PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (271)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
more »
1.  Pharmacokinetics of Orally Administered Oseltamivir in Healthy Obese and Nonobese Thai Subjects 
Oseltamivir is the most widely used anti-influenza drug. In the 2009 H1N1 pandemic, in which the influenza viruses were oseltamivir sensitive, obesity was identified as a risk factor for severe disease and unfavorable outcomes. The aim of this study was to investigate the pharmacokinetic properties of oseltamivir and its active metabolite, oseltamivir carboxylate, in obese and nonobese healthy subjects. A single-dose, randomized, two-sequence crossover study was conducted in 12 obese and 12 nonobese healthy Thai volunteers. Each volunteer was given 75 mg and 150 mg oseltamivir orally with an intervening washout period of more than 3 days. The pharmacokinetic properties of oseltamivir and oseltamivir carboxylate were evaluated using a noncompartmental approach. The median (range) body mass indexes (BMIs) for obese subjects were 33.8 kg/m2 (30.8 to 43.2) and 22.2 (18.8 to 24.2) for nonobese subjects. The pharmacokinetic parameters of oseltamivir carboxylate, the active metabolite of oseltamivir, were not significantly different between obese and nonobese subjects for both 75-mg and 150-mg doses. Both doses were well tolerated. Despite the lower dose per kilogram body weight in obese subjects, there was no significant difference in the exposure of oseltamivir carboxylate between the obese and nonobese groups. Standard dosing is appropriate for obese subjects. (The study was registered at ClinicalTrials.gov under registration no. NCT 01049763.)
doi:10.1128/AAC.01786-13
PMCID: PMC3957867  PMID: 24366750
2.  Motivations and perceptions of community advisory boards in the ethics of medical research: the case of the Thai-Myanmar border 
BMC Medical Ethics  2014;15:12.
Background
Community engagement is increasingly promoted as a marker of good, ethical practice in the context of international collaborative research in low-income countries. There is, however, no widely agreed definition of community engagement or of approaches adopted. Justifications given for its use also vary. Community engagement is, for example, variously seen to be of value in: the development of more effective and appropriate consent processes; improved understanding of the aims and forms of research; higher recruitment rates; the identification of important ethical issues; the building of better relationships between the community and researchers; the obtaining of community permission to approach potential research participants; and, the provision of better health care. Despite these diverse and potentially competing claims made for the importance of community engagement, there is very little published evidence on effective models of engagement or their evaluation.
Methods
In this paper, drawing upon interviews with the members of a Community Advisory Board on the Thai-Myanmar border, we describe and critically reflect upon an approach to community engagement which was developed in the context of international collaborative research in the border region.
Results and conclusions
Drawing on our analysis, we identify a number of considerations relevant to the development of an approach to evaluating community engagement in this complex research setting. The paper also identifies a range of important ways in which the Community Advisory Board is in practice understood by its members (and perhaps by community members beyond this) to have morally significant roles and responsibilities beyond those usually associated with the successful and appropriate conduct of research.
doi:10.1186/1472-6939-15-12
PMCID: PMC3929312  PMID: 24533875
Ethics; Evaluation; Community engagement; Community advisory boards; Developing countries; Thailand; Myanmar; Global health; International research
3.  Genetic Marker Suitable for Identification and Genotyping of Plasmodium ovale curtisi and Plasmodium ovale wallikeri 
Journal of Clinical Microbiology  2013;51(12):4213-4216.
We present a seminested PCR method that specifically discriminates between Plasmodium ovale curtisi and P. ovale wallikeri with high sensitivity. The test is based on species-specific amplification of a size-polymorphic fragment of the tryptophan-rich antigen gene, potra, which also permits discrimination of intraspecific sequence variants at this locus.
doi:10.1128/JCM.01527-13
PMCID: PMC3838052  PMID: 24068009
4.  Lethal Malaria: Marchiafava and Bignami Were Right 
The Journal of Infectious Diseases  2013;208(2):192-198.
One hundred and twenty years ago, the Italian malariologists Marchiafava and Bignami proposed that the fundamental pathological process underlying lethal falciparum malaria was microvascular obstruction. Since then, several alternative hypotheses have been proposed. These formed the basis for adjunctive interventions, which have either been ineffective or harmful. Recent evidence strongly suggests that Marchiafava and Bignami were right.
doi:10.1093/infdis/jit116
PMCID: PMC3685223  PMID: 23585685
P. falciparum; malaria; cerebral malaria; pathology
5.  Sequestration and Microvascular Congestion Are Associated With Coma in Human Cerebral Malaria 
The Journal of Infectious Diseases  2011;205(4):663-671.
The pathogenesis of coma in severe Plasmodium falciparum malaria remains poorly understood. Obstruction of the brain microvasculature because of sequestration of parasitized red blood cells (pRBCs) represents one mechanism that could contribute to coma in cerebral malaria. Quantitative postmortem microscopy of brain sections from Vietnamese adults dying of malaria confirmed that sequestration in the cerebral microvasculature was significantly higher in patients with cerebral malaria (CM; n = 21) than in patients with non-CM (n = 23). Sequestration of pRBCs and CM was also significantly associated with increased microvascular congestion by infected and uninfected erythrocytes. Clinicopathological correlation showed that sequestration and congestion were significantly associated with deeper levels of premortem coma and shorter time to death. Microvascular congestion and sequestration were highly correlated as microscopic findings but were independent predictors of a clinical diagnosis of CM. Increased microvascular congestion accompanies coma in CM, associated with parasite sequestration in the cerebral microvasculature.
doi:10.1093/infdis/jir812
PMCID: PMC3266137  PMID: 22207648
6.  Population Pharmacokinetic and Pharmacodynamic Properties of Intramuscular Quinine in Tanzanian Children with Severe Falciparum Malaria 
Although artesunate is clearly superior, parenteral quinine is still used widely for the treatment of severe malaria. A loading-dose regimen has been recommended for 30 years but is still often not used. A population pharmacokinetic study was conducted with 75 Tanzanian children aged 4 months to 8 years with severe malaria who received quinine intramuscularly; 69 patients received a loading dose of 20 mg quinine dihydrochloride (salt)/kg of body weight. Twenty-one patients had plasma quinine concentrations detectable at baseline. A zero-order absorption model with one-compartment disposition pharmacokinetics described the data adequately. Body weight was the only significant covariate and was implemented as an allometric function on clearance and volume parameters. Population pharmacokinetic parameter estimates (and percent relative standard errors [%RSE]) of elimination clearance, central volume of distribution, and duration of zero-order absorption were 0.977 liters/h (6.50%), 16.7 liters (6.39%), and 1.42 h (21.5%), respectively, for a typical patient weighing 11 kg. Quinine exposure was reduced at lower body weights after standard weight-based dosing; there was 18% less exposure over 24 h in patients weighing 5 kg than in those weighing 25 kg. Maximum plasma concentrations after the loading dose were unaffected by body weight. There was no evidence of dose-related drug toxicity with the loading dosing regimen. Intramuscular quinine is rapidly and reliably absorbed in children with severe falciparum malaria. Based on these pharmacokinetic data, a loading dose of 20 mg salt/kg is recommended, provided that no loading dose was administered within 24 h and no routine dose was administered within 12 h of admission. (This study has been registered with Current Controlled Trials under registration number ISRCTN 50258054.)
doi:10.1128/AAC.01349-12
PMCID: PMC3553700  PMID: 23183442
7.  Rapid Isolation and Susceptibility Testing of Leptospira spp. Using a New Solid Medium, LVW Agar 
Pathogenic Leptospira spp., the causative agents of leptospirosis, are slow-growing Gram-negative spirochetes. Isolation of Leptospira from clinical samples and testing of antimicrobial susceptibility are difficult and time-consuming. Here, we describe the development of a new solid medium that facilitates more-rapid growth of Leptospira spp. and the use of this medium to evaluate the Etest's performance in determining antimicrobial MICs to drugs in common use for leptospirosis. The medium was developed by evaluating the effects of numerous factors on the growth rate of Leptospira interrogans strain NR-20157. These included the type of base agar, the concentration of rabbit serum (RS), and the concentration and duration of CO2 incubation during the initial period of culture. The highest growth rate of NR-20157 was achieved using a Noble agar base supplemented with 10% RS (named LVW agar), with an initial incubation at 30°C in 5% CO2 for 2 days prior to continuous culture in air at 30°C. These conditions were used to develop the Etest for three species, L. interrogans (NR-20161), L. kirschnerii (NR-20327), and L. borgpetersenii (NR-20151). The MICs were read on day 7 for all samples. The Etest was then performed on 109 isolates of pathogenic Leptospira spp. The MIC90 values for penicillin G, doxycycline, cefotaxime, ceftriaxone, and chloramphenicol were 0.64 units/ml and 0.19, 0.047, 0.5, and 2 μg/ml, respectively. The use of LVW agar, which enables rapid growth, isolation of single colonies, and simple antimicrobial susceptibility testing for Leptospira spp., provides an opportunity for new areas of fundamental and applied research.
doi:10.1128/AAC.01812-12
PMCID: PMC3535913  PMID: 23114772
8.  A Comparison of Two Short-Course Primaquine Regimens for the Treatment and Radical Cure of Plasmodium vivax Malaria in Thailand 
Thai adult males (N = 85) with acute Plasmodium vivax malaria and normal glucose-6-phosphate dehydrogenase screening were randomized to receive 30 mg or 60 mg primaquine daily for 7 days (N = 43 and 42, respectively). The regimens were well tolerated and all patients recovered fully. Median fever clearance (47 hours; range 4 to 130 hours), mean ± SD parasite clearance times (87.7 ± 25.3 hours), gametocyte clearance, and adverse effects were similar in the 2 groups. Two patients, 1 from each group, had a 30% reduction in hematocrit. The cumulative 28 day relapse rate (95% confidence interval) by Kaplan Meier survival analysis was 29% (16–49%) in the 30 mg group compared with 7% (2–24%) in the 60 mg group; P = 0.027. Comparison with previous data obtained at this same site suggests that the recurrences comprised approximately 17% recrudescences and 12% relapses in the 30 mg/day group compared with 3% recrudescences and 4% relapses in the 60 mg/day group. These data suggest that the dose-response relationships for primaquine's asexual stage and hypnozoitocidal activities in-vivo are different. A 1 week course of primaquine 60 mg daily is an effective treatment of vivax malaria in this region.
doi:10.4269/ajtmh.2010.09-0428
PMCID: PMC2844579  PMID: 20348496
9.  Population Pharmacokinetic and Pharmacodynamic Modeling of Amodiaquine and Desethylamodiaquine in Women with Plasmodium vivax Malaria during and after Pregnancy 
Antimicrobial Agents and Chemotherapy  2012;56(11):5764-5773.
Amodiaquine is effective for the treatment of Plasmodium vivax malaria, but there is little information on the pharmacokinetic and pharmacodynamic properties of amodiaquine in pregnant women with malaria. This study evaluated the population pharmacokinetic and pharmacodynamic properties of amodiaquine and its biologically active metabolite, desethylamodiaquine, in pregnant women with P. vivax infection and again after delivery. Twenty-seven pregnant women infected with P. vivax malaria on the Thai-Myanmar border were treated with amodiaquine monotherapy (10 mg/kg/day) once daily for 3 days. Nineteen women, with and without P. vivax infections, returned to receive the same amodiaquine dose postpartum. Nonlinear mixed-effects modeling was used to evaluate the population pharmacokinetic and pharmacodynamic properties of amodiaquine and desethylamodiaquine. Amodiaquine plasma concentrations were described accurately by lagged first-order absorption with a two-compartment disposition model followed by a three-compartment disposition of desethylamodiaquine under the assumption of complete in vivo conversion. Body weight was implemented as an allometric function on all clearance and volume parameters. Amodiaquine clearance decreased linearly with age, and absorption lag time was reduced in pregnant patients. Recurrent malaria infections in pregnant women were modeled with a time-to-event model consisting of a constant-hazard function with an inhibitory effect of desethylamodiaquine. Amodiaquine treatment reduced the risk of recurrent infections from 22.2% to 7.4% at day 35. In conclusion, pregnancy did not have a clinically relevant impact on the pharmacokinetic properties of amodiaquine or desethylamodiaquine. No dose adjustments are required in pregnancy.
doi:10.1128/AAC.01242-12
PMCID: PMC3486620  PMID: 22926572
10.  Diagnosis, Clinical Presentation, and In-Hospital Mortality of Severe Malaria in HIV-Coinfected Children and Adults in Mozambique 
Background. Severe falciparum malaria with human immunodeficiency virus (HIV) coinfection is common in settings with a high prevalence of both diseases, but there is little information on whether HIV affects the clinical presentation and outcome of severe malaria.
Methods. HIV status was assessed prospectively in hospitalized parasitemic adults and children with severe malaria in Beira, Mozambique, as part of a clinical trial comparing parenteral artesunate versus quinine (ISRCTN50258054). Clinical signs, comorbidity, complications, and disease outcome were compared according to HIV status.
Results. HIV-1 seroprevalence was 11% (74/655) in children under 15 years and 72% (49/68) in adults with severe malaria. Children with HIV coinfection presented with more severe acidosis, anemia, and respiratory distress, and higher peripheral blood parasitemia and plasma Plasmodium falciparum histidine-rich protein-2 (PfHRP2). During hospitalization, deterioration in coma score, convulsions, respiratory distress, and pneumonia were more common in HIV-coinfected children, and mortality was 26% (19/74) versus 9% (53/581) in uninfected children (P < .001). In an age- and antimalarial treatment–adjusted logistic regression model, significant, independent predictors for death were renal impairment, acidosis, parasitemia, and plasma PfHRP2 concentration.
Conclusions. Severe malaria in HIV-coinfected patients presents with higher parasite burden, more complications, and comorbidity, and carries a higher case fatality rate. Early identification of HIV coinfection is important for the clinical management of severe malaria.
doi:10.1093/cid/cis590
PMCID: PMC3447636  PMID: 22752514
11.  Population Pharmacokinetics of Dihydroartemisinin and Piperaquine in Pregnant and Nonpregnant Women with Uncomplicated Malaria 
Pregnant women are particularly vulnerable to malaria. The pharmacokinetic properties of antimalarial drugs are often affected by pregnancy, resulting in lower drug concentrations and a consequently higher risk of treatment failure. The objective of this study was to evaluate the population pharmacokinetic properties of piperaquine and dihydroartemisinin in pregnant and nonpregnant women with uncomplicated malaria. Twenty-four pregnant and 24 matched nonpregnant women on the Thai-Myanmar boarder were treated with a standard fixed oral 3-day treatment, and venous plasma concentrations of both drugs were measured frequently for pharmacokinetic evaluation. Population pharmacokinetics were evaluated with nonlinear mixed-effects modeling. The main pharmacokinetic finding was an unaltered total exposure to piperaquine but reduced exposure to dihydroartemisinin in pregnant compared to nonpregnant women with uncomplicated malaria. Piperaquine was best described by a three-compartment disposition model with a 45% higher elimination clearance and a 47% increase in relative bioavailability in pregnant women compared with nonpregnant women. The resulting net effect of pregnancy was an unaltered total exposure to piperaquine but a shorter terminal elimination half-life. Dihydroartemisinin was best described by a one-compartment disposition model with a 38% lower relative bioavailability in pregnant women than nonpregnant women. The resulting net effect of pregnancy was a decreased total exposure to dihydroartemisinin. The shorter terminal elimination half-life of piperaquine and lower exposure to dihydroartemisinin will shorten the posttreatment prophylactic effect and might affect cure rates. The clinical impact of these pharmacokinetic findings in pregnant women with uncomplicated malaria needs to be evaluated in larger series.
doi:10.1128/AAC.05756-11
PMCID: PMC3318332  PMID: 22252822
12.  Circulating Red Cell–derived Microparticles in Human Malaria 
The Journal of Infectious Diseases  2011;203(5):700-706.
In patients with falciparum malaria, plasma concentrations of cell-derived microparticles correlate with disease severity. Using flow cytometry, we quantified red blood cell–derived microparticles (RMPs) in patients with malaria and identified the source and the factors associated with production. RMP concentrations were increased in patients with Plasmodium falciparum (n = 29; median, 457 RMPs/μL [range, 13–4,342 RMPs/μL]), Plasmodium vivax (n = 5; median, 409 RMPs/μL [range, 281–503/μL]), and Plasmodium malariae (n = 2; median, 163 RMPs/μL [range, 127–200 RMPs/μL]) compared with those in healthy subjects (n = 11; median, 8 RMPs/μL [range, 3–166 RMPs/μL]; P = .01). RMP concentrations were highest in patients with severe falciparum malaria (P = .01). Parasitized red cells produced >10 times more RMPs than did unparasitized cells, but the overall majority of RMPs still derived from uninfected red blood cells (URBCs). In cultures, RMP production increased as the parasites matured. Hemin and parasite products induced RMP production in URBCs, which was inhibited by N-acetylcysteine, suggesting heme-mediated oxidative stress as a pathway for the generation of RMPs.
doi:10.1093/infdis/jiq104
PMCID: PMC3072726  PMID: 21282195
13.  The First Plasmodium vivax Relapses of Life Are Usually Genetically Homologous 
The Journal of Infectious Diseases  2011;205(4):680-683.
In a prospective infant cohort, 21 infants developed Plasmodium vivax malaria during their first year. Twelve of their mothers also had vivax malaria in the corresponding pregnancies or postpartum period. The genotypes of the maternal and infant infections were all different. Eight of the 12 mothers and 9 of the 21 infants had recurrent infections. Relapse parasite genotypes were different to the initial infection in 13 of 20 (65%) mothers compared with 5 of 24 (21%) infants (P = .02). The first P. vivax relapses of life are usually genetically homologous, whereas relapse in adults may result from activation of heterologous latent hypnozoites acquired from previous inoculations.
doi:10.1093/infdis/jir806
PMCID: PMC3266132  PMID: 22194628
14.  A Small Amount of Fat Does Not Affect Piperaquine Exposure in Patients with Malaria▿† 
Dihydroartemisinin-piperaquine is a new, highly effective, and well-tolerated combination treatment for uncomplicated falciparum malaria. The lipophilic characteristic of piperaquine suggests that administration together with fat will increase the oral bioavailability of the drug, and this has been reported for healthy volunteers. This pharmacokinetic study monitored 30 adult patients with uncomplicated falciparum malaria for 4.5 months to evaluate the effects of the concomitant intake of fat on the total piperaquine exposure. The fixed-drug combination of dihydroartemisinin-piperaquine was given with water to fasting patients (n = 15) or was coadministered with 200 ml milk containing 6.4 g fat (n = 15). The drug combination was generally well tolerated, and there were no severe adverse effects reported for either group during the study. Total piperaquine exposure (area under the concentration-time curve from zero to infinity [AUC0-∞]; results are given as medians [ranges]) were not statistically different between fed (29.5 h · μg/ml [20.6 to 58.7 h · μg/ml]) and fasting (23.9 h · μg/ml [11.9 to 72.9 h · μg/ml]) patients, but the interindividual variation was reduced in the fed group. Overall, none of the pharmacokinetic parameters differed statistically between the groups. Total piperaquine exposure correlated well with the day 7 concentrations in the fasted group, but the fed group showed a poor correlation. In conclusion, the coadministration of 6.4 g fat did not have any significant effect on piperaquine pharmacokinetics in the treatment of uncomplicated malaria.
doi:10.1128/AAC.00279-11
PMCID: PMC3165307  PMID: 21709087
15.  Quantification of the anti-influenza drug zanamivir in plasma using high-throughput HILIC–MS/MS 
Bioanalysis  2011;3(2):157-165.
Background
Parenteral zanamivir is a promising drug for the treatment of severe influenza. However, quantification of this polar drug in biological matrices has traditionally been difficult and the methods developed have been relatively insensitive.
Results
A high-throughput bioanalytical method for the ana lysis of zanamivir in human plasma using SPE in the 96-well plate format and LC coupled to positive MS/MS has been developed and validated according to US FDA guidelines. The method uses 50 μl of plasma and covers a large working range from 1–50, 000 ng/ml with a LOD of 0.50 ng/ml.
Conclusion
This new LC–MS/MS assay is more sensitive than previous methods despite using a small plasma volume sample. It is particularly suitable for clinical studies on both parenteral and inhaled zanamivir.
doi:10.4155/bio.10.189
PMCID: PMC3096760  PMID: 21250845
16.  High heritability of malaria parasite clearance rate indicates a genetic basis for artemisinin resistance in Western Cambodia 
The Journal of infectious diseases  2010;201(9):1326-1330.
In Western Cambodia malaria parasites clear slowly from the blood following treatment with artemisinin derivatives, but it is unclear whether this results from parasite, host, or other factors specific to this population. We measured heritability of clearance rate (CR), by examining patients infected with identical or non-identical parasite genotypes, using methods analogous to human twin studies. A substantial proportion (56-58%) of the variation in CR is explained by parasite genetics. This has two important implications: (1) selection with artemisinin derivatives will tend to drive resistance spread, (2) because heritability is high, genes underlying CR may be identified by genome-wide association.
doi:10.1086/651562
PMCID: PMC2853733  PMID: 20350192
Artemisinin; clearance time; heritability; twin studies; resistance; microsatellite
17.  Evaluation of a PfHRP2 and a pLDH-based Rapid Diagnostic Test for the Diagnosis of Severe Malaria in 2 Populations of African Children 
This comparative study in 1898 children in 2 different African population shows that a pfHRP2-based rapid diagnostic test is a reliable diagnostic for diagnosing severe falciparum malaria in these settings and performs better than routine microscopy or a pLDH based test.
Background. Rapid diagnostic tests (RDTs) now play an important role in the diagnosis of falciparum malaria in many countries where the disease is endemic. Although these tests have been extensively evaluated in uncomplicated falciparum malaria, reliable data on their performance for diagnosing potentially lethal severe malaria is lacking.
Methods. We compared a Plasmodium falciparum histidine-rich-protein2 (PfHRP2)–based RDT and a Plasmodium lactate dehydrogenase (pLDH)–based RDT with routine microscopy of a peripheral blood slide and expert microscopy as a reference standard for the diagnosis of severe malaria in 1898 children who presented with severe febrile illness at 2 centers in Mozambique and Tanzania.
Results. The overall sensitivity, specificity, positive predictive value, and negative predictive values of the PfHRP2-based test were 94.0%, 70.9%, 85.4%, and 86.8%, respectively, and for the pLDH-based test, the values were 88.0%, 88.3%, 93.2%, and 80.3%, respectively. At parasite counts <1000 parasites/μL (n = 173), sensitivity of the pLDH-based test was low (45.7%), compared with that of the PfHRP2-based test (69.9%). Both RDTs performed better than did the routine slide reading in a clinical laboratory as assessed in 1 of the centers.
Conclusion. The evaluated PfHRP2-based RDT is an acceptable alternative to routine microscopy for diagnosing severe malaria in African children and performed better than did the evaluated pLDH-based RDT.
doi:10.1093/cid/cir143
PMCID: PMC3070869  PMID: 21467015
18.  Accurate and Sensitive Detection of Plasmodium Species in Humans by Use of the Dihydrofolate Reductase-Thymidylate Synthase Linker Region▿ †  
Journal of Clinical Microbiology  2010;48(10):3735-3737.
A nested-PCR protocol based on the linker region of the Plasmodium dihydrofolate reductase-thymidylate synthase gene (dhfr-ts) was developed. This provides highly sensitive specific detection and identification of the five parasite species that infect humans.
doi:10.1128/JCM.00898-10
PMCID: PMC2953080  PMID: 20702666
19.  Glyburide Is Anti-inflammatory and Associated with Reduced Mortality in Melioidosis 
Patients with diabetes have better survival from septic melioidosis than patients who without diabetes. This difference was seen only in patients taking glyburide prior to presentation and was associated with an anti-inflammatory effect of glyburide.
Background. Patients with diabetes mellitus are more prone to bacterial sepsis, but there are conflicting data on whether outcomes are worse in diabetics after presentation with sepsis. Glyburide is an oral hypoglycemic agent used to treat diabetes mellitus. This KATP-channel blocker and broad-spectrum ATP-binding cassette (ABC) transporter inhibitor has broad-ranging effects on the immune system, including inhibition of inflammasome assembly and would be predicted to influence the host response to infection.
Methods. We studied a cohort of 1160 patients with gram-negative sepsis caused by a single pathogen (Burkholderia pseudomallei), 410 (35%) of whom were known to have diabetes. We subsequently studied prospectively diabetics with B. pseudomallei infection (n = 20) to compare the gene expression profile of peripheral whole blood leukocytes in patients who were taking glyburide against those not taking any sulfonylurea.
Results. Survival was greater in diabetics than in nondiabetics (38% vs 45%, respectively, P = .04), but the survival benefit was confined to the patient group taking glyburide (adjusted odds ratio .47, 95% confidence interval .28–.74, P = .005). We identified differential expression of 63 immune-related genes (P = .001) in patients taking glyburide, the sum effect of which we predict to be antiinflammatory in the glyburide group.
Conclusions. We present observational evidence for a glyburide-associated benefit during human melioidosis and correlate this with an anti-inflammatory effect of glyburide on the immune system.
doi:10.1093/cid/ciq192
PMCID: PMC3049341  PMID: 21293047
20.  Exploring the Contribution of Candidate Genes to Artemisinin Resistance in Plasmodium falciparum▿  
The reduced in vivo sensitivity of Plasmodium falciparum has recently been confirmed in western Cambodia. Identifying molecular markers for artemisinin resistance is essential for monitoring the spread of the resistant phenotype and identifying the mechanisms of resistance. Four candidate genes, including the P. falciparum mdr1 (pfmdr1) gene, the P. falciparum ATPase6 (pfATPase6) gene, the 6-kb mitochondrial genome, and ubp-1, encoding a deubiquitinating enzyme, of artemisinin-resistant P. falciparum strains from western Cambodia were examined and compared to those of sensitive strains from northwestern Thailand, where the artemisinins are still very effective. The artemisinin-resistant phenotype did not correlate with pfmdr1 amplification or mutations (full-length sequencing), mutations in pfATPase6 (full-length sequencing) or the 6-kb mitochondrial genome (full-length sequencing), or ubp-1 mutations at positions 739 and 770. The P. falciparum CRT K76T mutation was present in all isolates from both study sites. The pfmdr1 copy numbers in western Cambodia were significantly lower in parasite samples obtained in 2007 than in those obtained in 2005, coinciding with a local change in drug policy replacing artesunate-mefloquine with dihydroartemisinin-piperaquine. Artemisinin resistance in western Cambodia is not linked to candidate genes, as was suggested by earlier studies.
doi:10.1128/AAC.00032-10
PMCID: PMC2897287  PMID: 20421395
21.  Spurious Amplification of a Plasmodium vivax Small-Subunit RNA Gene by Use of Primers Currently Used To Detect P. knowlesi▿  
Journal of Clinical Microbiology  2009;47(12):4173-4175.
The PCR primers commonly used to detect Plasmodium knowlesi infections in humans were found to cross-react stochastically with P. vivax genomic DNA. A nested primer set that targets one of the P. knowlesi small-subunit rRNA genes was validated for specificity and for sensitivity of detection of <10 parasite genomes.
doi:10.1128/JCM.00811-09
PMCID: PMC2786678  PMID: 19812279
22.  Dosing Regimens of Cotrimoxazole (Trimethoprim-Sulfamethoxazole) for Melioidosis▿  
Antimicrobial Agents and Chemotherapy  2009;53(10):4193-4199.
Melioidosis is an infectious disease with a propensity for relapse, despite prolonged antibiotic eradication therapy for 12 to 20 weeks. A pharmacokinetic (PK) simulation study was performed to determine the optimal dosing of cotrimoxazole (trimethoprim-sulfamethoxazole [TMP-SMX]) used in current eradication regimens in Thailand and Australia. Data for bioavailability, protein binding, and coefficients of absorption and elimination were taken from published literature. Apparent volumes of distribution were correlated with body mass and were estimated separately for Thai and Australian populations. In vitro experiments demonstrated concentration-dependent killing. In Australia, the currently used eradication regimen (320 [TMP]/1,600 [SMX] mg every 12 h [q12h]) was predicted to achieve the PK-pharmacodynamic (PD) target (an area under the concentration-time curve from 0 to 24 h/MIC ratio of >25 for both TMP and SMX) for strains with the MIC90 of Australian strains (≤1/19 mg/liter). In Thailand, the former regimen of 160/800 mg q12h would not be expected to attain the target for strains with an MIC of ≥1/19 mg/liter, but the recently implemented weight-based regimen (<40 kg [body weight], 160/800 mg q12h; 40 to 60 kg, 240/1,200 mg q12h; >60 kg, 320/1,600 mg q12h) would be expected to achieve adequate concentrations for strains with an MIC of ≤1/19 mg/liter. The results were sensitive to the variance of the PK parameters. Prospective PK-PD studies of Asian populations are needed to optimize TMP-SMX dosing in melioidosis.
doi:10.1128/AAC.01301-08
PMCID: PMC2764189  PMID: 19620336
23.  UK recommendations for severe malaria are worrying 
BMJ : British Medical Journal  2007;334(7592):490.
doi:10.1136/bmj.39143.014005.1F
PMCID: PMC1819549  PMID: 17347199
24.  Population Pharmacokinetics of Lumefantrine in Pregnant Women Treated with Artemether-Lumefantrine for Uncomplicated Plasmodium falciparum Malaria▿  
Artemether-lumefantrine has become one of the most widely used antimalarial drugs in the world. The objective of this study was to determine the population pharmacokinetic properties of lumefantrine in pregnant women with uncomplicated multidrug-resistant Plasmodium falciparum malaria on the northwestern border of Thailand. Burmese and Karen women (n = 103) with P. falciparum malaria and in the second and third trimesters of pregnancy were treated with artemether-lumefantrine (80/480 mg) twice daily for 3 days. All patients provided five capillary plasma samples for drug quantification, and the collection times were randomly distributed over 14 days. The concentration-time profiles of lumefantrine were assessed by nonlinear mixed-effects modeling. The treatment failure rate (PCR-confirmed recrudescent infections at delivery) was high; 16.5% (95% confidence interval, 9.9 to 25.1). The population pharmacokinetics of lumefantrine were described well by a two-compartment open model with first-order absorption and elimination. The final model included interindividual variability in all pharmacokinetic parameters and a linear covariate relationship between the estimated gestational age and the central volume of distribution. A high proportion of all women (40%, 41/103) had day 7 capillary plasma concentrations of <355 ng/ml (which corresponds to approximately <280 ng/ml in venous plasma), a threshold previously associated with an increased risk of therapeutic failure in nonpregnant patients in this area. Predictive modeling suggests that a twice-daily regimen given for 5 days would be preferable in later pregnancy. In conclusion, altered pharmacokinetic properties of lumefantrine contribute to the high rates of failure of artemether-lumefantrine treatment in later pregnancy. Dose optimization is urgently needed.
doi:10.1128/AAC.00195-09
PMCID: PMC2737887  PMID: 19564366
25.  The murine cerebral malaria phenomenon 
Trends in Parasitology  2010;26(1):11-15.
P.berghei ANKA infection in CBA or CB57BL/6 mice is used widely as a murine ‘model’ of human cerebral malaria (HCM), despite markedly different histopathological features. The pathology of the murine model is characterised by marked inflammation with little or no intracerebral sequestration of parasitised erythrocytes, whereas HCM is associated with intense intracerebral sequestration, often with little inflammatory response. There are now more than ten times as many studies each year of the murine model than on HCM. Of 48 adjunctive interventions evaluated in the murine model, 44 (92%) were successful, compared with only 1 (6%) of 17 evaluated in HCM during the same period. The value of the mouse model in identifying pathological processes or therapeutic interventions in human cerebral malaria is questionable.
doi:10.1016/j.pt.2009.10.007
PMCID: PMC2807032  PMID: 19932638

Results 1-25 (271)