Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  High expression of long intervening non-coding RNA OLMALINC in the human cortical white matter is associated with regulation of oligodendrocyte maturation 
Molecular Brain  2015;8:2.
Long intervening non-coding RNAs (lincRNAs) are a recently discovered subclass of non-coding RNAs. LincRNAs are expressed across the mammalian genome and contribute to the pervasive transcription phenomenon. They display a tissue-specific and species-specific mode of expression and are present abundantly in the brain.
Here, we report the expression patterns of oligodendrocyte maturation-associated long intervening non-coding RNA (OLMALINC), which is highly expressed in the white matter (WM) of the human frontal cortex compared to the grey matter (GM) and peripheral tissues. Moreover, we identified a novel isoform of OLMALINC that was also up-regulated in the WM. RNA-interference (RNAi) knockdown of OLMALINC in oligodendrocytes, which are the major cell type in the WM, caused significant changes in the expression of genes regulating cytostructure, cell activation and membrane signaling. Gene ontology enrichment analysis revealed that over 10% of the top 25 up- and down-regulated genes were involved in oligodendrocyte maturation. RNAi experiments in neuronal cells resulted in the perturbation of genes controlling cell proliferation. Furthermore, we identified a novel cis-natural antisense non-coding RNA, which we named OLMALINC-AS, which maps to the first exon of the dominant isoform of OLMALINC.
Our study has demonstrated for the first time that a primate-specific lincRNA regulates the expression of genes critical to human oligodendrocyte maturation, which in turn might be regulated by an antisense counterpart.
Electronic supplementary material
The online version of this article (doi:10.1186/s13041-014-0091-9) contains supplementary material, which is available to authorized users.
PMCID: PMC4302521  PMID: 25575711
Long intervening non-coding RNA; OLMALINC; Human brain; Frontal cortex; White and grey matter; Antisense RNA
2.  Sequence-Dependent Antiproliferative Effects of Gefitinib and Docetaxel on Non-Small Cell Lung Cancer (NSCLC) Cells and the Possible Mechanism 
PLoS ONE  2014;9(12):e114074.
Recent clinical trials showed that the sequential combination of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and chemotherapy could prolong the PFS and/or OS of advanced non-small cell lung cancer (NSCLC) patients with EGFR mutation. The aim of present study was to assess the optimal combination sequence and to explore its possible mechanism.
PC-9 cells and A549 cells, the lung adenocarcinoma cells with mutant and wide-type EGFR respectively, were treated with docetaxel/gefitinib alone or in different combination schedules. The EGFR and K-ras gene status was determined by qPCR-HRM technique. Cell proliferation was detected by MTT assay. The expression and phosphorylation of EGFR, ERK, Akt and IGF-1R were detected by western blot. Cell cycle distribution was observed by flow cytometry.
Only sequential administration of docetaxel followed by gefitinib (D→G) induced significant synergistic effect in both cell lines (Combination Index<0.9). The reverse sequence (G→D) resulted in an antagonistic interaction in both cell lines (CI>1.1), whereas the concurrent administration (D+G) showed additive (0.9
The cytotoxic drugs followed by EGFR-TKIs may be the optimal combination for antiproliferative effects in EGFR-mutant NSCLC cells, and the phosphorylation of EGFR and ERK might contribute to this effect.
PMCID: PMC4256223  PMID: 25474307
PLoS ONE  2014;9(9):e107361.
Polyaniline nanomaterial (nPANI) is getting popular in many industrial fields due to its conductivity and stability. The fate and effect of nPANI in the environment is of paramount importance towards its technological applications. In this work, the cytotoxicity of nPANI, which was prepared by rapid surface polymerization, was studied on rat celiac macrophages. Cell viability of macrophages treated with various concentrations of nPANI and different periods ranging from 24 to 72 hours was tested by a MTT assay. Damages of nPANI to structures of macrophages were evaluated according to the exposure level of cellular reactive oxygen species (ROS) and change of mitochondrial membrane potential (MMP). We observed no significant effects of nPANI on the survival, ROS level and MMP loss of macrophages at concentrations up to 1 µg/ml. However, higher dose of nPANI (10 µg/ml or above) induced cell death, changes of ROS level and MMP. In addition, an increase in the expression level of caspase-3 protein and its activated form was detected in a Western blot assay under the high dose exposure of nPANI. All together, our experimental results suggest that the hazardous potential of nPANI on macrophages is time- and dose-dependent and high dose of nPANI can induce cell apoptosis through caspase-3 mediated pathway.
PMCID: PMC4175078  PMID: 25250578
PLoS ONE  2014;9(7):e103882.
Activating transcription factor 4 (ATF4) is a stress response gene that is involved in homeostasis and cellular protection. However, its expression and function in esophageal squamous cell carcinoma (ESCC) remains unknown. In this study, we aimed to determine the clinicopathologic significance of ATF4 in ESCC and its potential role in ESCC invasion and metastasis.
Methodology/Principal Findings
We demonstrated that ATF4 overexpression is correlated with multiple malignant characteristics and indicates poor prognosis in ESCC patients. ATF4 expression was an independent factor that affected the overall survival of patients with ESCC after surgical resection. ATF4 promoted cell invasion and metastasis by promoting matrix metalloproteinase (MMP)-2 and MMP-7 expression, while its silencing significantly attenuated these activities both in vitro and in vivo.
We report that ATF4 is a potential biomarker for ESCC prognosis and that its dysregulation may play a key role in the regulation of invasion and metastasis in ESCC cells. The targeting of ATF4 may provide a new strategy for blocking ESCC metastasis.
PMCID: PMC4117569  PMID: 25078779
The Journal of Clinical Investigation  2014;124(3):1393-1405.
Bitter taste receptors (T2Rs) in the human airway detect harmful compounds, including secreted bacterial products. Here, using human primary sinonasal air-liquid interface cultures and tissue explants, we determined that activation of a subset of airway T2Rs expressed in nasal solitary chemosensory cells activates a calcium wave that propagates through gap junctions to the surrounding respiratory epithelial cells. The T2R-dependent calcium wave stimulated robust secretion of antimicrobial peptides into the mucus that was capable of killing a variety of respiratory pathogens. Furthermore, sweet taste receptor (T1R2/3) activation suppressed T2R-mediated antimicrobial peptide secretion, suggesting that T1R2/3-mediated inhibition of T2Rs prevents full antimicrobial peptide release during times of relative health. In contrast, during acute bacterial infection, T1R2/3 is likely deactivated in response to bacterial consumption of airway surface liquid glucose, alleviating T2R inhibition and resulting in antimicrobial peptide secretion. We found that patients with chronic rhinosinusitis have elevated glucose concentrations in their nasal secretions, and other reports have shown that patients with hyperglycemia likewise have elevated nasal glucose levels. These data suggest that increased glucose in respiratory secretions in pathologic states, such as chronic rhinosinusitis or hyperglycemia, promotes tonic activation of T1R2/3 and suppresses T2R-mediated innate defense. Furthermore, targeting T1R2/3-dependent suppression of T2Rs may have therapeutic potential for upper respiratory tract infections.
PMCID: PMC3934184  PMID: 24531552
To evaluate the longitudinal reproducibility of optical coherence tomography (OCT) measurements in normal and glaucomatous eyes of children.
In this two-setting prospective study, OCT-3 was used to obtain fast retinal nerve fiber layer (RNFL) and of macular thickness scans. In the first study setting, the normal eyes of healthy children were scanned on presentation, at 2 weeks, and 3 years, with axial length measured at the first and last examinations. In the second setting, OCT scans of patients in the pediatric glaucoma clinic were performed over 4 years as clinically indicated. Eyes were classified as “normal,” (normal eyes and those with physiologic cupping but normal intraocular pressure (IOP)); “mild glaucoma” (elevated IOP and a normal optic nerve appearance); or “advanced glaucoma,”(severe cupping or progressive glaucoma). Intraclass correlation coefficients (ICC) were used to evaluate the reproducibility of measurements on the same day and over time.
In the first setting, 8 normal eyes were included. Axial length increased 0.11 ± 0.04 mm/year over an average of 3.3 years (P = 0.03); there was no statistically significant change in RNFL thickness (P = 0.30). In our second setting, 27 normal eyes and 37 eyes with glaucoma were included. ICCs across the three visits for total macular volume were 0.80–0.91 and for average RNFL were 0.73–0.95.
Global OCT measurements in children were reproducible over years and were not affected by normal increase in axial length. OCT shows promise as an objective tool for longitudinal assessment of children.
PMCID: PMC3535485  PMID: 23237748
PLoS ONE  2013;8(10):e78480.
The human frontal lobe has undergone accelerated evolution, leading to the development of unique human features such as language and self-reflection. Cortical grey matter and underlying white matter reflect distinct cellular compositions in the frontal lobe. Surprisingly little is known about the transcriptomal landscape of these distinct regions. Here, for the first time, we report a detailed transcriptomal profile of the frontal grey (GM) and white matter (WM) with resolution to alternatively spliced isoforms obtained using the RNA-Seq approach. We observed more vigorous transcriptome activity in GM compared to WM, presumably because of the presence of cellular bodies of neurons in the GM and RNA associated with the nucleus and perinuclear space. Among the top differentially expressed genes, we also identified a number of long intergenic non-coding RNAs (lincRNAs), specifically expressed in white matter, such as LINC00162. Furthermore, along with confirmation of expression of known markers for neurons and oligodendrocytes, we identified a number of genes and splicing isoforms that are exclusively expressed in GM or WM with examples of GABRB2 and PAK2 transcripts, respectively. Pathway analysis identified distinct physiological and biochemical processes specific to grey and white matter samples with a prevalence of synaptic processes in GM and myelination regulation and axonogenesis in the WM. Our study also revealed that expression of many genes, for example, the GPR123, is characterized by isoform switching, depending in which structure the gene is expressed. Our report clearly shows that GM and WM have perhaps surprisingly divergent transcriptome profiles, reflecting distinct roles in brain physiology. Further, this study provides the first reference data set for a normal human frontal lobe, which will be useful in comparative transcriptome studies of cerebral disorders, in particular, neurodegenerative diseases.
PMCID: PMC3808538  PMID: 24194939
Genome Announcements  2013;1(5):e00716-13.
Bifidobacterium longum subsp. longum CMCC P0001, a standard probiotic strain in China, has been widely used in clinical medicine for more than 20 years. Here we report the genome features of B. longum strain CMCC P0001.
PMCID: PMC3772146  PMID: 24029762
PLoS ONE  2013;8(9):e73768.
While aberrant activation of microglial cells was evidently involved in neuroinflammation and neurotoxicity in the neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease, objective of study was to address if activated microglias deliver their effect by releasing pro-neurotrophins.
Materials and methods
By in vitro culture of N9 and BV2 cell lines and lipopolysaccharide (LPS) stimulation model, generation and release of proNGF, proBDNF and MMP-9 was studied in the activated microglial cells by immunocytochemistry, western blotting and bioassay methods.
Activation of microglial cells was observed with obvious increasing iba1-immunoreactivity following LPS stimulation in cell culture. Synthesis and up-regulation of proNGF protein significantly occurred in N9 and BV2 cells 12h-48h after LPS exposure, whereas no significant changes of proBDNF and MMP9 were observed in these microglial cell lines with LPS insult. More interestingly, extracellular release or secretion of proNGF molecule was also detected in culture medium of N9 cells after LPS stimulation. Finally, bioassay using MTT, Hoechst/PI and TUNEL staining in SH-SY5Y cells further confirmed that proNGF treatment could result in apoptotic cell death but it did not significantly influence cell viability of SH-SY5Y cells.
This in vitro study revealed LPS-stimulated proNGF synthesis and release in activated N9/BV2 microglial cell lines, also suggesting that proNGF may appeal a new pathway or possible mechanism underlying microglial toxicity in the neuroinflammation and a potential target for therapeutic manipulation of the neurodegenerative diseases.
PMCID: PMC3767823  PMID: 24040063
PLoS ONE  2013;8(8):e71350.
Wolfiporia cocos Ryvarden et Gilbertson is a saprophytic fungus in the Basidiomycetes. Its dried sclerotium is widely used as a traditional crude drug in East Asia. Especially in China, the dried sclerotium is regarded as the silver of the Chinese traditional drugs, not only for its white color, but also its medicinal value. Furthermore, triterpenoids from W. cocos are the main active compounds with antitumor and anti-inflammatory activity. Biosynthesis of the triterpenoids has rarely been researched. In this study, the de novo sequencing of the mycelia and sclerotia of W. cocos were carried out by Illumina HiSeq 2000. A total of 3,484,996,740 bp from 38,722,186 sequence reads of mycelia, and 3,573,921,960 bp from 39,710,244 high quality sequence reads of sclerotium were obtained. These raw data were assembled into 60,354 contigs and 40,939 singletons, and 56,938 contigs and 37,220 singletons for mycelia and sclerotia, respectively. The transcriptomic data clearly showed that terpenoid biosynthesis was only via the MVA pathwayin W. cocos. The production of total triterpenoids and pachymic acid was examined in the dry mycelia and sclerotia. The content of total triterpenoids was 5.36% and 1.43% in mycelia and sclerotia, respectively, and the content of pachymic acid was 0.458% and 0.174%. Some genes involved in the triterpenoid biosynthetic pathway were chosen to be verified by qRT-PCR. The unigenes encoding diphosphomevalonate decarboxylase (Unigene 20430), farnesyl diphosphate synthase (Unigene 14106 and 21656), hydroxymethylglutaryl-CoA reductase (NADPH) (Unigene 6395_All) and lanosterol synthase (Unigene28001_All) were upregulated in the mycelia stage. It is likely that expression of these genes influences the biosynthesis of triterpenoids in the mycelia stage.
PMCID: PMC3743799  PMID: 23967197
Acta Pharmacologica Sinica  2013;34(8):1036-1042.
To investigate the effects Astragalus polysaccharides (APS) on tumor necrosis factor (TNF)-α-induced inflammatory reactions in human umbilical vein endothelial cells (HUVECs) and to elucidate the underlying mechanisms.
HUVECs were treated with TNF-α for 24 h. The amounts of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were determined with Western blotting. HUVEC viability and apoptosis were detected using cell viability assay and Hoechst staining, respectively. Reactive oxygen species (ROS) production was measured by DHE staining. Monocyte and HUVEC adhesion assay was used to detect endothelial cell adhesive function. NF-κB activation was detected with immunofluorescence.
TNF-α (1-80 ng/mL) caused dose- and time-dependent increases of ICAM-1 and VCAM-1 expression in HUVECs, accompanied by significant augmentation of IκB phosphorylation and NF-κB translocation into the nuclei. Pretreatment with APS (10 and 50 μg/mL) significantly attenuated TNFα-induced upregulation of ICAM-1 VCAM-1 and NF-κB translocation. Moreover, APS significantly reduced apoptosis, ROS generation and adhesion function damage in TNF-α-treated HUVECs.
APS suppresses TNFα-induced adhesion molecule expression by blocking NF-κB signaling and inhibiting ROS generation in HUVECs. The results suggest that APS may be used to treat and prevent endothelial cell injury-related diseases.
PMCID: PMC4003026  PMID: 23728723
Astragalus polysaccharides; endothelial cell injury; TNF-α; ICAM-1; VCAM-1; NF-κB; apoptosis; reactive oxygen species; atherosclerosis
Growing evidence has shown that proNGF-p75NTR-sortilin signaling might be a crucial factor in neurodegeneration, but it remains unclear if it may function in nigral neurons under aging and disease. The purpose of this study is to examine and quantify proNGF and sortilin expression in the substantia nigra and dynamic changes of aging in lactacystin and 6-hydroxydopamine (6-OHDA) rat models of Parkinson’s disease using immunofluorescence, electronic microscopy, western blot and FLIVO staining methods. The expression of proNGF and sortilin was abundantly and selectively identified in tyrosine hydroxylase (TH)-containing dopamine neurons in the substantia nigra. These proNGF/TH, sortilin/TH-positive neurons were densely distributed in the ventral tier, while they were less distributed in the dorsal tier, where calbindin-D28K-containing neurons were numerously located. A correlated decrease of proNGF, sortilin and TH was also detected during animal aging process. While increase of proNGF, sortilin and cleaved (active) caspase-3 expression was found in the lactacystin model, dynamic proNGF and sortilin changes along with dopamine neuronal loss were demonstrated in the substantia nigra of both the lactacystin and 6-OHDA models. This study has thus revealed the presence of the proNGF-sortilin signaling complex in nigral dopamine neurons and its response to aging, lactacystin and 6-OHDA insults, suggesting that it might contribute to neuronal apoptosis or neurodegeneration during pathogenesis and disease progression of Parkinson’s disease; the underlying mechanism and key signaling pathways involved warrant further investigation.
PMCID: PMC3742233  PMID: 23880857
pro-neurotrophins; pro-neurotrophin receptors; neurodegeneration; Parkinson’s disease
We had reported that N-myc downstream–regulated gene (NDRG2) regulates colorectal cancer, breast cancer, clear cell renal cell carcinoma, pancreatic cancer, thyroid cancer and esophageal squamous cell proliferation, development, and apoptosis. The goal of this study was to determine the expression pattern of NDRG2 in human lung cancer and its correlation with prognosis. Immunohistochemistry, RT-PCR and western blot were used to explore the expression of NDRG2 in 185 human lung cancer patients. The correlation of NDRG2 expression with patients’ survival rate was assessed by Kaplan–Meier and Cox regression. Results showed that the expression level of NDRG2 was decreased in human lung cancer tissues, and NDRG2 was positively correlated with depth of invasion (P = 0.038), vascular invasion (P = 0.036), tumor grade (P = 0.039), and tumor size (P = 0.026). Both RT-PCR and Western blots demonstrated that NDRG2 mRNA and protein levels were lower in lung cancer compared to the adjacent normal tissue from the same individual, and NDRG2 level was negatively correlated with UICC stage. Additionally, survival time of lung cancer patients with high expression of NDRG2 was longer than those with low expression during the 5-year follow-up period (P = 0.001). Meanwhile, COX regression analysis indicated that low expression of NDRG2, ≥pT3, pM1, ≥pN1 and vascular invasion were independent, poor prognostic factors of lung cancer patients. These data showed that NDRG2 may play an important role in human lung cancer tumourigenesis, and NDRG2 might serve as a novel prognostic marker in human lung cancer.
PMCID: PMC3586402  PMID: 23307246
N-myc downstream–regulated gene 2; Lung cancer; Prognosis; Immunohistochemistry; UICC
American journal of ophthalmology  2011;153(1):167-75.e3.
To report retinal findings for healthy newborn infants imaged with hand held Spectral Domain Optical Coherence Tomography (SD-OCT).
Prospective observational case series.
Thirty-nine full term newborn infants had dilated retinal examinations by indirect ophthalmoscopy and retinal imaging by handheld SD-OCT, without sedation, at the Duke Birthing Center.
Of the 39 infants imaged, 44% (17/39) were male. Race/ethnicity composition was 56% white, 38% black, 3% Asian, and 3% Hispanic. Median gestational age was 39 weeks (range 36 to 41). Six of the 39 infants (15%) had bilateral subfoveal fluid on SD-OCT not seen by indirect ophthalmoscopy. Eight infants (21%) had retinal hemorrhages noted on dilated retinal examination, 1 of which had subretinal fluid on SD-OCT. Subretinal fluid was noted on follow up examination to have resolved on SD-OCT 1 to 4 months later. Infants with bilateral subretinal fluid had an older gestational age compared to infants without subretinal fluid (median 40.4 vs. 39.1 weeks, respectively, P=0.03) and were more likely to have had mothers with diabetes (2/6 vs. 0/33, respectively, P=0.02). Vaginal versus C-section delivery was not significantly different between the two groups.
Some healthy full term infants have bilateral subfoveal fluid not obvious on dilated retinal examination. This fluid resolves within several months. The visual significance of this finding is unknown, but clinicians should be aware it is common when evaluating newborn infants for retinal pathology using SD-OCT.
PMCID: PMC3496561  PMID: 21925640
PLoS ONE  2012;7(12):e51713.
Brain metastasis (BM) from non-small cell lung cancer (NSCLC) is relatively common, but identifying which patients will develop brain metastasis has been problematic. We hypothesized that genotype variants in the TGF-β signaling pathway could be a predictive biomarker of brain metastasis.
Patients and Methods
We genotyped 33 SNPs from 13 genes in the TGF-β signaling pathway and evaluated their associations with brain metastasis risk by using DNA from blood samples from 161 patients with NSCLC. Kaplan-Meier analysis was used to assess brain metastasis risk; Cox hazard analyses were used to evaluate the effects of various patient and disease characteristics on the risk of brain metastasis.
The median age of the 116 men and 45 women in the study was 58 years; 62 (39%) had stage IIIB or IV disease. Within 24 months after initial diagnosis of lung cancer, brain metastasis was found in 60 patients (37%). Of these 60 patients, 16 had presented with BM at diagnosis. Multivariate analysis showed the GG genotype of SMAD6: rs12913975 and TT genotype of INHBC: rs4760259 to be associated with a significantly higher risk of brain metastasis at 24 months follow-up (hazard ratio [HR] 2.540, 95% confidence interval [CI] 1.204–5.359, P = 0.014; and HR 1.885, 95% CI 1.086–3.273, P = 0.024), compared with the GA or CT/CC genotypes, respectively. When we analyzed combined subgroups, these rates showed higher for those having both the GG genotype of SMAD6: rs12913975 and the TT genotype of INHBC: rs4760259 (HR 2.353, 95% CI 1.390–3.985, P = 0.001).
We found the GG genotype of SMAD6: rs12913975 and TT genotype of INHBC: rs4760259 to be associated with risk of brain metastasis in patients with NSCLC. This finding, if confirmed, can help to identify patients at high risk of brain metastasis.
PMCID: PMC3524120  PMID: 23284751
The Journal of Clinical Investigation  2012;122(11):4145-4159.
Innate and adaptive defense mechanisms protect the respiratory system from attack by microbes. Here, we present evidence that the bitter taste receptor T2R38 regulates the mucosal innate defense of the human upper airway. Utilizing immunofluorescent and live cell imaging techniques in polarized primary human sinonasal cells, we demonstrate that T2R38 is expressed in human upper respiratory epithelium and is activated in response to acyl-homoserine lactone quorum-sensing molecules secreted by Pseudomonas aeruginosa and other gram-negative bacteria. Receptor activation regulates calcium-dependent NO production, resulting in stimulation of mucociliary clearance and direct antibacterial effects. Moreover, common polymorphisms of the TAS2R38 gene were linked to significant differences in the ability of upper respiratory cells to clear and kill bacteria. Lastly, TAS2R38 genotype correlated with human sinonasal gram-negative bacterial infection. These data suggest that T2R38 is an upper airway sentinel in innate defense and that genetic variation contributes to individual differences in susceptibility to respiratory infection.
PMCID: PMC3484455  PMID: 23041624
Drugs that can rapidly inhibit respiratory infection from influenza or other respiratory pathogens are needed. One approach is to engage primary innate immune defenses against viral infection, such as activating the IFN pathway. In this study, we report that a small, cell-permeable compound called 5,6-di-methylxanthenone-4-acetic acid (DMXAA) can induce protection against vesicular stomatitis virus in vitro and H1N1 influenza A virus in vitro and in vivo through innate immune activation. Using the mouse C10 bronchial epithelial cell line and primary cultures of nasal epithelial cells, we demonstrate DMXAA activates the IFN regulatory factor-3 pathway leading to production of IFN-β and subsequent high-level induction of IFN-β–dependent proteins, such as myxovirus resistance 1 (Mx1) and 2′,5′-oligoadenylate synthetase 1 (OAS1). Mice treated with DMXAA intranasally elevate mRNA/protein expression of Mx1 and OAS1 in the nasal mucosa, trachea, and lung. When challenged intranasally with a lethal dose of H1N1 influenza A virus, DMXAA reduced viral titers in the lungs and protected 80% of mice from death, even when given at 24 hours before infection. These data show that agents, like DMXAA, that can directly activate innate immune pathways, such as the IFN regulatory factor-3/IFN-β system, in respiratory epithelial cells can be used to protect from influenza pneumonia and potentially in other respiratory viral infections. Development of this approach in humans could be valuable for protecting health care professionals and “first responders” in the early stages of viral pandemics or bioterror attacks.
PMCID: PMC3265219  PMID: 21148741
innate immunity; interferon; influenza; pneumonia; bronchial epithelium
The Journal of organic chemistry  2005;70(22):8739-8742.
A model study leading to the preparation of the AEF rings of N-deacetyllappaconitine is described. The conjugate addition to the α-alkyl cyclohexenone 10 proceeded with high diastereocontrol. The Mannich cyclization of 16 to 4 was accomplished by heating with Rexyn-300 and Na2SO4.
PMCID: PMC3248817  PMID: 16238304
PLoS ONE  2011;6(10):e25596.
Lactobacillus plantarum is a widespread probiotic bacteria found in many fermented food products. In this study, the whole-cell proteins and secretory proteins of L. plantarum were separated by two-dimensional electrophoresis method. A total of 434 proteins were identified by tandem mass spectrometry, including a plasmid-encoded hypothetical protein pLP9000_05. The information of first 20 highest abundance proteins was listed for the further genetic manipulation of L. plantarum, such as construction of high-level expressions system. Furthermore, the first interaction map of L. plantarum was established by Blue-Native/SDS-PAGE technique. A heterodimeric complex composed of maltose phosphorylase Map3 and Map2, and two homodimeric complexes composed of Map3 and Map2 respectively, were identified at the same time, indicating the important roles of these proteins. These findings provided valuable information for the further proteomic researches of L. plantarum.
PMCID: PMC3187783  PMID: 21998671
BMC Cell Biology  2009;10:63.
The discovery of the importance of angiogenesis in tumor growth has emphasized the need to find specific vascular targets for tumor-targeted therapies. Previously, using phage display technology, we identified the peptide GX1 as having the ability to target the gastric cancer vasculature. The present study investigated the bioactivities of GX1, as well as its potential ability to cooperate with recombinant mutant human tumor necrosis factor alpha (rmhTNFα), in gastric cancer therapy.
Tetrazolium salt (MTT) assay showed that GX1 could inhibit cell proliferation of both human umbilical vein endothelial cells (HUVEC) (44%) and HUVEC with tumor endothelium characteristics, generated by culturing in tumor-conditioned medium (co-HUVEC) (62%). Flow-cytometry (FCM) and western blot assays showed that GX1 increased the rate of apoptosis from 11% to 31% (p < 0.01) by up-regulating caspase 3 expression level. A chorioallantoic membrane assay indicated that GX1 could suppress neovascularization in vivo, with the microvessel count decreasing from 21 to 11 (p < 0.05). When GX1 was fused to rmhTNFα, GX1-rmhTNFα selectively concentrated in the gastric cancer vasculature, as shown by enzyme-linked immunosorbent assay, immunofluorescence and emission-computed tomography. In vitro MTT and FCM assays showed that, compared to rmhTNFα alone, GX1-rmhTNFα was more effective at suppressing co-HUVEC proliferation (45% vs. 61%, p < 0.05) and inducing apoptosis (11% vs. 23%, p < 0.05). In a tumor formation test, GX1-rmhTNFα more effectively inhibited tumor growth than rmhTNFα (tumor volume: 271 mm3 vs. 134 mm3, p < 0.05), with less systemic toxicity as measured by body weight (20.57 g vs. 19.30 g, p < 0.05). These therapeutic effects may be mediated by selectively enhanced tumor vascular permeability, as indicated by Evan's blue assay.
GX1 had both homing activity and the ability to inhibit vascular endothelial cell proliferation in vitro and neovascularization in vivo. Furthermore, when GX1 was conjugated to rmhTNFα, the fusion protein was selectively delivered to targeted tumor sites, significantly improving the anti-tumor activity of rmhTNFα and decreasing systemic toxicity. These results demonstrate the potential of GX1 as a homing peptide in vascular targeted therapy for gastric cancer.
PMCID: PMC2746182  PMID: 19740430

Results 1-20 (20)