PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Horng, wenhui")
1.  Genetic loci that regulate healing and regeneration in LG/J and SM/J mice 
MRL mice display unusual healing properties. When MRL ear pinnae are hole punched, the holes close completely without scarring, with re-growth of cartilage, and reappearance of both hair follicles and sebaceous glands. Studies using (MRL/lpr x C57BL/6)F2 and backcross mice first showed that this phenomenon was genetically determined and that multiple loci contributed to this quantitative trait. The lpr mutation itself, however, was not one of them. In the present study, we examined the genetic basis of healing in the Large (LG/J) mouse strain, a parent of the MRL mouse and a strain that shows the same healing phenotype. LG/J mice were crossed with Small (SM/J) mice and the F2 population was scored for healing and their genotypes determined at >200 polymorphic markers. As we previously observed for MRL and (MRL x B6)F2 mice, the wound healing phenotype was sexually dimorphic with female mice healing more quickly and more completely than male mice. We found quantitative trait loci (QTL) on chromosomes (chr) 9, 10, 11, and 15. The heal QTL on chrs 11 and 15 were linked to differential healing primarily in male animals, whereas QTL on chrs 9 and 10 were not sexually dimorphic. A comparison of loci identified in previous crosses with those in the present report using LG/J x SM/J showed that loci on chrs 9, 11 and 15 co-localized with those seen in previous MRL crosses, whereas the locus on chr 10 was not seen before and was is contributed by SM/J.
doi:10.1007/s00335-009-9216-3
PMCID: PMC3652381  PMID: 19760323
2.  Resection of Non-Small Cell Lung Cancers Reverses Tumor-Induced Gene Expression Changes in the Peripheral Immune System 
PURPOSE
To characterize the interactions of Non-small Cell Lung Cancer (NSCLC) tumors with the immune system at the level of mRNA and microRNA (miRNA) expression and to define expression signatures that characterize the presence of a malignant tumor vs. a non-malignant nodule.
EXPERIMENTAL DESIGN
We have examined the changes of both mRNA and miRNA expression levels in peripheral blood mononuclear cells (PBMC) between paired samples collected from NSCLC patients before and after tumor removal using Illumina gene expression arrays.
RESULTS
We found that malignant tumor removal significantly changes expression of more than 3,000 protein-coding genes, especially genes in pathways associated with suppression of the innate immune response, including NK cell signaling and apoptosis-associated ceramide signaling. Binding sites for the ETS-domain transcription factors ELK1, ELK4 and SPI1 were enriched in promoter regions of genes upregulated in the presence of a tumor. Additional important regulators included five miRNAs expressed at significantly higher levels before tumor removal. Repressed protein-coding targets of those miRNAs included many transcription factors, several involved in immunologically important pathways. While there was a significant overlap in the effects of malignant tumors and benign lung nodules on PBMC gene expression, we identified one gene panel which indicates a tumor or nodule presence and a second panel that can distinguish malignant from non-malignant nodules.
CONCLUSIONS
A tumor presence in the lung influences mRNA and miRNA expression in PBMC and this influence is reversed by tumor removal. These results suggest that PBMC gene expression signatures could be used for lung cancer diagnosis.
doi:10.1158/1078-0432.CCR-11-0737
PMCID: PMC3618688  PMID: 21807633
lung cancer; pbmc; peripheral immune system
3.  Transcriptomic Analysis Comparing Tumor-Associated Neutrophils with Granulocytic Myeloid-Derived Suppressor Cells and Normal Neutrophils 
PLoS ONE  2012;7(2):e31524.
The role of myeloid cells in supporting cancer growth is well established. Most work has focused on myeloid-derived suppressor cells (MDSC) that accumulate in tumor-bearing animals, but tumor-associated neutrophils (TAN) are also known to be capable of augmenting tumor growth. However, little is known about their evolution, phenotype, and relationship to naïve neutrophils (NN) and to the granulocytic fraction of MDSC (G-MDSC).
In the current study, a transcriptomics approach was used in mice to compare these cell types. Our data show that the three populations of neutrophils are significantly different in their mRNA profiles with NN and G-MDSC being more closely related to each other than to TAN. Structural genes and genes related to cell-cytotoxicity (i.e. respiratory burst) were significantly down-regulated in TAN. In contrast, many immune-related genes and pathways, including genes related to the antigen presenting complex (e.g. all six MHC-II complex genes), and cytokines (e.g. TNF-α, IL-1-α/β), were up-regulated in G-MDSC, and further up-regulated in TAN. Thirteen of the 25 chemokines tested were markedly up-regulated in TAN compared to NN, including striking up-regulation of chemoattractants for T/B-cells, neutrophils and macrophages.
This study characterizes different populations of neutrophils related to cancer, pointing out the major differences between TAN and the other neutrophil populations.
doi:10.1371/journal.pone.0031524
PMCID: PMC3279406  PMID: 22348096

Results 1-3 (3)