Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  Neutralizing Th2 Inflammation in Neonatal Islets Prevents β-Cell Failure in Adult IUGR Rats 
Diabetes  2014;63(5):1672-1684.
Intrauterine growth restriction (IUGR) leads to development of type 2 diabetes (T2D) in adulthood. The mechanisms underlying this phenomenon have not been fully elucidated. Inflammation is associated with T2D; however, it is unknown whether inflammation is causal or secondary to the altered metabolic state. Here we show that the mechanism by which IUGR leads to the development of T2D in adulthood is via transient recruitment of T-helper 2 (Th) lymphocytes and macrophages in fetal islets resulting in localized inflammation. Although this immune response is short-lived, it results in a permanent reduction in islet vascularity and impaired insulin secretion. Neutralizing interleukin-4 antibody therapy given only in the newborn period ameliorates inflammation and restores vascularity and β-cell function into adulthood, demonstrating a novel role for Th2 immune responses in the induction and progression of T2D. In the neonatal stage, inflammation and vascular changes are reversible and may define an important developmental window for therapeutic intervention to prevent adult-onset diabetes.
PMCID: PMC3994952  PMID: 24408314
2.  The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice 
Nature medicine  2014;20(5):524-530.
Acquisition of microbes by the neonate, which begins immediately during birth, is influenced by gestational age and mother’s microbiota and modified by exposure to antibiotics1. In neonates, prolonged duration of antibiotic therapy is associated with increased risk of sepsis after 4 days of life, known as late-onset sepsis (LOS)2, a disorder critically controlled by neutrophils3, but a role for the microbiota in regulating neutrophil behavior in the neonate has not been described. We exposed pregnant mouse dams to antibiotics in drinking water to limit transfer of maternal microbes to the neonates. Antibiotic exposure of dams decreased the total number of microbes in the intestine, altered the structure of intestinal microbiota and changed the pattern of microbial colonization. These changes were associated with decreased numbers of circulating and bone marrow neutrophils and granulocyte/macrophage restricted progenitor cells in the bone marrow. Antibiotic-exposure of dams attenuated the postnatal granulocytosis by reducing the number of interleukin (IL) 17-producing cells in intestine and consequent production of granulocyte colony stimulating factor (G-CSF). Relative granulocytopenia contributed to increased susceptibility of antibiotic-exposed neonatal mice to Escherichia coli K1 and Klebsiella pneumoniae sepsis, which could be partially reversed by administration of G-CSF. Restoration of normal microbiota, through TLR4- and MYD88-dependent mechanism, induced accumulation of IL17-producing type 3 innate lymphoid cells (ILC) in the intestine, promoted granulocytosis, and restored the IL17-dependent resistance to sepsis. Specific depletion of ILCs prevented the IL17- and G-CSF-dependent granulocytosis and resistance to sepsis. These data support a role for the intestinal microbiota in regulation of granulocytosis and host resistance to sepsis in the neonates.
PMCID: PMC4016187  PMID: 24747744
3.  CXCL5 Regulates Chemokine Scavenging and Pulmonary Host Defense to Bacterial Infection 
Immunity  2010;33(1):106-117.
The chemokine sink hypothesis pertaining to erythrocyte Duffy Antigen Receptor for Chemokines (DARC) during inflammation has received considerable attention, but lacks direct in vivo evidence. Here we demonstrate, using mice with a targeted deletion in CXCL5, that CXCL5 bound erythrocyte DARC and impaired its chemokine scavenging in blood. CXCL5 increased the plasma concentrations of CXCL1 and CXCL2 in part through inhibiting chemokine scavenging, impairing chemokine gradients and desensitizing CXCR2, which led to decreased neutrophil influx to the lung, increased lung bacterial burden and mortality in an Escherichia coli pneumonia model. In contrast, CXCL5 exerted a predominant role in mediating neutrophil influx to the lung during inflammation after LPS inhalation. Platelets and lung resident cells were the sources of homeostatic CXCL5 in blood and inflammatory CXCL5 in the lung respectively. This study presents a paradigm whereby platelets and red cells alter chemokine scavenging and neutrophil-chemokine interaction during inflammation.
PMCID: PMC3748840  PMID: 20643340
4.  CXCL5 is Required For Angiogenesis, but not Structural Adaptation after Small Bowel Resection 
Journal of pediatric surgery  2014;49(6):976-980.
Intestinal adaptation is the compensatory response to massive small bowel resection (SBR) and characterized by lengthening of villi and deepening of crypts, resulting in increased mucosal surface area. Previous studies have demonstrated increased villus capillary blood vessel density after SBR, suggesting a role for angiogenesis in the development of resection-induced adaptation. Since we have previously shown enhanced expression of the pro-angiogenic chemokine CXCL5 after SBR, the purpose of this study was to determine the effect of disrupted CXCL5 expression on intestinal adaptation.
CXCL5 knock-out (KO) and C57BL/6 wild type (WT) mice were subjected to either a 50% proximal SBR or sham operation. Ileal tissue was harvested on postoperative day 7. To assess for adaptation, villus height and crypt depth were measured. Submucosal capillary density was measured by CD31 immunohistochemistry.
Both CXCL5-KO and WT mice demonstrated normal structural features of adaptation. Submucosal capillary density increased in the WT but not in the KO mice following SBR.
CXCL5 is required for increased intestinal angiogenesis during resection-induced adaptation. Since adaptive villus growth occurs despite impaired CXCL5 expression and enhanced angiogenesis, this suggests that the growth of new blood vessels is not needed for resection-induced mucosal surface area expansion following massive SBR.
PMCID: PMC4044536  PMID: 24888846
CXCL5; Adaptation; Small bowel resection; Intestine; Angiogenesis
5.  An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action 
Nature medicine  2014;20(8):919-926.
The circadian system is as an important regulator of immune function. Human inflammatory lung diseases frequently show time-of-day variation in symptom severity and lung function, but the mechanisms and cell types that are underlying these effects remain unclear. We show that pulmonary antibacterial responses are modulated by a circadian clock within epithelial club (Clara) cells. These drive circadian neutrophil recruitment to the lung via the chemokine CXCL5. Genetic ablation of the clock gene Bmal1 (also called Arntl or MOP3) in bronchiolar cells disrupts rhythmic Cxcl5 expression, resulting in exaggerated inflammatory responses to lipopolysaccharide and bacterial infection. Adrenalectomy blocks rhythmic inflammatory responses and the circadian regulation of CXCL5, suggesting a key role for the adrenal axis in driving CXCL5 expression and pulmonary neutrophil recruitment. Glucocorticoid receptor occupancy at the Cxcl5 locus shows circadian oscillations, but this is disrupted in mice with bronchiole-specific ablation of Bmal1, leading to enhanced CXCL5 expression despite normal corticosteroid secretion. In clock-gene disrupted mice the synthetic glucocorticoid dexamethasone loses anti-inflammatory efficacy. We now define a regulatory mechanism that links the circadian clock and glucocorticoid hormones to control both time-of-day variation and also the magnitude of pulmonary inflammation and responses to bacterial infection.
PMCID: PMC4268501  PMID: 25064128
6.  Cxcr2 and Cxcl5 regulate the IL-17/G-CSF axis and neutrophil homeostasis in mice 
Neutrophils are essential for maintaining innate immune surveillance under normal conditions, but also represent a major contributor to tissue damage during inflammation. Neutrophil homeostasis is therefore tightly regulated. Cxcr2 plays a critical role in neutrophil homeostasis, as Cxcr2–/– mice demonstrate mild neutrophilia and severe neutrophil hyperplasia in the bone marrow. The mechanisms underlying these phenotypes, however, are unclear. We report here that Cxcr2 on murine neutrophils inhibits the IL-17A/G-CSF axis that regulates neutrophil homeostasis. Furthermore, enterocyte-derived Cxcl5 in the gut regulates IL-17/G-CSF levels and contributes to Cxcr2-dependent neutrophil homeostasis. Conversely, G-CSF was required for Cxcl5-dependent regulation of neutrophil homeostasis, and inhibition of IL-17A reduced plasma G-CSF concentrations and marrow neutrophil numbers in both Cxcl5–/– and Cxcr2–/– mice. Cxcr2–/– mice constitutively expressed IL-17A and showed increased numbers of IL-17A–producing cells in the lung, terminal ileum, and spleen. Most IL-17–producing splenocytes were responsive to IL-1β plus IL-23 in vitro. Depletion of commensal microbes by antibiotic treatment in Cxcr2–/– mice markedly decreased IL-17A and G-CSF expression, neutrophilia, and marrow myeloid hyperplasia. These data suggest a critical role for Cxcr2, Cxcl5, and commensal bacteria in regulation of the IL-17/G-CSF axis and neutrophil homeostasis at mucosal sites and have implications for the development of treatments for pathologies resulting from either excessive or ineffective neutrophil responses.
PMCID: PMC3287232  PMID: 22326959
7.  Effects of Liver X Receptor Agonist Treatment on Pulmonary Inflammation and Host Defense1 
Liver X receptor (LXR) α and β are members of the nuclear receptor superfamily of ligand-activated transcription factors. Best known for triggering “reverse cholesterol transport” gene programs upon their activation by endogenous oxysterols, LXRs have recently also been implicated in regulation of innate immunity. In this study, we define a role for LXRs in regulation of pulmonary inflammation and host defense and identify the lung and neutrophil as novel in vivo targets for pharmacologic LXR activation. LXR is expressed in murine alveolar macrophages, alveolar epithelial type II cells, and neutrophils. Treatment of mice with TO-901317, a synthetic LXR agonist, reduces influx of neutrophils to the lung triggered by inhaled LPS, intratracheal KC chemokine, and intratracheal Klebsiella pneumoniae and impairs pulmonary host defense against this bacterium. Pharmacologic LXR activation selectively modulates airspace cytokine expression induced by both LPS and K. pneumoniae. Moreover, we report for the first time that LXR activation impairs neutrophil motility and identify inhibition of chemokine-induced RhoA activation as a putative underlying mechanism. Taken together, these data define a novel role for LXR in lung pathophysiology and neutrophil biology and identify pharmacologic activation of LXR as a potential tool for modulation of innate immunity in the lung.
PMCID: PMC2430066  PMID: 18292555
8.  Delayed Resolution of Lung Inflammation in Il-1rn−/− Mice Reflects Elevated IL-17A/Granulocyte Colony–Stimulating Factor Expression 
IL-1 has been associated with acute lung injury (ALI) in both humans and animal models, but further investigation of the precise mechanisms involved is needed, and may identify novel therapeutic targets. To discover the IL-1 mediators essential to the initiation and resolution phases of acute lung inflammation, knockout mice (with targeted deletions for either the IL-1 receptor–1, i.e., Il-1r1−/−, or the IL-1 receptor antagonist, i.e., Il-1rn−/−) were exposed to aerosolized LPS, and indices of lung and systemic inflammation were examined over the subsequent 48 hours. The resultant cell counts, histology, protein, and RNA expression of key cytokines were measured. Il-1r1−/− mice exhibited decreased neutrophil influx, particularly at 4 and 48 hours after exposure to LPS, as well as reduced bronchoalveolar lavage (BAL) expression of chemokines and granulocyte colony–stimulating factor (G-CSF). On the contrary, Il-1rn−/− mice demonstrated increased BAL neutrophil counts, increased BAL total protein, and greater evidence of histologic injury, all most notably 2 days after LPS exposure. Il-1rn−/− mice also exhibited higher peripheral neutrophil counts and greater numbers of granulocyte receptor-1 cells in their bone marrow, potentially reflecting their elevated plasma G-CSF concentrations. Furthermore, IL-17A expression was increased in the BAL and lungs of Il-1rn−/− mice after exposure to LPS, likely because of increased numbers of γδ T cells in the Il-1rn−/− lungs. Blockade with IL-17A monoclonal antibody before LPS exposure decreased the resultant BAL neutrophil counts and lung G-CSF expression in Il-1rn−/− mice, 48 hours after exposure to LPS. In conclusion, Il-1rn−/− mice exhibit delayed resolution in acute lung inflammation after exposure to LPS, a process that appears to be mediated via the G-CSF/IL-17A axis.
PMCID: PMC3488622  PMID: 22592923
IL-1 receptor antagonist; IL-17A; IL-1 receptor–1; acute lung injury
9.  Role of CXCL5 in Leukocyte Recruitment to the Lungs during Secondhand Smoke Exposure 
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality in the United States. The major cause of COPD is cigarette smoking. Extensive leukocyte influx into the lungs, mediated by chemokines, is a critical event leading to COPD. Although both resident and myeloid cells secrete chemokines in response to inflammatory stimuli, little is known about the role of epithelial-derived chemokines, such as CXC chemokine ligand (CXCL)5, in the pathogenesis of cigarette smoke–induced inflammation. To explore the role of CXCL5, we generated CXCL5 gene–deficient mice and exposed them to secondhand smoke (SHS) for 5 hours/day for 5 days/week up to 3 weeks (subacute exposure). We observed a reduced recruitment of leukocytes to the lungs of CXCL5−/− mice compared with their wild-type (WT) counterparts, and noted that macrophages comprised the predominant leukocytes recruited to the lungs. Irradiation experiments performed on CXCL5−/− or WT mice transplanted with WT or CXCL5−/− bone marrow revealed that resident but not hematopoietic cell–driven CXCL5 is important for mediating SHS-induced lung inflammation. Interestingly, we observed a significant reduction of monocyte chemotactic protein–1 (MCP-1/CC chemokine ligand 2) concentrations in the lungs of CXCL5−/− mice. The instillation of recombinant MCP-1 in CXCL5−/− mice reversed macrophage recruitment. Our results also show the reduced activation of NF-κB/p65 in the lungs, as well as the attenuated activation of C-Jun N-terminal kinase, p42/44, and p38 mitogen-activated protein kinases and the expression of intercellular adhesion molecule-1 in the lungs of SHS-exposed CXCL5−/− mice. Our findings suggest an important role for CXCL5 in augmenting leukocyte recruitment in SHS-induced lung inflammation, and provide novel insights into CXCL5-driven pathogenesis.
PMCID: PMC3402800  PMID: 22362385
smoke; CXCL5/LIX; macrophages; chemokines; cytokines
10.  Transcriptomic Analysis Comparing Tumor-Associated Neutrophils with Granulocytic Myeloid-Derived Suppressor Cells and Normal Neutrophils 
PLoS ONE  2012;7(2):e31524.
The role of myeloid cells in supporting cancer growth is well established. Most work has focused on myeloid-derived suppressor cells (MDSC) that accumulate in tumor-bearing animals, but tumor-associated neutrophils (TAN) are also known to be capable of augmenting tumor growth. However, little is known about their evolution, phenotype, and relationship to naïve neutrophils (NN) and to the granulocytic fraction of MDSC (G-MDSC).
In the current study, a transcriptomics approach was used in mice to compare these cell types. Our data show that the three populations of neutrophils are significantly different in their mRNA profiles with NN and G-MDSC being more closely related to each other than to TAN. Structural genes and genes related to cell-cytotoxicity (i.e. respiratory burst) were significantly down-regulated in TAN. In contrast, many immune-related genes and pathways, including genes related to the antigen presenting complex (e.g. all six MHC-II complex genes), and cytokines (e.g. TNF-α, IL-1-α/β), were up-regulated in G-MDSC, and further up-regulated in TAN. Thirteen of the 25 chemokines tested were markedly up-regulated in TAN compared to NN, including striking up-regulation of chemoattractants for T/B-cells, neutrophils and macrophages.
This study characterizes different populations of neutrophils related to cancer, pointing out the major differences between TAN and the other neutrophil populations.
PMCID: PMC3279406  PMID: 22348096
11.  Infusion of mature megakaryocytes into mice yields functional platelets 
The Journal of Clinical Investigation  2010;120(11):3917-3922.
Thrombopoiesis, the process by which circulating platelets arise from megakaryocytes, remains incompletely understood. Prior studies suggest that megakaryocytes shed platelets in the pulmonary vasculature. To better understand thrombopoiesis and to develop a potential platelet transfusion strategy that is not dependent upon donors, of which there remains a shortage, we examined whether megakaryocytes infused into mice shed platelets. Infused megakaryocytes led to clinically relevant increases in platelet numbers. The released platelets were normal in size, displayed appropriate surface markers, and had a near-normal circulating half-life. The functionality of the donor-derived platelets was also demonstrated in vivo. The infused megakaryocytes mostly localized to the pulmonary vasculature, where they appeared to shed platelets. These data suggest that it may be unnecessary to generate platelets from ex vivo grown megakaryocytes to achieve clinically relevant increases in platelet numbers.
PMCID: PMC2964983  PMID: 20972336
12.  Polarization of Tumor-Associated Neutrophil (TAN) Phenotype by TGF-β: “N1” versus “N2” TAN 
Cancer cell  2009;16(3):183-194.
TGF-β blockade significantly slows tumor growth through many mechanisms, including activation of CD8+ T-cells and macrophages. Here, we show that TGF-β blockade also increases neutrophil-attracting chemokines resulting in an influx of CD11b+/Ly6G+ tumor-associated neutrophils (TAN) that are hypersegmented, more cytotoxic to tumor cells, and express higher levels of pro-inflammatory cytokines. Accordingly, following TGF-β blockade, depletion of these neutrophils significantly blunts anti-tumor effects of treatment and reduces CD8+ T-cell activation. In contrast, in control tumors, neutrophil depletion decreases tumor growth and results in more activated CD8+ T-cells intra-tumorally. Together, these data suggest that TGF-β within the tumor microenvironment induces a population of TAN with a pro-tumor phenotype. TGF-β blockade results in the recruitment and activation of TAN with an anti-tumor phenotype.
PMCID: PMC2754404  PMID: 19732719
tumor immunology; immunosuppression; TGFβ; tumor associated macrophages; Tumor associated neutrophils; lung cancer; mesothelioma
13.  Myeloid Differentiation Protein-2–Dependent and –Independent Neutrophil Accumulation during Escherichia coli Pneumonia 
Bacterial pneumonia remains a serious disease. Pattern recognition receptors play an integral role in neutrophil accumulation during pneumonia. Although myeloid differentiation protein (MD)-2 has been recognized as a key molecule for LPS signaling, the role of MD-2 in neutrophil accumulation in the lung during bacterial infection has not been explored. Here, we investigate the role of MD-2 in Escherichia coli LPS–induced lung inflammation and E. coli–induced pneumonia. LPS-induced CD14-independent neutrophil accumulation was abolished in CD14/MD-2−/− mice. MD-2−/− mice challenged with LPS displayed attenuated neutrophil influx, NF-κB activation, cytokine/chemokine expression, and lung histopathology. MD-2−/− mice transplanted with MD-2+/+ bone marrow demonstrated decreased neutrophil influx and cytokine/chemokine expression in the lungs when challenged by LPS. MD-2−/− mice infected with E. coli demonstrated reduced neutrophil influx and cytokine/chemokine expression in the lungs, whereas heat-killed E. coli did not induce either neutrophil accumulation or cytokine/chemokine expression in MD-2−/− mice infected with E. coli. Furthermore, MD-2−/− mice displayed increased bacterial burden in the lungs and enhanced bacterial dissemination. Toll-like receptor (TLR)-5−/− mice infected with E. coli exhibited attenuated neutrophil accumulation, whereas MD-2/TLR5−/− mice inoculated with E. coli showed further attenuated neutrophil influx and impaired bacterial clearance. Taken together, these new findings demonstrate: (1) the important role of MD-2 in the CD14-independent LPS-mediated cascade of neutrophil influx; (2) the relative importance of bone marrow– and non–bone marrow cell–derived MD-2 in LPS-induced inflammation; and (3) the essential role of MD-2–dependent and MD-2–independent (TLR5) signaling in E. coli–induced neutrophil accumulation and pulmonary host defense.
PMCID: PMC2689919  PMID: 18988922
neutrophil; host defense; mouse model
14.  A Novel Method for Long Term Bone Marrow Culture and Genetic Modification of Murine Neutrophils via Retroviral Transduction123 
Journal of immunological methods  2008;340(2):102-115.
Neutrophils are a critical component of the innate immune response to invading microbial pathogens. However, an excessive and/or prolonged neutrophil response can result in tissue injury that is thought to underlie the pathogenesis of various inflammatory diseases. The development of novel therapeutic strategies for inflammatory diseases depends on an improved understanding of regulation of neutrophil function. However, investigations into neutrophil function have been constrained in part by the difficulty of genetically modifying neutrophils using current techniques. To overcome this, we have developed a novel method for the genetic modification of murine bone marrow derived progenitor cells using retroviral transduction followed by long term bone marrow culture to generate mature neutrophils. These neutrophils are functionally mature as determined by morphology, surface marker (Gr1, CD11b, CD62L and CXCR2) expression, and functional attributes including the ability to generate superoxide, exocytose granule contents, chemotax, and phagocytose and kill bacteria. Further, the in vitro matured neutrophils are capable of migrating to an inflammatory site in vivo. We utilized this system to express the Bcl-2 transgene in mature neutrophils using the retroviral vectors pMIG and pMIT. Bcl-2 overexpression conferred a substantial delay in spontaneous apoptosis of neutrophils as assessed by annexin V and 7-amino-actinomycin D (7AAD) staining. Moreover, Bcl-2 overexpression did not alter granulopoiesis, as assessed by morphology and surface marker expression. This system enables the genetic manipulation of progenitor cells that can be differentiated in vitro to mature neutrophils that are functional in vitro and in vivo.
PMCID: PMC2633587  PMID: 19010330
Neutrophils; Rodent; Inflammation; Apoptosis; Hematopoiesis
15.  Human Lung Project: Evaluating Variance of Gene Expression in the Human Lung 
Nondiseased tissue is an important reference for microarray studies of pulmonary disease. We obtained 23 single lungs from multiorgan donors at time of procurement. Donors varied in age, sex, smoking history, and ethnicity. Lungs were dissected into upper and lower lobe peripheral sections for RNA extraction. Microarray analysis was performed using Affymetrix Hu-133 Plus 2.0 arrays. We observed that the relative variability of gene expression increased rapidly from technical (lowest), to regional, to population (highest). In addition, age and sex have measurable effects on gene expression. Gene expression variability is heterogeneously distributed among biologic categories. We conclude that gene expression variability is greater between individuals than within individuals and that population variability is the most important factor in the study design of microarray experiments of the human lung. Classes of genes with high population variability are biologically important and provide a novel perspective into lung physiology and pathobiology. Our study represents the first comprehensive analysis of nondiseased lung tissue. The generation of this robust dataset has important implications for the design and implementation of future comparative expression analysis with pulmonary disease states.
PMCID: PMC2658699  PMID: 16498083
Keywords: lung; microarray; genomics; variability
16.  Induction of CXCL5 During Inflammation in the Rodent Lung Involves Activation of Alveolar Epithelium 
The lung is continuously exposed to bacteria and their products, and has developed a complex defense mechanism, including neutrophil recruitment. In mice, keratinocyte cell–derived chemokine and macrophage inflammatory protein-2 are the major chemokines for neutrophil recruitment into the lung. We have previously described a role for C-X-C chemokine (CXCL5) in neutrophil trafficking during lipopolysaccharide (LPS)-induced lung inflammation in mice. The aims of the present study were to identify the cellular origin of CXCL5 and to determine the signaling cascades that regulate its expression in the lung during LPS-induced inflammation and in isolated LPS-stimulated CXCL5-expressing cells. Our immunohistochemical analysis indicates that alveolar epithelial type II (AEII) cells are the primary source of CXCL5 in the rodent lung. These in vivo observations were confirmed with primary AEII cells. In addition, our data indicate that the Toll-like receptor 4 (TLR4) signaling cascade involving TLR4, myeloid differentiation factor 88, and Toll–IL-1R domain–containing adapter protein is required to induce CXCL5 expression in the lung. Furthermore, p38 and c-Jun N-terminal kinases are involved in lung CXCL5 expression. Similarly, TLR4, and p38 and c-Jun N-terminal kinases, are associated with LPS-induced CXCL5 expression in AEII cells. These novel observations demonstrate that activation of AEII cells via TLR4-dependent signaling is important for the production of CXCL5 in the lung exposed to LPS.
PMCID: PMC2715322  PMID: 15778492
lipopolysaccharide; CXCL5; LIX; lung inflammation; mouse model
17.  Enhanced Pseudomonas aeruginosa Biofilm Development Mediated by Human Neutrophils  
Infection and Immunity  2005;73(6):3693-3701.
Cystic fibrosis (CF) lung disease features persistent neutrophil accumulation to the airways from the time of infancy. CF children are frequently exposed to Pseudomonas aeruginosa, and by adulthood, 80% of CF patients are chronically infected. The formation of biofilms is a particularly important phenotypic characteristic of P. aeruginosa that allows for bacterial survival despite aggressive antibiotic therapy and an exuberant immune response. Here, we show that the presence of neutrophils enhances initial P. aeruginosa biofilm development over a period of 72 h through the formation of polymers comprised of actin and DNA. F-actin was found to be a site of attachment for P. aeruginosa. These actin and DNA polymers are present in CF sputum, and disruption of the polymers dispersed the associated P. aeruginosa cells and reduced biofilm development. These findings demonstrate a potential maladaptation of the primary innate response. When the host fails to eradicate the infection, cellular components from necrotic neutrophils can serve as a biological matrix to facilitate P. aeruginosa biofilm formation.
PMCID: PMC1111839  PMID: 15908399
18.  Distinct Roles of Pattern Recognition Receptors CD14 and Toll-Like Receptor 4 in Acute Lung Injury  
Infection and Immunity  2005;73(3):1754-1763.
Acute lung injury (ALI) induced by lipopolysaccharide (LPS) is a major cause of mortality among humans. ALI is characterized by microvascular protein leakage, neutrophil influx, and expression of proinflammatory mediators, followed by severe lung damage. LPS binding to its receptors is the crucial step in the causation of these multistep events. LPS binding and signaling involves CD14 and Toll-like receptor 4 (TLR4). However, the relative contributions of CD14 and TLR4 in the induction of ALI and their therapeutic potentials are not clear in vivo. Therefore, the aim of the present study was to compare the roles of CD14 and TLR4 in LPS-induced ALI to determine which of these molecules is the more critical target for attenuating ALI in a mouse model. Our results show that CD14 and TLR4 are necessary for low-dose (300-μg/ml) LPS-induced microvascular leakage, NF-κB activation, neutrophil influx, cytokine and chemokine (KC, macrophage inflammatory protein 2, tumor necrosis factor alpha, interleukin-6) expression, and subsequent lung damage. On the other hand, when a 10-fold-higher dose of LPS (3 mg/ml) was used, these responses were only partially dependent on CD14 and they were totally dependent on TLR4. The CD14-independent LPS response was dependent on CD11b. A TLR4 blocking antibody abolished microvascular leakage, neutrophil accumulation, cytokine responses, and lung pathology with a low dose of LPS but only attenuated the responses with a high dose of LPS. These data are the first to demonstrate that LPS-induced CD14-depdendent and -independent (CD11b-dependent) signaling pathways in the lung are entirely dependent on TLR4 and that blocking TLR4 might be beneficial in lung diseases caused by LPS from gram-negative pathogens.
PMCID: PMC1064978  PMID: 15731076
19.  Transcriptional Profiling of Lipopolysaccharide-Induced Acute Lung Injury  
Infection and Immunity  2004;72(12):7247-7256.
Mortality associated with acute lung injury (ALI) induced by lipopolysaccharide (LPS) remains high in humans, warranting improved treatment and prevention strategies. ALI is characterized by the expression of proinflammatory mediators and extensive neutrophil influx into the lung, followed by severe lung damage. Understanding the pathogenesis of LPS-induced ALI is a prerequisite for designing better therapeutic strategies. In the present study, we used microarrays to gain a global view of the transcriptional responses of the lung to LPS in a mouse model of ALI that mimics ALI in humans. A total of 71 inflammation-associated genes were up-regulated in LPS-treated lungs, including a chemokine, LPS-induced CXC chemokine (LIX), whose role in the induction of ALI is unknown. Most of the inflammatory genes peaked at 2 h post-LPS treatment. Real-time reverse transcription-PCR confirmed the LPS-induced up-regulation of selected genes identified by microarray analysis, including LIX. The up-regulation of LIX, tumor necrosis factor alpha, and macrophage inflammatory protein 2 was confirmed at the protein level by enzyme-linked immunosorbent assays. To determine the role of LIX in the induction of ALI, we used both exogenous LIX and a LIX blocking antibody. Exogenous LIX alone elicited a neutrophil influx in the lungs, and the anti-LIX antibody attenuated the LPS-induced neutrophil accumulation in the lungs. Taken together, the results of our study demonstrate for the first time the temporal expression of inflammatory genes during LPS-induced ALI and suggest that early therapeutic intervention is crucial to attenuate lung damage. Moreover, we identified a role for LIX in the induction of ALI, and therefore LIX may serve as a novel therapeutic target for the minimization of ALI.
PMCID: PMC529166  PMID: 15557650
20.  Viral Regulation of RANTES Expression during Human Cytomegalovirus Infection of Endothelial Cells 
Journal of Virology  2001;75(7):3383-3390.
Human cytomegalovirus (HCMV) evades healthy immune responses during infection, and this evasion may allow HCMV to establish latency in the host. The human vasculature has been recognized as a site of HCMV infection and may also be a site of latent HCMV infection. As the interface between circulating cells and underlying parenchymal cells, the vascular endothelium provides signals for local reaction of inflammatory cells. We propose that HCMV down-regulates expression of the proinflammatory chemokine RANTES from the infected endothelium, which may result in reduced recruitment of mononuclear cells to the site of infection. Abortive HCMV infection of primary endothelial cells with the clinical isolate HCMV 4010, under conditions in which viral gene expression could not occur, induced high levels of RANTES expression. Replicative HCMV infection, however, induced cells in parallel cultures to express significantly lower levels of RANTES. Expression of the chemokines interleukin 8 and MCP-1 by endothelial cells was found to be unaffected by replicative HCMV infection and thus may not play an important role during early HCMV infection of the endothelium. HCMV may regulate RANTES expression from endothelial cells as a mechanism to evade the local immune response to infection.
PMCID: PMC114131  PMID: 11238864
21.  Selective activation and functional significance of p38α mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils 
Journal of Clinical Investigation  1999;103(6):851-858.
Activation of leukocytes by proinflammatory stimuli selectively initiates intracellular signal transduction via sequential phosphorylation of kinases. Lipopolysaccharide (LPS) stimulation of human neutrophils is known to result in activation of p38 mitogen-activated protein kinase (MAPk); however, the upstream activator(s) of p38 MAPk is unknown, and consequences of p38 MAPk activation remain largely undefined. We investigated the MAPk kinase (MKK) that activates p38 MAPk in response to LPS, the p38 MAPk isoforms that are activated as part of this pathway, and the functional responses affected by p38 MAPk activation. Although MKK3, MKK4, and MKK6 all activated p38 MAPk in experimental models, only MKK3 was found to activate recombinant p38 MAPk in LPS-treated neutrophils. Of p38 MAPk isoforms studied, only p38α and p38δ were detected in neutrophils. LPS stimulation selectively activated p38α. Specific inhibitors of p38α MAPk blocked LPS-induced adhesion, nuclear factor-kappa B (NF-κB) activation, and synthesis of tumor necrosis factor-α (TNF-α). Inhibition of p38α MAPk resulted in a transient decrease in TNF-α mRNA accumulation but persistent loss of TNF-α synthesis. These findings support a pathway by which LPS stimulation of neutrophils results in activation of MKK3, which in turn activates p38α MAPk, ultimately regulating adhesion, NF-κB activation, enhanced gene expression of TNF-α, and regulation of TNF-α synthesis.
PMCID: PMC408145  PMID: 10079106
22.  Intracellular Signaling by the Chemokine Receptor US28 during Human Cytomegalovirus Infection 
Journal of Virology  1998;72(7):5535-5544.
In patients with impaired cell-mediated immune responses (e.g., lung transplant recipients and AIDS patients), cytomegalovirus (CMV) infection causes severe disease such as pneumonitis. However, although immunocompetency in the host can protect from CMV disease, the virus persists by evading the host immune defenses. A model of CMV infection of the endothelium has been developed in which inflammatory stimuli, such as the CC chemokine RANTES, bind to the endothelial cell surface, stimulating calcium flux during late times of CMV infection. At 96 h postinfection, CMV-infected cells express mRNA of the CMV-encoded CC chemokine receptor US28 but do not express mRNA of other CC chemokine receptors that bind RANTES (CCR1, CCR4, CCR5). Cloning and stable expression of the receptor CMV US28 in human kidney epithelial cells (293 cells) with and without the heterotrimeric G protein α16 indicated that CMV US28 couples to both Gαi and Gα16 proteins to activate calcium flux in response to the chemokines RANTES and MCP-3. Furthermore, cells that coexpress US28 and Gα16 responded to RANTES stimulation with activation of extracellular signal-regulated kinase, which could be attributed, in part, to specific Gα16 coupling. Thus, through expression of the CC chemokine receptor US28, CMV may utilize resident G proteins of the infected cell to manipulate cellular responses stimulated by chemokines.
PMCID: PMC110199  PMID: 9621010

Results 1-22 (22)