Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Lessons Learned from Radiation Oncology Clinical Trials 
A Workshop entitled “Lessons Learned from Radiation Oncology Trials” was held on December 7–8th, 2011 in Bethesda, MD, to present and discuss some of the recently conducted Radiation Oncology clinical trials with a focus on those that failed to refute the null hypothesis. The objectives of this Workshop were to summarize and examine the questions that these trials provoked, to assess the quality and limitations of the pre-clinical data that supported the hypotheses underlying these trials, and to consider possible solutions to these challenges for the design of future clinical trials.
Several themes emerged from the discussions, including the: a) opportunities to learn from null-hypothesis trials through tissue and imaging studies; b) value of pre-clinical data supporting the design of combinatorial therapies; c) significance of validated biomarkers; d) necessity of quality assurance in radiotherapy delivery; e) conduct of sufficiently-powered studies to address the central hypothesis; and f) importance of publishing results of the trials regardless of the outcome.
The fact that well-designed hypothesis-driven clinical trials produce null or negative results is expected given the limitations of trial design, and complexities of cancer biology. It is important to understand the reasons underlying such null results however, in order to effectively merge the technological innovations with the rapidly evolving biology for maximal patient benefit, through the design of future clinical trials.
PMCID: PMC3965328  PMID: 24043463
Cancer; Null hypothesis; Radiation oncology; Radiation therapy; Randomized clinical trial
2.  Normal tissue protection for improving radiotherapy: Where are the Gaps? 
Translational cancer research  2012;1(1):35-48.
Any tumor could be controlled by radiation therapy if sufficient dose were delivered to all tumor cells. Although technological advances in physical treatment delivery have been developed to allow more radiation dose conformity, normal tissues are invariably included in any radiation field within the tumor volume and also as part of the exit and entrance doses relevant for particle therapy. Mechanisms of normal tissue injury and related biomarkers are now being investigated, facilitating the discovery and development of a next generation of radiation protectors and mitigators. Bringing recent research advances stimulated by development of radiation countermeasures for mass casualties, to clinical cancer care requires understanding the impact of protectors and mitigators on tumor response. These may include treatments that modify cellular damage and death processes, inflammation, alteration of normal flora, wound healing, tissue regeneration and others, specifically to counter cancer site-specific adverse effects to improve outcome of radiation therapy. Such advances in knowledge of tissue and organ biology, mechanisms of injury, development of predictive biomarkers and mechanisms of radioprotection have re-energized the field of normal tissue protection and mitigation. Since various factors, including organ sensitivity to radiation, cellular turnover rate, and differences in mechanisms of injury manifestation and damage response vary among tissues, successful development of radioprotectors/mitigators/treatments may require multiple approaches to address cancer site specific needs. In this review, we discuss examples of important adverse effects of radiotherapy (acute and intermediate to late occurring, when it is delivered either alone or in conjunction with chemotherapy, and important limitations in the current approaches of using radioprotectors and/or mitigators for improving radiation therapy. Also, we are providing general concepts for drug development for improving radiation therapy.
PMCID: PMC3411185  PMID: 22866245
Acute radiation effects; radiotherapy; radiation mitigator; radioprotector; oral mucositis; lung fibrosis; radiation-induced brain damage
3.  NVP-BEZ235 and NVP-BGT226, dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitors, enhance tumor and endothelial cell radiosensitivity 
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is activated in tumor cells and promotes tumor cell survival after radiation-induced DNA damage. Because the pathway may not be completely inhibited after blockade of PI3K itself, due to feedback through mammalian target of rapamycin (mTOR), more effective inhibition might be expected by targeting both PI3K and mTOR inhibition.
Materials and methods
We investigated the effect of two dual PI3K/mTOR (both mTORC1 and mTORC2) inhibitors, NVP-BEZ235 and NVP-BGT226, on SQ20B laryngeal and FaDu hypopharyngeal cancer cells characterised by EGFR overexpression, on T24 bladder tumor cell lines with H-Ras mutation and on endothelial cells. Analysis of target protein phosphorylation, clonogenic survival, number of residual γH2AX foci, cell cycle and apoptosis after radiation was performed in both tumor and endothelial cells. In vitro angiogenesis assays were conducted as well.
Both compounds effectively inhibited phosphorylation of Akt, mTOR and S6 target proteins and reduced clonogenic survival in irradiated tumor cells. Persistence of DNA damage, as evidenced by increased number of γH2AX foci, was detected after irradiation in the presence of PI3K/mTOR inhibition, together with enhanced G2 cell cycle delay. Treatment with one of the inhibitors, NVP-BEZ235, also resulted in decreased clonogenicity after irradiation of tumor cells under hypoxic conditions. In addition, NVP-BEZ235 blocked VEGF- and IR-induced Akt phosphorylation and increased radiation killing in human umbilical venous endothelial cells (HUVEC) and human dermal microvascular dermal cells (HDMVC). NVP-BEZ235 inhibited VEGF-induced cell migration and capillary tube formation in vitro and enhanced the antivascular effect of irradiation. Treatment with NVP-BEZ235 moderately increased apoptosis in SQ20B and HUVEC cells but not in FaDu cells, and increased necrosis in both tumor and endothelial all cells tumor.
The results of this study demonstrate that PI3K/mTOR inhibitors can enhance radiation-induced killing in tumor and endothelial cells and may be of benefit when combined with radiotherapy.
PMCID: PMC3348043  PMID: 22452803
PI3K; mTOR; Radiosensitization; Endothelial cells; VEGF
4.  A siRNA Screen of Genes Involved in DNA Repair Identifies Tumour Specific Radiosensitisation by POLQ Knockdown 
Cancer research  2010;70(7):2984-2993.
The effectiveness of radiotherapy treatment could be significantly improved if tumour cells could be rendered more sensitive to ionizing radiation without altering the sensitivity of normal tissues. However many of the key, therapeutically exploitable mechanisms that determine intrinsic tumour radiosensitivity are largely unknown. We have conducted a siRNA screen of 200 genes involved in DNA damage repair aimed at identifying genes whose knockdown increased tumour radiosensitivity. Parallel siRNA screens were conducted in irradiated and unirradiated tumour cells (SQ20B) and irradiated normal tissue cells (MRC5). Using γH2AX foci at 24 hours after ionising radiation we identified several genes such as BRCA2, Lig IV and XRCC5, whose knockdown is known to cause increased cell radiosensitivity thereby validating the primary screening endpoint. In addition we identified POLQ (DNA polymerase theta) as a potential tumour-specific target. Subsequent investigations demonstrated that POLQ knockdown resulted in radiosensitisation of a panel of tumour cell lines from different primary sites, whilst having little or no effect on normal tissue cell lines. These findings raise the possibility that POLQ inhibition might be used clinically to cause tumour specific radiosensitisation.
PMCID: PMC2848966  PMID: 20233878
High-throughput Screen; siRNA; DNA-repair; POLQ; Tumour Radiosensitivity
5.  Modulating tumor vasculature through signaling inhibition to improve cytotoxic therapy 
Cancer research  2010;70(6):2141-2145.
The tumor microenvironment is a key factor in cancer treatment response. Recent work has shown that changes in the tumor vasculature can be achieved by inhibiting tumor cell signaling resulting in enhanced tumor oxygenation. These changes could promote responses to both chemo- and radiation therapy.
PMCID: PMC2840203  PMID: 20179191
6.  Tumor Vascular Changes Mediated by Inhibition of Oncogenic Signaling 
Cancer research  2009;69(15):6347-6354.
Many inhibitors of the EGFR-RAS-PI3 kinase-AKT signaling pathway are in clinical use or under development for cancer therapy. Here we show that treatment of mice bearing human tumor xenografts with inhibitors that block EGFR, RAS, PI3 kinase or AKT resulted in prolonged and durable enhancement of tumor vascular flow, perfusion and decreased tumor hypoxia. The vessels in the treated tumors had decreased tortuosity and increased internodal length accounting for the functional alterations. Inhibition of tumor growth cannot account for these results as the drugs were given at doses that did not alter tumor growth. The tumor cell itself was an essential target as HT1080 tumors that lack EGFR did not respond to an EGFR inhibitor, but did respond with vascular alterations to RAS or PI3 Kinase inhibition. We extended these observations to spontaneously arising tumors in MMTV-neu mice. These tumors also responded to PI3 kinase inhibition with decreased tumor hypoxia, increased vascular flow and morphological alterations of their vessels including increased vascular maturity and acquisition of pericyte markers. These changes are similar to the vascular normalization that has been described after anti-angiogenic treatment of xenografts. One difficulty in the use of vascular normalization as a therapeutic strategy has been its limited duration. In contrast, blocking tumor cell RAS-PI3K-AKT signaling led to persistent vascular changes that might be incorporated into clinical strategies based on improvement of vascular flow or decreased hypoxia. These results indicate that vascular alterations must be considered as a consequence of signaling inhibition in cancer therapy.
PMCID: PMC2825046  PMID: 19622766
Signaling inhibition; tumor vasculature; hypoxia; EGFR; RAS; PI3 Kinase; AKT
7.  Oncogenic K-Ras Signals through Epidermal Growth Factor Receptor and Wild-Type H-Ras to Promote Radiation Survival in Pancreatic and Colorectal Carcinoma Cells1 
Neoplasia (New York, N.Y.)  2007;9(4):341-348.
Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor α was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers.
PMCID: PMC1854847  PMID: 17460778
Ras; EGFR; radiosensitivity; signal transduction; cancer

Results 1-7 (7)