Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Repeated stressors in adulthood increase the rate of biological ageing 
Frontiers in Zoology  2015;12:4.
Individuals of the same age can differ substantially in the degree to which they have accumulated tissue damage, akin to bodily wear and tear, from past experiences. This accumulated tissue damage reflects the individual’s biological age and may better predict physiological and behavioural performance than the individual‘s chronological age. However, at present it remains unclear how to reliably assess biological age in individual wild vertebrates.
We exposed hand-raised adult Eurasian blackbirds (Turdus merula) to a combination of repeated immune and disturbance stressors for over one year to determine the effects of chronic stress on potential biomarkers of biological ageing including telomere shortening, oxidative stress load, and glucocorticoid hormones. We also assessed general measures of individual condition including body mass and locomotor activity.
By the end of the experiment, stress-exposed birds showed greater decreases in telomere lengths. Stress-exposed birds also maintained higher circulating levels of oxidative damage compared with control birds. Other potential biomarkers such as concentrations of antioxidants and glucocorticoid hormone traits showed greater resilience and did not differ significantly between treatment groups.
The current data demonstrate that repeated exposure to experimental stressors affects the rate of biological ageing in adult Eurasian blackbirds. Both telomeres and oxidative damage were affected by repeated stress exposure and thus can serve as blood-derived biomarkers of biological ageing.
Electronic supplementary material
The online version of this article (doi:10.1186/s12983-015-0095-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4336494
Biomarker; Repeated stressors; Eurasian blackbird; Oxidative stress; Glucocorticoid; Telomere
2.  Exogenous kisspeptin does not alter photoperiod-induced gonadal regression in Siberian hamsters (Phodopus sungorus) 
In order to reproduce successfully, animals must integrate multiple environmental cues to synchronize breeding with favorable conditions. In temperate seasonally breeding rodents, photoperiod acts as the primary seasonal cue. Long days are associated with reproductive development and maturation of the gonads whereas short days induce gonadal regression. The neuropeptide kisspeptin has potent stimulatory effects on reproductive development. Kisspeptin potently stimulates GnRH release and kisspeptin expression co-varies with photoperiod in seasonally breeding animals. Here we tested the hypothesis that reproductive involution in response to inhibitory day lenghts results from reduced kisspeptin stimulation of the reproductive axis in seasonally breeding Siberian hamsters (Phodopus sungorus). If true, gonadal regrowth should be hastened by kisspeptin treatment in regressed hamsters and prevented in hamsters by treatment prior to and during regression. In Experiment 1 and Experiment 2 we tested the ability of kisspeptin to reverse gonadal regression. In Experiment 1, reproductively regressed hamsters received chronic kisspeptin via osmotic mini-pumps for 4 weeks. In Experiment 2, daily injections of kisspeptin were administered to regressed hamsters for 6 weeks. In Experiment 3, the ability of kisspeptin to block gonadal regression was tested; hamsters transferred to short days received daily injections of kisspeptin for 6 weeks. In all three studies, short day animals receiving exogenous kisspeptin did not differ from short-day controls. Collectively, these results provide evidence that mechanisms in addition to those that converge on the kisspeptin system are likely critical for seasonal changes in the reproductive axis.
PMCID: PMC2430753  PMID: 18405899
metastin; seasonal reproduction; gonadal recrudescence; GPR54; puberty
3.  Melatonin delays clutch initiation in a wild songbird 
Biology Letters  2011;8(3):330-332.
The hormone melatonin is known to play an important role in regulating many seasonal changes in physiology, morphology and behaviour. In birds, unlike in mammals, melatonin has thus far been thought to play little role in timing seasonal reproductive processes. This view is mainly derived from laboratory experiments on male birds. This study tests whether melatonin is capable of influencing the timing of clutch initiation in wild female songbirds. Free-living female great tits (Parus major) treated with melatonin-filled implants prior to the breeding season initiated their first clutch of the season significantly later than females carrying an empty implant. Melatonin treatment did not affect clutch size. Further, melatonin treatment did not delay the onset of daily activity in the wild nor adversely affect body mass in captivity compared with controls. These data suggest a previously unknown role for this hormone in regulating the timing of clutch initiation in the wild.
PMCID: PMC3367749  PMID: 22171024
reproductive timing; songbird; pineal
4.  Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus) 
Hormones and behavior  2010;58(5):792-799.
Anthropogenic disturbance is a relevant and widespread facilitator of environmental change and there is clear evidence that it impacts natural populations. While population-level responses to major anthropogenic changes have been well studied, individual physiological responses to mild disturbance can be equally critical to the long-term survival of a species, yet they remain largely unexamined. The current study investigated the impact of seemingly low-level anthropogenic disturbance (ecotourism) on stress responsiveness and specific fitness-related immune measures in different breeding stages of the marine iguana (Amblyrhynchus cristatus). Specifically, we found stress-induced elevations in plasma corticosterone among tourist-exposed populations relative to undisturbed populations. We also found changes in multiple immunological responses associated with stress-related effects of human disturbance, including bacterial killing ability, cutaneous wound healing, and hemolytic complement activity, and the responses varied according to reproductive state. By identifying health-related consequences of human disturbance, this study provides critical insight into the conservation of a well-known species that has a very distinct ecology. The study also broadens the foundation of knowledge needed to understand the global significance of various levels of human disturbance.
PMCID: PMC2982938  PMID: 20708010
Corticosterone; reproduction; immunity; tourism
5.  Exogenous insulin enhances humoural immune responses in short-day, but not long-day, Siberian hamsters (Phodopus sungorus) 
Many animals experience marked seasonal fluctuations in environmental conditions. In response, animals display adaptive alterations in physiology and behaviour, including seasonal changes in immune function. During winter, animals must reallocate finite energy stores from relatively costly, less exigent systems (e.g. reproduction and immunity) to systems critical for immediate survival (e.g. thermoregulation). Seasonal changes in immunity are probably mediated by neuroendocrine factors signalling current energetic state. One potential hormonal candidate is insulin, a metabolic hormone released in response to elevated blood glucose levels. The aim of the present study was to explore the potential role of insulin in signalling energy status to the immune system in a seasonally breeding animal, the Siberian hamster (Phodopus sungorus). Specifically, exogenous insulin was administered to male hamsters housed in either long ‘summer-like’ or short ‘winter-like’ days. Animals were then challenged with an innocuous antigen and immune responses were measured. Insulin treatment significantly enhanced humoural immune responses in short, but not long days. In addition, insulin treatment increased food intake and decreased blood glucose levels across photoperiodic treatments. Collectively, these data support the hypothesis that insulin acts as an endocrine signal integrating seasonal energetic changes and immune responses in seasonally breeding rodents.
PMCID: PMC2880144  PMID: 20236973
immunity; energy balance; insulin; antibody response
6.  Response to Exogenous Kisspeptin Varies According to Sex and Reproductive Condition in Siberian Hamsters (Phodopus sungorus) 
Most animals experience marked changes in reproductive status across development that are regulated by changes in the hypothalamo-pituitary-gonadal (HPG) axis. The upstream mechanisms regulating this axis, however, remain less well understood. The neuropeptide kisspeptin serves as a positive regulator of reproduction; the precise actions of kisspeptin on the HPG axis in animals of differing developmental and seasonal reproductive states, however, remain unresolved. Further, sex differences in response to kisspeptin have not been fully explored. In Experiment 1, we investigated whether sensitivity to a broad range of kisspeptin doses differed in adult male and female Siberian hamsters held on reproductively inhibitory or stimulatory photoperiods. In Experiment 2, we asked whether the response to kisspeptin differed across different stages of reproductive development. Males and females displayed elevated luteinizing hormone LH) in response to kisspeptin; however, the sexes differed in this response, with males showing greater LH responses to kisspeptin than females. Hamsters responded to kisspeptin across all stages of reproductive development, although the magnitude of this response differed between animals of different ages and between the sexes. Males showed significant increases in LH at an earlier development age than females; females also showed blunted LH responses during early adulthood whereas males remained relatively constant in their response to kisspeptin. These findings suggest that reproductively active and inactive hamsters are responsive to kisspeptin, but that the sexes differ in their responsiveness. Collectively, these data provide further insight into the basic actions of kisspeptin in the regulation of reproduction, and provide a potential mechanism for the regulation of differential reproductive responses between the sexes.
PMCID: PMC3082704  PMID: 20937279
metastin; GPR54; Kiss1; seasonal reproduction; puberty
7.  The glutamate agonist, NMDA blocks gonadal regression and enhances antibody response to an immune challenge in Siberian hamsters (Phodopus sungorus) 
Seasonal variation in behavior and physiology, including changes in immune function, are common. This variability is elicited by changes in photoperiod and often covaries with fluctuations in both energy reserves and reproductive state. It is unclear, however, whether changes in either variable alone drive seasonal changes in immunity. We investigated the relative contributions of reproduction and energy balance to changes in immune function. To accomplish this, we uncoupled seasonal changes in reproduction from those related to energy balance via daily injections of N-methyl-D-Aspartate (NMDA) in Siberian hamsters (Phodopus sungorus). NMDA is a glutamatergic agonist that blocks short-day induced gonadal regression while leaving short-day declines in body mass unaffected. In Experiment 1, we examined the effect of differing doses of NMDA on testosterone production as a proxy for NMDA effects on reproduction; a dose-dependent rise in testosterone was observed. In Experiment 2, animals were maintained on long or short days and received daily injections of NMDA. After eight weeks all animals underwent a humoral immune challenge. Short-day animals receiving daily injections of NMDA maintained long-day-like gonads, however contrary to our predictions, no trade-off between reproduction or energy balance and immune function was observed. Unexpectedly, NMDA treatment increased immunoglobulin levels in all groups, suggesting NMDA may provide an immunomodulatory signal, presumably through actions on peripheral glutamate receptors. These results support a previous finding that NMDA blocks reproductive regression. In addition, these findings demonstrate a general immunoenhancing effect of NMDA that appears independent of changes in reproductive or energetic state of the animal.
PMCID: PMC2809793  PMID: 19820951
8.  Leptin increases maternal investment 
The primary goal of virtually all organisms is to produce genetic offspring, thereby passing on their genes to future generations. Offspring production, however, is limited by available resources within an environment. Moreover, distributing sufficient energy among competing physiological systems is challenging and can result in trade-offs between self-maintenance and offspring investment when resources are limited. In the current study, we tested the hypothesis that the adipose hormone leptin is involved in mediating energetic trade-offs between competing physiological systems. Specifically, we tested the effects of elevated maternal leptin on investment into offspring production versus self maintenance (immune function), in the Siberian hamster (Phodopus sungorus). The current study provides the first evidence that leptin serves as a signal to mothers of available energy resulting in epigenetic effects. Therefore, elevated leptin allows females to retain more embryos to parturition, and rear more offspring to weaning via reduced maternal infanticide. Innate immune response was suppressed seemingly as a result of these enlarged litters, suggesting that the observed fitness increase is not without costs to the mother. Collectively, these findings suggest that leptin plays a critical role in allowing mothers to determine how much energy to invest in the production and care of young versus self-maintenance.
PMCID: PMC2825785  PMID: 19710064
energy; immunity; reproduction; trade-offs
9.  Incubation Environment Affects Immune System Development in a Turtle with Environmental Sex Determination 
Journal of herpetology  2008;42(3):536-541.
The developmental environment can have lasting effects on posthatching phenotype in oviparous animals. Innate immune response is one important component of fitness in vertebrates because it provides a generalized defense against infection. In addition, because male vertebrates are at a higher risk of infection than females, males may benefit more from increased innate immunity than females. We determined the effects of incubation temperature on the innate immune response of hatchling map turtles (Graptemys) by incubating eggs at a range of male and female producing-temperatures and assessing plasma complement activity in the resulting hatchlings. We found a significant effect of incubation environment on circulating complement in hatchling Graptemys ouachitensis, with male-producing temperatures yielding the highest innate immune response. Most important, these results demonstrate that immune response is affected by developmental environment in a species with environmental sex determination, potentially resulting in sex differences in the ability to fend off pathogens.
PMCID: PMC2839242  PMID: 20300480
10.  Suppression of Kisspeptin Expression and Gonadotropic Axis Sensitivity Following Exposure to Inhibitory Day Lengths in Female Siberian Hamsters 
Hormones and behavior  2007;52(4):492-498.
To avoid breeding during unsuitable environmental or physiological circumstances, the reproductive axis adjusts its output in response to fluctuating internal and external conditions. The ability of the reproductive system to alter its activity appropriately in response to these cues has been well established. However, the means by which reproductively relevant cues are interpreted, integrated, and relayed to the reproductive axis remain less well specified. The neuropeptide kisspeptin has been shown to be a potent positive stimulator of the hypothalamo-pituitary-gonadal (HPG) axis, suggesting a possible neural locus for the interpretation/integration of these cues. Because a failure to inhibit reproduction during winter would be maladaptive for short-lived female rodents, female Siberian hamsters (Phodopus sungorus) housed in long and short days hamsters were examined. In long, ‘summer’ photoperiods, kisspeptin is highly expressed in the anteroventral periventricular nucleus (AVPV), with low expression in the arcuate nucleus (Arc). A striking reversal in this pattern is observed in animals held in short, ‘winter’ photoperiods, with negligible kisspeptin expression in the AVPV and marked staining in the Arc. Although all studies to date suggest that both populations act to stimulate the reproductive axis, these contrasting expression patterns of AVPV and Arc kisspeptin suggest disparate roles for these two cell populations. Additionally, we found that the stimulatory actions of exogenous kisspeptin are blocked by acyline, a gonadotropin-releasing hormone (GnRH) receptor antagonist, suggesting an action of kisspeptin on the GnRH system rather than pituitary gonadotropes. Finally, females held in short day lengths exhibit a reduced response to exogenous kisspeptin treatment relative to long-day animals. Together, these findings indicate a role for kisspeptin in the AVPV and Arc as an upstream integration center for reproductively-relevant stimuli and point to a dual mechanism of reproductive inhibition in which kisspeptin expression is reduced concomitant with reduced sensitivity of the HPG axis to this peptide.
PMCID: PMC2717891  PMID: 17706968
metastin; GPR54; photoperiod; Siberian hamster; seasonal; reproduction
11.  Recent advances in reproductive neuroendocrinology: a role for RFamide peptides in seasonal reproduction? 
Most temperate-zone species use photoperiod to coordinate breeding and ensure that offspring are born during favourable conditions. Although photoperiodic influences on the reproductive axis have been well characterized, the precise mechanisms by which photoperiodic information and other seasonal cues are integrated to regulate reproductive function remain less well specified. Two recently discovered neuropeptides, kisspeptin and gonadotropin-inhibitory hormone, have pronounced opposing influences on reproductive function. This paper will review recent evidence for a role of these peptides in seasonal reproduction and propose a theoretical framework by which these novel regulatory peptides may serve to regulate seasonal breeding. Understanding the mechanisms regulating appropriate changes in reproductive status will serve to advance a wide range of life science disciplines.
PMCID: PMC2459216  PMID: 18477543
kisspeptin; gonadotropin-inhibitory hormone; seasonal reproduction; RFamide; RFamide-related peptide; metastin

Results 1-11 (11)