PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Transcriptomic Analysis of Tail Regeneration in the Lizard Anolis carolinensis Reveals Activation of Conserved Vertebrate Developmental and Repair Mechanisms 
PLoS ONE  2014;9(8):e105004.
Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out the first transcriptomic analysis of tail regeneration in a lizard, the green anole Anolis carolinensis, which revealed 326 differentially expressed genes activating multiple developmental and repair mechanisms. Specifically, genes involved in wound response, hormonal regulation, musculoskeletal development, and the Wnt and MAPK/FGF pathways were differentially expressed along the regenerating tail axis. Furthermore, we identified 2 microRNA precursor families, 22 unclassified non-coding RNAs, and 3 novel protein-coding genes significantly enriched in the regenerating tail. However, high levels of progenitor/stem cell markers were not observed in any region of the regenerating tail. Furthermore, we observed multiple tissue-type specific clusters of proliferating cells along the regenerating tail, not localized to the tail tip. These findings predict a different mechanism of regeneration in the lizard than the blastema model described in the salamander and the zebrafish, which are anamniote vertebrates. Thus, lizard tail regrowth involves the activation of conserved developmental and wound response pathways, which are potential targets for regenerative medical therapies.
doi:10.1371/journal.pone.0105004
PMCID: PMC4139331  PMID: 25140675
2.  The effect of carotenoid supplementation on immune system development in juvenile male veiled chameleons (Chamaeleo calyptratus) 
Frontiers in Zoology  2014;11:26.
Introduction
Nutrient availability, assimilation, and allocation can have important and lasting effects on the immune system development of growing animals. Though carotenoid pigments have immunostimulatory properties in many animals, relatively little is known regarding how they influence the immune system during development. Moreover, studies linking carotenoids to health at any life stage have largely been restricted to birds and mammals. We investigated the effects of carotenoid supplementation on multiple aspects of immunity in juvenile veiled chameleons (Chamaeleo calyptratus). We supplemented half of the chameleons with lutein (a xanthophyll carotenoid) for 14 weeks during development and serially measured multiple aspects of immune function, including: agglutination and lysis performance of plasma, wound healing, and plasma nitric oxide concentrations before and after wounding.
Results
Though lutein supplementation effectively elevated circulating carotenoid concentrations throughout the developmental period, we found no evidence that carotenoid repletion enhanced immune function at any point. However, agglutination and lysis scores increased, while baseline nitric oxide levels decreased, as chameleons aged.
Conclusions
Taken together, our results indicate that body mass and age, but not carotenoid access, may play an important role in immune performance of growing chameleons. Hence, studying well-understood physiological processes in novel taxa can provide new perspectives on alternative physiological processes and nutrient function.
doi:10.1186/1742-9994-11-26
PMCID: PMC4022081  PMID: 24655326
Antioxidant; Innate immunity; Nitric oxide; Reptiles; Wound healing
3.  The effect of hydration state and energy balance on innate immunity of a desert reptile 
Frontiers in Zoology  2013;10:23.
Introduction
Immune function is a vital physiological process that is often suppressed during times of resource scarcity due to investments in other physiological systems. While energy is the typical currency that has been examined in such trade-offs, limitations of other resources may similarly lead to trade-offs that affect immune function. Specifically, water is a critical resource with profound implications for organismal ecology, yet its availability can fluctuate at local, regional, and even global levels. Despite this, the effect of osmotic state on immune function has received little attention.
Results
Using agglutination and lysis assays as measures of an organism’s plasma concentration of natural antibodies and capacity for foreign cell destruction, respectively, we tested the independent effects of osmotic state, digestive state, and energy balance on innate immune function in free-ranging and laboratory populations of the Gila monster, Heloderma suspectum. This desert-dwelling lizard experiences dehydration and energy resource fluctuations on a seasonal basis. Dehydration was expected to decrease innate immune function, yet we found that dehydration increased lysis and agglutination abilities in both lab and field studies, a relationship that was not simply an effect of an increased concentration of immune molecules. Laboratory-based differences in digestive state were not associated with lysis or agglutination metrics, although in our field population, a loss of fat stores was correlated with an increase in lysis.
Conclusions
Depending on the life history of an organism, osmotic state may have a greater influence on immune function than energy availability. Thus, consideration of osmotic state as a factor influencing immune function will likely improve our understanding of ecoimmunology and the disease dynamics of a wide range of species.
doi:10.1186/1742-9994-10-23
PMCID: PMC3660207  PMID: 23642164
Dehydration; Digestion; Energy balance; Hemagglutination; Hemolysis; Osmolality; Water
4.  Molecular Convergence of Infrared Vision in Snakes 
It has been discovered that the transient receptor potential ankyrin 1 (TRPA1) proteins of Boidae (boas), Pythonidae (pythons), and Crotalinae (pit vipers) are used to detect infrared radiation, but the molecular mechanism for detecting the infrared radiation is unknown. Here, relating the amino acid substitutions in their TRPA1 proteins and the functional differentiations, we propose that three parallel amino acid changes (L330M, Q391H, and S434T) are responsible for the development of infrared vision in the three groups of snakes. Protein modeling shows that the three amino acid changes alter the structures of the central region of their ankyrin repeats.
doi:10.1093/molbev/msq267
PMCID: PMC3108606  PMID: 20937734
infrared vision; transient receptor potential ankyrin 1 (TRPA1) proteins; ankyrin repeats; parallel evolution; snakes
5.  Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus) 
Hormones and behavior  2010;58(5):792-799.
Anthropogenic disturbance is a relevant and widespread facilitator of environmental change and there is clear evidence that it impacts natural populations. While population-level responses to major anthropogenic changes have been well studied, individual physiological responses to mild disturbance can be equally critical to the long-term survival of a species, yet they remain largely unexamined. The current study investigated the impact of seemingly low-level anthropogenic disturbance (ecotourism) on stress responsiveness and specific fitness-related immune measures in different breeding stages of the marine iguana (Amblyrhynchus cristatus). Specifically, we found stress-induced elevations in plasma corticosterone among tourist-exposed populations relative to undisturbed populations. We also found changes in multiple immunological responses associated with stress-related effects of human disturbance, including bacterial killing ability, cutaneous wound healing, and hemolytic complement activity, and the responses varied according to reproductive state. By identifying health-related consequences of human disturbance, this study provides critical insight into the conservation of a well-known species that has a very distinct ecology. The study also broadens the foundation of knowledge needed to understand the global significance of various levels of human disturbance.
doi:10.1016/j.yhbeh.2010.08.001
PMCID: PMC2982938  PMID: 20708010
Corticosterone; reproduction; immunity; tourism

Results 1-5 (5)