Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("quaroni, Jon")
1.  Intraoperative Near-Infrared Imaging Can Distinguish Cancer from Normal Tissue but Not Inflammation 
PLoS ONE  2014;9(7):e103342.
Defining tumor from non-tumor tissue is one of the major challenges of cancer surgery. Surgeons depend on visual and tactile clues to select which tissues should be removed from a patient. Recently, we and others have hypothesized near-infrared (NIR) imaging can be used during surgery to differentiate tumors from normal tissue.
We enrolled 8 canines and 5 humans undergoing cancer surgery for NIR imaging. The patients were injected with indocyanine green (ICG), an FDA approved non-receptor specific NIR dye that accumulates in hyperpermeable tissues, 16–24 hours prior to surgery. During surgery, NIR imaging was used to discriminate the tumor from non-tumor tissue.
NIR imaging identified all tumors with a mean signal-to-background ratio of 6.7. Optical images were useful during surgery in discriminating normal tissue from cancer. In 3 canine cases and 1 human case, the tissue surrounding the tumor was inflamed due to obstruction of the vascular supply due to mass effect. In these instances, NIR imaging could not distinguish tumor tissue from tissue that was congested, edematous and did not contain cancer.
This study shows that NIR imaging can identify tumors from normal tissues, provides excellent tissue contrast, and it facilitates the resection of tumors. However, in situations where there is significant peritumoral inflammation, NIR imaging with ICG is not helpful. This suggests that non-targeted NIR dyes that accumulate in hyperpermeable tissues will have significant limitations in the future, and receptor-specific NIR dyes may be necessary to overcome this problem.
PMCID: PMC4114746  PMID: 25072388
2.  The timing of TGF-β inhibition affects the generation of antigen-specific CD8+ T Cells 
BMC Immunology  2013;14:30.
Transforming growth factor (TGF)-β is a potent immunosuppressive cytokine necessary for cancer growth. Animal and human studies have shown that pharmacologic inhibition of TGF-β slows the growth rate of established tumors and occasionally eradicates them altogether. We observed, paradoxically, that inhibiting TGF-β before exposing animals to tumor cells increases tumor growth kinetics. We hypothesized that TGF-β is necessary for the anti-tumor effects of cytotoxic CD8+ T lymphocytes (CTLs) during the early stages of tumor initiation.
BALB/c mice were pretreated with a blocking soluble TGF-β receptor (sTGF-βR, TGF-β-blockade group, n=20) or IgG2a (Control group, n=20) before tumor inoculation. Tumor size was followed for 6 weeks. In vivo lymphocyte assays and depletion experiments were then performed to investigate the immunological basis of our results. Lastly, animals were pretreated with either sTGF-βR (n=6) or IgG2a (n=6) prior to immunization with an adenoviral vector encoding the human papillomavirus E7 gene (Ad.E7). One week later, flow cytometry was utilized to measure the number of splenic E7-specific CD8+ T cells.
Inhibition of TGF-β before the injection of tumor cells resulted in significantly larger average tumor volumes on days 11, 17, 22, 26 and 32 post tumor-inoculation (p < 0.05). This effect was due to the inhibition of CTLs, as it was not present in mice with severe combined immunodeficiency (SCID) or those depleted of CD8+ T cells. Furthermore, pretreatment with sTGF-βR inhibited tumor-specific CTL activity in a Winn Assay. Tumors grew to a much larger size when mixed with CD8+ T cells from mice pretreated with sTGF-βR than when mixed with CD8+ T cells from mice in the control group: 96 mm3 vs. 22.5 mm3, respectively (p < 0.05). In addition, fewer CD8+ T cells were generated in Ad.E7-immunized mice pretreated with sTGF-βR than in mice from the control group: 0.6% total CD8+ T cells vs. 1.9%, respectively (p < 0.05).
These studies provide the first in vivo evidence that TGF-β may be necessary for anti-tumor immune responses in certain cancers. This finding has important implications for our understanding of anti-tumor immune responses, the role of TGF-β in the immune system, and the future development of TGF-β inhibiting drugs.
PMCID: PMC3725164  PMID: 23865808
Malignant mesothelioma; Tumor immunology; Immune suppression; TGF-β; CD8+ Cytotoxic T cell
3.  A positive-margin resection model recreates the postsurgical tumor microenvironment and is a reliable model for adjuvant therapy evaluation 
Cancer Biology & Therapy  2012;13(9):745-755.
Up to 30% of cancer patients undergoing curative surgery develop local recurrences due to positive margins. Patients typically receive adjuvant chemotherapy, immunotherapy and/or radiation to prevent such relapses. Interestingly, evidence supporting these therapies is traditionally derived in animal models of primary tumors, thus failing to consider surgically induced tumor microenvironment changes that may influence adjuvant therapy efficacy. To address this consideration, we characterized a murine model of local cancer recurrence. This model was reproducible and generated a postoperative inflammatory tumor microenvironment that resembles those observed following human cancer surgery. To further validate this model, antagonists of two pro-inflammatory mediators, TGFβ and COX-2, were tested and found to be effective in decreasing the growth of recurrent tumors. We appreciated that preoperative TGFβ inhibition led to wound dehiscence, while postoperative initiation of COX-2 inhibition resulted in a loss of efficacy. In summary, although not an exact replica of all human cancer surgeries, our proposed local recurrence approach provides a biologically relevant and reliable model useful for preclinical evaluation of novel adjuvant therapies. The use of this model yields results that may be overlooked using traditional preclinical cancer models that fail to incorporate a surgical component.
PMCID: PMC3606205  PMID: 22617772
Surgical model; adjuvant therapy; cancer recurrence; immunotherapy; oncology; tumor microenvironment
4.  Myeloid derived suppressor cells 
Oncoimmunology  2013;2(4):e24117.
The goal of achieving measurable response with cancer immunotherapy requires counteracting the immunosuppressive characteristics of tumors. One of the mechanisms that tumors utilize to escape immunosurveillance is the activation of myeloid derived suppressor cells (MDSCs). Upon activation by tumor-derived signals, MDSCs inhibit the ability of the host to mount an anti-tumor immune response via their capacity to suppress both the innate and adaptive immune systems. Despite their relatively recent discovery and characterization, anti-MDSC agents have been identified, which may improve immunotherapy efficacy.
PMCID: PMC3654606  PMID: 23734336
Myeloid derived suppressor cells; docetaxol; RNA aptamer; CpG oligodeoxynucleotides (ODN); cyclophosphamide; gemcitabine; curcumin
5.  Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer 
Macrophages are the dominant leukocyte population found in the tumor microenvironment. Accumulating evidence suggests that these tumor-associated macrophages (TAMs) actively promote all aspects of tumor initiation, growth, and development. However, TAMs are not a single uniform population; instead, they are composed of multiple distinct pro- and anti-tumoral subpopulations with overlapping features depending on a variety of external factors. Defining and differentiating these subsets remains a challenging work-in-progress. These difficulties are apparent in prognostic studies in lung cancer that initially demonstrated conflicting evidence regarding the significance of TAMs but which have more recently clarified and confirmed the clinical importance of these subsets through improved phenotypic capabilities. Thus, these cells represent potential targets for cancer therapeutic initiatives through translational approaches. In this review, we summarize the current understanding of how the tumor microenvironment takes advantage of macrophage plasticity to mold an immunosuppressive population, the phenotypic heterogeneity of TAMs, and their link to prognosis in human lung cancer.
PMCID: PMC3493031  PMID: 23145206
Myeloid cells; tumor-associated macrophages; tumor microenvironment; lung cancer; phenotype; prognosis
6.  T cell receptor (TCR)-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ) signaling mediate superior tumor regression in an animal model of adoptive cell therapy 
Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ), which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN), were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.
PMCID: PMC3507675  PMID: 22713761
7.  Characterization of surgical models of postoperative tumor recurrence for preclinical adjuvant therapy assessment 
Nearly 30% of cancer patients undergoing curative surgery succumb to distant recurrent disease. Despite large implications and known differences between primary and recurrent tumors, preclinical adjuvant therapy evaluation frequently occurs only in primary tumors and not recurrent tumors. We hypothesized that well characterized and reproducible models of postoperative systemic recurrences should be used for preclinical evaluation of adjuvant approaches.
Experimental Design
We examined traditional animal models of cancer surgery that generate systemic cancer recurrences. We also investigated models of systemic cancer recurrences that incorporate spontaneously metastatic cell lines and surgical resection. For each model, we critiqued feasibility, reproducibility and similarity to human recurrence biology. Using our novel model, we then tested the adjuvant use of a novel systemic inhibitor of TGF-β, 1D11.
Traditional surgical models are confounded by immunologic factors including concomitant immunity and perioperative immunosuppression. A superior preclinical model of postoperative systemic recurrences incorporates spontaneously metastatic cell lines and primary tumor excision. This approach is biologically relevant and readily feasible. Using this model, we discovered that “perioperative” TGF-β blockade has strong anti-tumor effects in the setting of advanced disease that would not be appreciated in primary tumor cell lines or other surgical models.
There are multiple immunologic effects that rendered previous models of postoperative cancer recurrences inadequate. Use of spontaneously metastatic cell lines followed by surgical resection eliminates these confounders, and best resembles the clinical scenario. This preclinical model provides more reliable preclinical information when evaluating new adjuvant therapies.
PMCID: PMC3353530  PMID: 22611473
Surgery; recurrence; models; surgical oncology; concomitant immunity; perioperative immunosuppression; TGF-β
8.  T cell receptor transgenic lymphocytes infiltrating murine tumors are not induced to express foxp3 
Regulatory T cells (Treg) that express the transcription factor Foxp3 are enriched within a broad range of murine and human solid tumors. The ontogeny of these Foxp3 Tregs - selective accumulation or proliferation of natural thymus-derived Treg (nTreg) or induced Treg (iTreg) converted in the periphery from naïve T cells - is not known. We used several strains of mice in which Foxp3 and EGFP are coordinately expressed to address this issue. We confirmed that Foxp3-positive CD4 T cells are enriched among tumor-infiltrating lymphocytes (TIL) and splenocytes (SPL) in B16 murine melanoma-bearing C57BL/6 Foxp3EGFP mice. OT-II Foxp3EGFP mice are essentially devoid of nTreg, having transgenic CD4 T cells that recognize a class II-restricted epitope derived from ovalbumin; Foxp3 expression could not be detected in TIL or SPL in these mice when implanted with ovalbumin-transfected B16 tumor (B16-OVA). Likewise, TIL isolated from B16 tumors implanted in Pmel-1 Foxp3EGFP mice, whose CD8 T cells recognize a class I-restricted gp100 epitope, were not induced to express Foxp3. All of these T cell populations - wild-type CD4, pmel CD8 and OTII CD4 - could be induced in vitro to express Foxp3 by engagement of their T cell receptor (TCR) and exposure to transforming growth factor β (TGFβ). B16 melanoma produces TGFβ and both pmel CD8 and OTII CD4 express TCR that should be engaged within B16 and B16-OVA respectively. Thus, CD8 and CD4 transgenic T cells in these animal models failed to undergo peripheral induction of Foxp3 in a tumor microenvironment.
PMCID: PMC3245424  PMID: 22112546

Results 1-8 (8)