PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The Crystal Structures of the Tryparedoxin-Tryparedoxin Peroxidase Couple Unveil the Structural Determinants of Leishmania Detoxification Pathway 
Leishmaniasis is a neglected disease caused by Leishmania, an intracellular protozoan parasite which possesses a unique thiol metabolism based on trypanothione. Trypanothione is used as a source of electrons by the tryparedoxin/tryparedoxin peroxidase system (TXN/TXNPx) to reduce the hydroperoxides produced by macrophages during infection. This detoxification pathway is not only unique to the parasite but is also essential for its survival; therefore, it constitutes a most attractive drug target. Several forms of TXNPx, with very high sequence identity to one another, have been found in Leishmania strains, one of which has been used as a component of a potential anti-leishmanial polyprotein vaccine. The structures of cytosolic TXN and TXNPx from L. major (LmTXN and LmTXNPx) offer a unique opportunity to study peroxide reduction in Leishmania parasites at a molecular level, and may provide new tools for multienzyme inhibition-based drug discovery. Structural analyses bring out key structural features to elucidate LmTXN and LmTXNPx function. LmTXN displays an unusual N-terminal α-helix which allows the formation of a stable domain-swapped dimer. In LmTXNPx, crystallized in reducing condition, both the locally unfolded (LU) and fully folded (FF) conformations, typical of the oxidized and reduced protein respectively, are populated. The structural analysis presented here points to a high flexibility of the loop that includes the peroxidatic cysteine which facilitates Cys52 to form an inter-chain disulfide bond with the resolving cysteine (Cys173), thereby preventing over-oxidation which would inactivate the enzyme. Analysis of the electrostatic surface potentials of both LmTXN and LmTXNPx unveils the structural elements at the basis of functionally relevant interaction between the two proteins. Finally, the structural analysis of TXNPx allows us to identify the position of the epitopes that make the protein antigenic and therefore potentially suitable to be used in an anti-leishmanial polyprotein vaccine.
Author Summary
Leishmania spp. are protozoa responsible for Leishmaniases, neglected diseases killing up to 60,000 people every year. Current therapies rely mainly on antimonial drugs that are inadequate due to poor drug efficacy and safety, combined with increasing drug resistance. To overcome these problems, there is an urgent need to find new and more affordable drugs. Leishmania reduces the hydrogen peroxide produced by macrophages during the infection by means of the tryparedoxin/tryparedoxin peroxidase couple. The two enzymes are potentially suitable drug targets since they are both necessary for parasite survival and absent in the human host. To understand the molecular basis of peroxide reduction in the Leishmania parasites, we have solved the X-ray crystal structures of both enzymes. Structural analyses highlight oligomerization of the two proteins and allow the regions responsible for their interaction to be identified. Moreover, based on the X-ray structures and on electronic microscopy data present in literature for the homologous proteins from Trypanosoma brucei, we have generated a model of interaction between tryparedoxin and tryparedoxin peroxidase from L. major. From the X-ray structure and from this model, we have identified the epitopes of tryparedoxin peroxidase, which is part of a potential threecomponent vaccine that is presently being studied in animal models and in human.
doi:10.1371/journal.pntd.0001781
PMCID: PMC3424247  PMID: 22928053
2.  Following Ligand Migration Pathways from Picoseconds to Milliseconds in Type II Truncated Hemoglobin from Thermobifida fusca 
PLoS ONE  2012;7(7):e39884.
CO recombination kinetics has been investigated in the type II truncated hemoglobin from Thermobifida fusca (Tf-trHb) over more than 10 time decades (from 1 ps to ∼100 ms) by combining femtosecond transient absorption, nanosecond laser flash photolysis and optoacoustic spectroscopy. Photolysis is followed by a rapid geminate recombination with a time constant of ∼2 ns representing almost 60% of the overall reaction. An additional, small amplitude geminate recombination was identified at ∼100 ns. Finally, CO pressure dependent measurements brought out the presence of two transient species in the second order rebinding phase, with time constants ranging from ∼3 to ∼100 ms. The available experimental evidence suggests that the two transients are due to the presence of two conformations which do not interconvert within the time frame of the experiment. Computational studies revealed that the plasticity of protein structure is able to define a branched pathway connecting the ligand binding site and the solvent. This allowed to build a kinetic model capable of describing the complete time course of the CO rebinding kinetics to Tf-trHb.
doi:10.1371/journal.pone.0039884
PMCID: PMC3391200  PMID: 22792194
3.  Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles 
Video abstract
Video
Background
Nanoparticle-based systems are promising for the development of imaging and therapeutic agents. The main advantage of nanoparticles over traditional systems lies in the possibility of loading multiple functionalities onto a single molecule, which are useful for therapeutic and/or diagnostic purposes. These functionalities include targeting moieties which are able to recognize receptors overexpressed by specific cells and tissues. However, targeted delivery of nanoparticles requires an accurate system design. We present here a rationally designed, genetically engineered, and chemically modified protein-based nanoplatform for cell/tissue-specific targeting.
Methods
Our nanoparticle constructs were based on the heavy chain of the human protein ferritin (HFt), a highly symmetrical assembly of 24 subunits enclosing a hollow cavity. HFt-based nanoparticles were produced using both genetic engineering and chemical functionalization methods to impart several functionalities, ie, the α-melanocyte-stimulating hormone peptide as a melanoma-targeting moiety, stabilizing and HFt-masking polyethylene glycol molecules, rhodamine fluorophores, and magnetic resonance imaging agents. The constructs produced were extensively characterized by a number of physicochemical techniques, and assayed for selective melanoma-targeting in vitro and in vivo.
Results
Our HFt-based nanoparticle constructs functionalized with the α-melanocyte-stimulating hormone peptide moiety and polyethylene glycol molecules were specifically taken up by melanoma cells but not by other cancer cell types in vitro. Moreover, experiments in melanoma-bearing mice indicate that these constructs have an excellent tumor-targeting profile and a long circulation time in vivo.
Conclusion
By masking human HFt with polyethylene glycol and targeting it with an α-melanocyte-stimulating hormone peptide, we developed an HFt-based melanoma-targeting nanoplatform for application in melanoma diagnosis and treatment. These results could be of general interest, because the same strategy can be exploited to develop ad hoc nanoplatforms for specific delivery towards any cell/tissue type for which a suitable targeting moiety is available.
doi:10.2147/IJN.S28242
PMCID: PMC3356193  PMID: 22619508
multifunctional nanoparticles; ferritin; nanoplatform; cancer-targeting; melanoma
4.  A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition 
Amino Acids  2011;42(2-3):803-811.
Auranofin is a gold(I)-containing drug in clinical use as an antiarthritic agent. Recent studies showed that auranofin manifests interesting antiparasitic actions very likely arising from inhibition of parasitic enzymes involved in the control of the redox metabolism. Trypanothione reductase is a key enzyme of Leishmania infantum polyamine-dependent redox metabolism, and a validated target for antileishmanial drugs. As trypanothione reductase contains a dithiol motif at its active site and gold(I) compounds are known to be highly thiophilic, we explored whether auranofin might behave as an effective enzyme inhibitor and as a potential antileishmanial agent. Notably, enzymatic assays revealed that auranofin causes indeed a pronounced enzyme inhibition. To gain a deeper insight into the molecular basis of enzyme inhibition, crystals of the auranofin-bound enzyme, in the presence of NADPH, were prepared, and the X-ray crystal structure of the auranofin–trypanothione reductase–NADPH complex was solved at 3.5 Å resolution. In spite of the rather low resolution, these data were of sufficient quality as to identify the presence of the gold center and of the thiosugar of auranofin, and to locate them within the overall protein structure. Gold binds to the two active site cysteine residues of TR, i.e. Cys52 and Cys57, while the thiosugar moiety of auranofin binds to the trypanothione binding site; thus auranofin appears to inhibit TR through a dual mechanism. Auranofin kills the promastigote stage of L. infantum at micromolar concentration; these findings will contribute to the design of new drugs against leishmaniasis.
doi:10.1007/s00726-011-0997-9
PMCID: PMC3266496  PMID: 21833767
Gold; Auranofin; Leishmania; Trypanothione reductase
5.  Cloning, expression, crystallization and preliminary X-ray data analysis of norcoclaurine synthase from Thalictrum flavum  
The cloning, expression, crystallization and preliminary X-ray data analysis of norcoclaurine synthase from T. flavum, a protein which catalyzes the first committed step in the biosynthesis of benzylisoquinoline alkaloids, are reported.
Norcoclaurine synthase (NCS) catalyzes the condensation of 3,4-dihydroxy­phenylethylamine (dopamine) and 4-hydroxyphenylacetaldehyde (4-HPAA) as the first committed step in the biosynthesis of benzylisoquinoline alkaloids in plants. The protein was cloned, expressed and purified. Crystals were obtained at 294 K by the hanging-drop vapour-diffusion method using ammonium sulfate and sodium chloride as precipitant agents and diffract to better than 3.0 Å resolution using a synchrotron-radiation source. The crystals belong to the trigonal space group P3121, with unit-cell parameters a = b = 86.31, c = 118.36 Å. A selenomethionine derivative was overexpressed, purified and crystallized in the same space group. A complete MAD data set was collected at 2.7 Å resolution. The model is under construction.
doi:10.1107/S1744309108005678
PMCID: PMC2374240  PMID: 18391427
norcoclaurine synthase; benzylisoquinoline alkaloid biosynthesis; MAD phasing

Results 1-5 (5)