Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Fode, pedar")
1.  Influence of Host Genetics and Environment on Nasal Carriage of Staphylococcus aureus in Danish Middle-Aged and Elderly Twins 
The Journal of Infectious Diseases  2012;206(8):1178-1184.
Background. Nasal carriage is a major risk factor for Staphylococcus aureus infection. Approximately, one-quarter of adults carry S. aureus. However, the role of host genetics on S. aureus nasal carriage is unknown.
Methods. Nasal swabs were obtained from a national cohort of middle-aged and elderly Danish twins. Subjects colonized with S. aureus were identified by growth on selective plates and spa typing. A second sample was obtained from twins initially concordant for carriage. Twins found to again be colonized with S. aureus were defined as persistent carriers.
Results. The prevalence of S. aureus carriage among 617 twin pairs (monozygotic/dizygotic pairs: 112/505) was 26.3% (95% confidence interval [CI], 24.0%–28.9%). The concordance rate for carriage did not differ significantly between pairs of monozygotic (37.5%; 95% CI, 22.3%–53.8%) twins and same sex (24.2%; 95% CI, 15.4%–34.5%), and opposite sex (21.4%; 95% CI, 12.0%–33.4%) dizygotic twins. Despite shared childhoods, only 1 of 617 pairs was concordant with respect to lineage. Although heritability increased for S. aureus and lineage persistency, no significant heritability was detected.
Conclusion. In this study, host genetic factors exhibited only a modest influence on the S. aureus carrier state of middle-aged and elderly individuals.
PMCID: PMC3448969  PMID: 22872733
2.  Genetic Variability in Beta-Defensins Is Not Associated with Susceptibility to Staphylococcus aureus Bacteremia 
PLoS ONE  2012;7(2):e32315.
Human beta-defensins are key components of human innate immunity to a variety of pathogens, including Staphylococcus aureus. The aim of the present study was to investigate a potential association between gene variations in DEFB1 and DEFB103/DEFB4 and the development of S. aureus bacteremia (SAB) employing a case-control design.
Cases were unique patients with documented SAB, identified with the National S. aureus Bacteremia Register, a comprehensive dataset of all episodes of community associated-SABs (CA-SAB) occurring in children (≤20 yrs) in Denmark from 1990 to 2006. Controls were age-matched healthy individuals with no history of SAB. DNA obtained from cases and controls using the Danish Newborn Screening Biobank were genotyped for functional polymorphisms of DEFB1 by Sanger sequencing and copy number variation of the DEFB103 and DEFB4 genes using Pyrosequencing-based Paralogue Ratio Test (P-PRT).
193 ethnic Danish SAB cases with 382 age-matched controls were used for this study. S. aureus isolates represented a variety of bacterial (i.e., different spa types) types similar to SAB isolates in general. DEFB1 minor allele frequencies of rs11362 (cases vs. controls 0.47/0.44), rs1800972 (0.21/0.24), and rs1799946 (0.32/0.33) were not significantly different in cases compared with controls. Also, DEFB4/DEFB103 gene copy numbers (means 4.83/4.92) were not significantly different in cases compared with controls.
Using a large, unique cohort of pediatric CA-SAB, we found no significant association between DEFB1 genetic variation or DEFB4/DEFB103 gene copy number and susceptibility for SAB.
PMCID: PMC3285211  PMID: 22384213
3.  Determination of Beta-Defensin Genomic Copy Number in Different Populations: A Comparison of Three Methods 
PLoS ONE  2011;6(2):e16768.
There have been conflicting reports in the literature on association of gene copy number with disease, including CCL3L1 and HIV susceptibility, and β-defensins and Crohn's disease. Quantification of precise gene copy numbers is important in order to define any association of gene copy number with disease. At present, real-time quantitative PCR (QPCR) is the most commonly used method to determine gene copy number, however the Paralogue Ratio Test (PRT) is being used in more and more laboratories.
In this study we compare a Pyrosequencing-based Paralogue Ratio Test (PPRT) for determining beta-defensin gene copy number with two currently used methods for gene copy number determination, QPCR and triplex PRT by typing five different cohorts (UK, Danish, Portuguese, Ghanaian and Czech) of DNA from a total of 576 healthy individuals. We found a systematic measurement bias between DNA cohorts revealed by QPCR, but not by the PRT-based methods. Using PRT, copy number ranged from 2 to 9 copies, with a modal copy number of 4 in all populations.
QPCR is very sensitive to quality of the template DNA, generating systematic biases that could produce false-positive or negative disease associations. Both triplex PRT and PPRT do not show this systematic bias, and type copy number within the correct range, although triplex PRT appears to be a more precise and accurate method to type beta-defensin copy number.
PMCID: PMC3043064  PMID: 21364933

Results 1-3 (3)