.
PMCID: PMC3387803  PMID: 21614020
systemic lupus erythematosus; autoimmunity; major histocompatibility complex; HLA; CIITA; MHC2TA
23.  The chemokine receptor CXCR7 functions to regulate cardiac valve remodeling 
CXCR7 (RDC1), a G-protein-coupled receptor with conserved motifs characteristic of chemokine receptors, is enriched in endocardial and cushion mesenchymal cells in developing hearts, but its function is unclear. Cxcr7 germline deletion resulted in perinatal lethality with complete penetrance. Mutant embryos exhibited aortic and pulmonary valve stenosis due to semilunar valve thickening, with occasional ventricular septal defects. Semilunar valve mesenchymal cell proliferation increased in mutants from embryonic day 14 onward, but the cell death rate remained unchanged. Cxcr7 mutant valves had increased levels of phosphorylated Smad1/5/8, indicating increased BMP signaling, which may partly explain the thickened valve leaflets. The hyperproliferative phenotype appeared to involve Cxcr7 function in endocardial cells and their mesenchymal derivatives, as Tie2-Cre Cxcr7flox/- mice had semilunar valve stenosis. Thus, CXCR7 is involved in semilunar valve development, possibly by regulating BMP signaling, and may contribute to aortic and pulmonary valve stenosis.
PMCID: PMC3079332  PMID: 21246655
24.  High-Density SNP Mapping of the HLA Region Identifies Multiple Independent Susceptibility Loci Associated with Selective IgA Deficiency 
PLoS Genetics  2012;8(1):e1002476.
Selective IgA deficiency (IgAD; serum IgA<0.07 g/l) is the most common form of human primary immune deficiency, affecting approximately 1∶600 individuals in populations of Northern European ancestry. The polygenic nature of IgAD is underscored by the recent identification of several new risk genes in a genome-wide association study. Among the characterized susceptibility loci, the association with specific HLA haplotypes represents the major genetic risk factor for IgAD. Despite the robust association, the nature and location of the causal variants in the HLA region remains unknown. To better characterize the association signal in this region, we performed a high-density SNP mapping of the HLA locus and imputed the genotypes of common HLA-B, -DRB1, and -DQB1 alleles in a combined sample of 772 IgAD patients and 1,976 matched controls from 3 independent European populations. We confirmed the complex nature of the association with the HLA locus, which is the result of multiple effects spanning the entire HLA region. The primary association signal mapped to the HLA-DQB1*02 allele in the HLA Class II region (combined P = 7.69×10−57; OR = 2.80) resulting from the combined independent effects of the HLA-B*0801-DRB1*0301-DQB1*02 and -DRB1*0701-DQB1*02 haplotypes, while additional secondary signals were associated with the DRB1*0102 (combined P = 5.86×10−17; OR = 4.28) and the DRB1*1501 (combined P = 2.24×10−35; OR = 0.13) alleles. Despite the strong population-specific frequencies of HLA alleles, we found a remarkable conservation of these effects regardless of the ethnic background, which supports the use of large multi-ethnic populations to characterize shared genetic association signals in the HLA region. We also provide evidence for the location of association signals within the specific extended haplotypes, which will guide future sequencing studies aimed at characterizing the precise functional variants contributing to disease pathogenesis.
Author Summary
The human leukocyte antigen (HLA) locus is robustly associated with many immune-mediated conditions. However, identification of the genetic variants contributing to the disease pathophysiology has been greatly hampered by the extensive chromosomal conservation within this genomic region. To better understand the association of the HLA locus in selective IgA deficiency (IgAD), we used an extensive genotyping database from a recent genome-wide association study (GWAS) to generate a high-density SNP map of this region in a combined sample of >2,700 individuals from 3 independent European populations. In addition, we took advantage of recent methodological advances to impute the more common HLA-B, -DRB1, and -DQB1 alleles in all subjects. We confirmed the strong disease-association of the HLA locus and identified several different signals located in specific conserved HLA haplotypes contributing independent risk or protection for IgAD. Further analysis of the chromosomal sequences associated with the associated HLA alleles allowed us to refine the mapping of the susceptibility variants. These findings represent the most comprehensive high-density SNP mapping of the HLA locus in IgAD to date and provide important new information as to the location of the genetic variants contributing to this common immune deficiency.
PMCID: PMC3266887  PMID: 22291608
25.  Selective IgA Deficiency in Autoimmune Diseases 
Molecular Medicine  2011;17(11-12):1383-1396.
Selective immunoglobulin A deficiency (IgAD) is the most common primary immunodeficiency in Caucasians. It has previously been suggested to be associated with a variety of concomitant autoimmune diseases. In this review, we present data on the prevalence of IgAD in patients with Graves disease (GD), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), celiac disease (CD), myasthenia gravis (MG) and rheumatoid arthritis (RA) on the basis of both our own recent large-scale screening results and literature data. Genetic factors are important for the development of both IgAD and various autoimmune disorders, including GD, SLE, T1D, CD, MG and RA, and a strong association with the major histocompatibility complex (MHC) region has been reported. In addition, non-MHC genes, such as interferon-induced helicase 1 (IFIH1) and c-type lectin domain family 16, member A (CLEC16A), are also associated with the development of IgAD and some of the above diseases. This indicates a possible common genetic background. In this review, we present suggestive evidence for a shared genetic predisposition between these disorders.
PMCID: PMC3321806  PMID: 21826374

Results 1-25 (54)