Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials 
Swerdlow, Daniel I | Preiss, David | Kuchenbaecker, Karoline B | Holmes, Michael V | Engmann, Jorgen E L | Shah, Tina | Sofat, Reecha | Stender, Stefan | Johnson, Paul C D | Scott, Robert A | Leusink, Maarten | Verweij, Niek | Sharp, Stephen J | Guo, Yiran | Giambartolomei, Claudia | Chung, Christina | Peasey, Anne | Amuzu, Antoinette | Li, KaWah | Palmen, Jutta | Howard, Philip | Cooper, Jackie A | Drenos, Fotios | Li, Yun R | Lowe, Gordon | Gallacher, John | Stewart, Marlene C W | Tzoulaki, Ioanna | Buxbaum, Sarah G | van der A, Daphne L | Forouhi, Nita G | Onland-Moret, N Charlotte | van der Schouw, Yvonne T | Schnabel, Renate B | Hubacek, Jaroslav A | Kubinova, Ruzena | Baceviciene, Migle | Tamosiunas, Abdonas | Pajak, Andrzej | Topor-Madry, Romanvan | Stepaniak, Urszula | Malyutina, Sofia | Baldassarre, Damiano | Sennblad, Bengt | Tremoli, Elena | de Faire, Ulf | Veglia, Fabrizio | Ford, Ian | Jukema, J Wouter | Westendorp, Rudi G J | de Borst, Gert Jan | de Jong, Pim A | Algra, Ale | Spiering, Wilko | der Zee, Anke H Maitland-van | Klungel, Olaf H | de Boer, Anthonius | Doevendans, Pieter A | Eaton, Charles B | Robinson, Jennifer G | Duggan, David | Kjekshus, John | Downs, John R | Gotto, Antonio M | Keech, Anthony C | Marchioli, Roberto | Tognoni, Gianni | Sever, Peter S | Poulter, Neil R | Waters, David D | Pedersen, Terje R | Amarenco, Pierre | Nakamura, Haruo | McMurray, John J V | Lewsey, James D | Chasman, Daniel I | Ridker, Paul M | Maggioni, Aldo P | Tavazzi, Luigi | Ray, Kausik K | Seshasai, Sreenivasa Rao Kondapally | Manson, JoAnn E | Price, Jackie F | Whincup, Peter H | Morris, Richard W | Lawlor, Debbie A | Smith, George Davey | Ben-Shlomo, Yoav | Schreiner, Pamela J | Fornage, Myriam | Siscovick, David S | Cushman, Mary | Kumari, Meena | Wareham, Nick J | Verschuren, W M Monique | Redline, Susan | Patel, Sanjay R | Whittaker, John C | Hamsten, Anders | Delaney, Joseph A | Dale, Caroline | Gaunt, Tom R | Wong, Andrew | Kuh, Diana | Hardy, Rebecca | Kathiresan, Sekar | Castillo, Berta A | van der Harst, Pim | Brunner, Eric J | Tybjaerg-Hansen, Anne | Marmot, Michael G | Krauss, Ronald M | Tsai, Michael | Coresh, Josef | Hoogeveen, Ronald C | Psaty, Bruce M | Lange, Leslie A | Hakonarson, Hakon | Dudbridge, Frank | Humphries, Steve E | Talmud, Philippa J | Kivimäki, Mika | Timpson, Nicholas J | Langenberg, Claudia | Asselbergs, Folkert W | Voevoda, Mikhail | Bobak, Martin | Pikhart, Hynek | Wilson, James G | Reiner, Alex P | Keating, Brendan J | Hingorani, Aroon D | Sattar, Naveed
Lancet  2015;385(9965):351-361.
Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target.
We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes. Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were assessed using meta-analysis.
Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0·06 mmol/L (95% CI 0·05–0·07) lower LDL cholesterol and higher body weight (0·30 kg, 0·18–0·43), waist circumference (0·32 cm, 0·16–0·47), plasma insulin concentration (1·62%, 0·53–2·72), and plasma glucose concentration (0·23%, 0·02–0·44). The rs12916 SNP had similar effects on LDL cholesterol, bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of type 2 diabetes (odds ratio [OR] per allele 1·02, 95% CI 1·00–1·05); the rs12916-T allele association was consistent (1·06, 1·03–1·09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0·92 mmol/L (95% CI 0·18–1·67) at 1-year of follow-up, increased bodyweight by 0·24 kg (95% CI 0·10–0·38 in all trials; 0·33 kg, 95% CI 0·24–0·42 in placebo or standard care controlled trials and −0·15 kg, 95% CI −0·39 to 0·08 in intensive-dose vs moderate-dose trials) at a mean of 4·2 years (range 1·9–6·7) of follow-up, and increased the odds of new-onset type 2 diabetes (OR 1·12, 95% CI 1·06–1·18 in all trials; 1·11, 95% CI 1·03–1·20 in placebo or standard care controlled trials and 1·12, 95% CI 1·04–1·22 in intensive-dose vs moderate dose trials).
The increased risk of type 2 diabetes noted with statins is at least partially explained by HMGCR inhibition.
The funding sources are cited at the end of the paper.
PMCID: PMC4322187  PMID: 25262344
2.  Influence of common genetic variation on blood lipid levels, cardiovascular risk, and coronary events in two British prospective cohort studies 
European Heart Journal  2012;34(13):972-981.
The aim of this study was to quantify the collective effect of common lipid-associated single nucleotide polymorphisms (SNPs) on blood lipid levels, cardiovascular risk, use of lipid-lowering medication, and risk of coronary heart disease (CHD) events.
Methods and results
Analysis was performed in two prospective cohorts: Whitehall II (WHII; N = 5059) and the British Women’s Heart and Health Study (BWHHS; N = 3414). For each participant, scores were calculated based on the cumulative effect of multiple genetic variants influencing total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG). Compared with the bottom quintile, individuals in the top quintile of the LDL-C genetic score distribution had higher LDL-C {mean difference of 0.85 [95% confidence interval, (CI) = 0.76–0.94] and 0.63 [95% CI = 0.50–0.76] mmol/l in WHII and BWHHS, respectively}. They also tended to have greater odds of having ‘high-risk’ status (Framingham 10-year cardiovascular disease risk >20%) [WHII: odds ratio (OR) = 1.36 (0.93–1.98), BWHHS: OR = 1.49 (1.14–1.94)]; receiving lipid-lowering treatment [WHII: OR = 2.38 (1.57–3.59), BWHHS: OR = 2.24 (1.52–3.29)]; and CHD events [WHII: OR = 1.43 (1.02–2.00), BWHHS: OR = 1.31 (0.99–1.72)]. Similar associations were observed for the TC score in both studies. The TG score was associated with high-risk status and medication use in both studies. Neither HDL nor TG scores were associated with the risk of coronary events. The genetic scores did not improve discrimination over the Framingham risk score.
At the population level, common SNPs associated with LDL-C and TC contribute to blood lipid variation, cardiovascular risk, use of lipid-lowering medications and coronary events. However, their effects are too small to discriminate future lipid-lowering medication requirements or coronary events.
PMCID: PMC3612774  PMID: 22977227
Lipid genetic score; Lipid medication; Framingham
3.  Genetic risk factors for intracranial aneurysms 
Neurology  2013;80(23):2154-2165.
There is an urgent need to identify risk factors for sporadic intracranial aneurysm (IA) development and rupture. A genetic component has long been recognized, but firm conclusions have been elusive given the generally small sample sizes and lack of replication. Genome-wide association studies have overcome some limitations, but the number of robust genetic risk factors for IA remains uncertain.
We conducted a comprehensive systematic review and meta-analysis of all genetic association studies (including genome-wide association studies) of sporadic IA, conducted according to Strengthening the Reporting of Genetic Association Studies and Human Genome Epidemiology Network guidelines. We tested the robustness of associations using random-effects and sensitivity analyses.
Sixty-one studies including 32,887 IA cases and 83,683 controls were included. We identified 19 single nucleotide polymorphisms associated with IA. The strongest associations, robust to sensitivity analyses for statistical heterogeneity and ethnicity, were found for the following single nucleotide polymorphisms: on chromosome 9 within the cyclin-dependent kinase inhibitor 2B antisense inhibitor gene (rs10757278: odds ratio [OR] 1.29; 95% confidence interval [CI] 1.21–1.38; and rs1333040: OR 1.24; 95% CI 1.20–1.29), on chromosome 8 near the SOX17 transcription regulator gene (rs9298506: OR 1.21; 95% CI 1.15–1.27; and rs10958409: OR 1.19; 95% CI 1.13–1.26), and on chromosome 4 near the endothelin receptor A gene (rs6841581: OR 1.22; 95% CI 1.14–1.31).
Our comprehensive meta-analysis confirms a substantial genetic contribution to sporadic IA, implicating multiple pathophysiologic pathways, mainly relating to vascular endothelial maintenance. However, the limited data for IA compared with other complex diseases necessitates large-scale replication studies in a full spectrum of populations, with investigation of how genetic variants relate to phenotype (e.g., IA size, location, and rupture status).
PMCID: PMC3716358  PMID: 23733552
4.  Population Genomics of Cardiometabolic Traits: Design of the University College London-London School of Hygiene and Tropical Medicine-Edinburgh-Bristol (UCLEB) Consortium 
PLoS ONE  2013;8(8):e71345.
Substantial advances have been made in identifying common genetic variants influencing cardiometabolic traits and disease outcomes through genome wide association studies. Nevertheless, gaps in knowledge remain and new questions have arisen regarding the population relevance, mechanisms, and applications for healthcare. Using a new high-resolution custom single nucleotide polymorphism (SNP) array (Metabochip) incorporating dense coverage of genomic regions linked to cardiometabolic disease, the University College-London School-Edinburgh-Bristol (UCLEB) consortium of highly-phenotyped population-based prospective studies, aims to: (1) fine map functionally relevant SNPs; (2) precisely estimate individual absolute and population attributable risks based on individual SNPs and their combination; (3) investigate mechanisms leading to altered risk factor profiles and CVD events; and (4) use Mendelian randomisation to undertake studies of the causal role in CVD of a range of cardiovascular biomarkers to inform public health policy and help develop new preventative therapies.
PMCID: PMC3748096  PMID: 23977022
5.  Complement factor H genetic variant and age-related macular degeneration: effect size, modifiers and relationship to disease subtype 
Background Variation in the complement factor H gene (CFH) is associated with risk of late age-related macular degeneration (AMD). Previous studies have been case–control studies in populations of European ancestry with little differentiation in AMD subtype, and insufficient power to confirm or refute effect modification by smoking.
Methods To precisely quantify the association of the single nucleotide polymorphism (SNP rs1061170, ‘Y402H’) with risk of AMD among studies with differing study designs, participant ancestry and AMD grade and to investigate effect modification by smoking, we report two unpublished genetic association studies (n = 2759) combined with data from 24 published studies (26 studies, 26 494 individuals, including 14 174 cases of AMD) of European ancestry, 10 of which provided individual-level data used to test gene–smoking interaction; and 16 published studies from non-European ancestry.
Results In individuals of European ancestry, there was a significant association between Y402H and late-AMD with a per-allele odds ratio (OR) of 2.27 [95% confidence interval (CI) 2.10–2.45; P = 1.1 x 10−161]. There was no evidence of effect modification by smoking (P = 0.75). The frequency of Y402H varied by ancestral origin and the association with AMD in non-Europeans was less clear, limited by paucity of studies.
Conclusion The Y402H variant confers a 2-fold higher risk of late-AMD per copy in individuals of European descent. This was stable to stratification by study design and AMD classification and not modified by smoking. The lack of association in non-Europeans requires further verification. These findings are of direct relevance for disease prediction. New research is needed to ascertain if differences in circulating levels, expression or activity of factor H protein explain the genetic association.
PMCID: PMC3304526  PMID: 22253316
Age-related macular degeneration (AMD); Complement factor H gene; meta-ananlysis
6.  Evidence of association of APOE with age-related macular degeneration - a pooled analysis of 15 studies 
Human mutation  2011;32(12):1407-1416.
Age-related macular degeneration (AMD) is the most common cause of incurable visual impairment in high-income countries. Previous studies report inconsistent associations between AMD and apolipoprotein E (APOE), a lipid transport protein involved in low-density cholesterol modulation. Potential interaction between APOE and sex, and smoking status, has been reported. We present a pooled analysis (n=21,160) demonstrating associations between late AMD and APOε4 (OR=0.72 per haplotype; CI: 0.65–0.74; P=4.41×10−11) and APOε2 (OR=1.83 for homozygote carriers; CI: 1.04–3.23; P=0.04), following adjustment for age-group and sex within each study and smoking status. No evidence of interaction between APOE and sex or smoking was found. Ever smokers had significant increased risk relative to never smokers for both neovascular (OR=1.54; CI: 1.38–1.72; P=2.8×10−15) and atrophic (OR=1.38; CI: 1.18–1.61; P=3.37×10−5) AMD but not early AMD (OR=0.94; CI: 0.86–1.03; P=0.16), implicating smoking as a major contributing factor to disease progression from early signs to the visually disabling late forms. Extended haplotype analysis incorporating rs405509 did not identify additional risks beyondε2 and ε4 haplotypes. Our expanded analysis substantially improves our understanding of the association between the APOE locus and AMD. It further provides evidence supporting the role of cholesterol modulation, and low-density cholesterol specifically, in AMD disease etiology.
PMCID: PMC3217135  PMID: 21882290
age-related macular degeneration; AMD; apolipoprotein E; APOE; case-control association study
7.  PLA2G7 genotype, Lp-PLA2 activity and coronary heart disease risk in 10,494 cases and 15,624 controls of European ancestry 
Circulation  2010;121(21):2284-2293.
Higher Lp-PLA2 activity is associated with increased risk of coronary heart disease (CHD), making Lp-PLA2 a potential therapeutic target. PLA2G7 variants associated with Lp-PLA2 activity could evaluate whether this relationship is causal.
Methods and Results
A meta-analysis including a total of 12 studies (5 prospective, 4 case-control, 1 case-only and 2 cross-sectional, n=26,118) was undertaken to examine the association of: (i) LpPLA2 activity vs. cardiovascular biomarkers and risk factors and CHD events (two prospective studies; n=4884); ii) PLA2G7 SNPs and Lp-PLA2 activity (3 prospective, 2 case-control, 2 cross-sectional studies; up to n=6094); and iii) PLA2G7 SNPs and angiographic coronary artery disease (2 case-control, 1 case-only study; n=4971 cases) and CHD events (5 prospective, 2 case-control studies; n=5523). Lp-PLA2 activity correlated with several CHD risk markers. Hazard ratio for CHD events top vs. bottom quartile of Lp-PLA2 activity was 1.61 (95%CI: 1.31, 1.99) and 1.17 (95%CI: 0.91, 1.51) after adjustment for baseline traits. Of seven SNPs, rs1051931 (A379V) showed the strongest association with Lp-PLA2 activity, VV subjects having 7.2% higher activity than AAs. Genotype was not associated with risk markers, angiographic coronary disease (OR 1.03 (95%CI 0.80, 1.32), or CHD events (OR 0.98 (95%CI 0.82, 1.17).
Unlike Lp-PLA2 activity, PLA2G7 variants associated with modest effects on Lp-PLA2 activity were not associated with cardiovascular risk markers, coronary atheroma or CHD. Larger association studies, identification of SNPs with larger effects, or randomised trials of specific Lp-PLA2 inhibitors are needed to confirm/refute a contributory role for Lp-PLA2 in CHD.
PMCID: PMC3377948  PMID: 20479152
genetics; epidemiology; risk factors; Mendelian randomization
8.  Variations in Apolipoprotein E Frequency With Age in a Pooled Analysis of a Large Group of Older People 
American Journal of Epidemiology  2011;173(12):1357-1364.
Variation in the apolipoprotein E gene (APOE) has been reported to be associated with longevity in humans. The authors assessed the allelic distribution of APOE isoforms ε2, ε3, and ε4 among 10,623 participants from 15 case-control and cohort studies of age-related macular degeneration (AMD) in populations of European ancestry (study dates ranged from 1990 to 2009). The authors included only the 10,623 control subjects from these studies who were classified as having no evidence of AMD, since variation within the APOE gene has previously been associated with AMD. In an analysis stratified by study center, gender, and smoking status, there was a decreasing frequency of the APOE ε4 isoform with increasing age (χ2 for trend = 14.9 (1 df); P = 0.0001), with a concomitant increase in the ε3 isoform (χ2 for trend = 11.3 (1 df); P = 0.001). The association with age was strongest in ε4 homozygotes; the frequency of ε4 homozygosity decreased from 2.7% for participants aged 60 years or less to 0.8% for those over age 85 years, while the proportion of participants with the ε3/ε4 genotype decreased from 26.8% to 17.5% across the same age range. Gender had no significant effect on the isoform frequencies. This study provides strong support for an association of the APOE gene with human longevity.
PMCID: PMC3145394  PMID: 21498624
aged; apolipoprotein E2; apolipoprotein E3; apolipoprotein E4; apolipoproteins E; longevity; meta-analysis; multicenter study
9.  Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials 
Lancet  2011;378(9791):584-594.
The MTHFR 677C→T polymorphism has been associated with raised homocysteine concentration and increased risk of stroke. A previous overview showed that the effects were greatest in regions with low dietary folate consumption, but differentiation between the effect of folate and small-study bias was difficult. A meta-analysis of randomised trials of homocysteine-lowering interventions showed no reduction in coronary heart disease events or stroke, but the trials were generally set in populations with high folate consumption. We aimed to reduce the effect of small-study bias and investigate whether folate status modifies the association between MTHFR 677C→T and stroke in a genetic analysis and meta-analysis of randomised controlled trials.
We established a collaboration of genetic studies consisting of 237 datasets including 59 995 individuals with data for homocysteine and 20 885 stroke events. We compared the genetic findings with a meta-analysis of 13 randomised trials of homocysteine-lowering treatments and stroke risk (45 549 individuals, 2314 stroke events, 269 transient ischaemic attacks).
The effect of the MTHFR 677C→T variant on homocysteine concentration was larger in low folate regions (Asia; difference between individuals with TT versus CC genotype, 3·12 μmol/L, 95% CI 2·23 to 4·01) than in areas with folate fortification (America, Australia, and New Zealand, high; 0·13 μmol/L, −0·85 to 1·11). The odds ratio (OR) for stroke was also higher in Asia (1·68, 95% CI 1·44 to 1·97) than in America, Australia, and New Zealand, high (1·03, 0·84 to 1·25). Most randomised trials took place in regions with high or increasing population folate concentrations. The summary relative risk (RR) of stroke in trials of homocysteine-lowering interventions (0·94, 95% CI 0·85 to 1·04) was similar to that predicted for the same extent of homocysteine reduction in large genetic studies in populations with similar folate status (predicted RR 1·00, 95% CI 0·90 to 1·11). Although the predicted effect of homocysteine reduction from large genetic studies in low folate regions (Asia) was larger (RR 0·78, 95% CI 0·68 to 0·90), no trial has evaluated the effect of lowering of homocysteine on stroke risk exclusively in a low folate region.
In regions with increasing levels or established policies of population folate supplementation, evidence from genetic studies and randomised trials is concordant in suggesting an absence of benefit from lowering of homocysteine for prevention of stroke. Further large-scale genetic studies of the association between MTHFR 677C→T and stroke in low folate settings are needed to distinguish effect modification by folate from small-study bias. If future randomised trials of homocysteine-lowering interventions for stroke prevention are undertaken, they should take place in regions with low folate consumption.
Full funding sources listed at end of paper (see Acknowledgments).
PMCID: PMC3156981  PMID: 21803414
10.  Comparative analysis of genome-wide association studies signals for lipids, diabetes, and coronary heart disease: Cardiovascular Biomarker Genetics Collaboration 
European Heart Journal  2011;33(3):393-407.
To evaluate the associations of emergent genome-wide-association study-derived coronary heart disease (CHD)-associated single nucleotide polymorphisms (SNPs) with established and emerging risk factors, and the association of genome-wide-association study-derived lipid-associated SNPs with other risk factors and CHD events.
Methods and results
Using two case–control studies, three cross-sectional, and seven prospective studies with up to 25 000 individuals and 5794 CHD events we evaluated associations of 34 genome-wide-association study-identified SNPs with CHD risk and 16 CHD-associated risk factors or biomarkers. The Ch9p21 SNPs rs1333049 (OR 1.17; 95% confidence limits 1.11–1.24) and rs10757274 (OR 1.17; 1.09–1.26), MIA3 rs17465637 (OR 1.10; 1.04–1.15), Ch2q36 rs2943634 (OR 1.08; 1.03–1.14), APC rs383830 (OR 1.10; 1.02, 1.18), MTHFD1L rs6922269 (OR 1.10; 1.03, 1.16), CXCL12 rs501120 (OR 1.12; 1.04, 1.20), and SMAD3 rs17228212 (OR 1.11; 1.05, 1.17) were all associated with CHD risk, but not with the CHD biomarkers and risk factors measured. Among the 20 blood lipid-related SNPs, LPL rs17411031 was associated with a lower risk of CHD (OR 0.91; 0.84–0.97), an increase in Apolipoprotein AI and HDL-cholesterol, and reduced triglycerides. SORT1 rs599839 was associated with CHD risk (OR 1.20; 1.15–1.26) as well as total- and LDL-cholesterol, and apolipoprotein B. ANGPTL3 rs12042319 was associated with CHD risk (OR 1.11; 1.03, 1.19), total- and LDL-cholesterol, triglycerides, and interleukin-6.
Several SNPs predicting CHD events appear to involve pathways not currently indexed by the established or emerging risk factors; others involved changes in blood lipids including triglycerides or HDL-cholesterol as well as LDL-cholesterol. The overlapping association of SNPs with multiple risk factors and biomarkers supports the existence of shared points of regulation for these phenotypes.
PMCID: PMC3270041  PMID: 21804106
Coronary disease; Lipids; Genes; Risk factors
11.  Association of a sequence variant in DAB2IP with coronary heart disease 
European Heart Journal  2011;33(7):881-888.
A sequence variant, rs7025486[A], in DAB2IP on chromosome 9q33 has recently been associated with coronary heart disease (CHD). We sought to replicate this finding and to investigate associations with a panel of inflammatory and haemostatic biomarkers. We also sought to examine whether this variant, in combination with a chromosome 9p21 CHD variant (rs10757278) and the Framingham risk score (FRS), could improve the prediction of events compared with the FRS alone.
Methods and results
rs7025486 was genotyped in 1386 CHD cases and 3532 controls and was associated with CHD [odds ratio (OR) of 1.16, 95% confidence interval (CI) 1.05–1.29, P= 0.003]. Meta-analysis, using data from the original report and from genome-wide association studies in both the Wellcome Trust Case Control Consortium and the Cardiovascular Health Study, comprising 9968 cases and 20 048 controls, confirmed the association (OR of 1.10, 95% CI 1.06–1.14, P= 3.2 × 10−6). There was no association with a panel of CHD biomarkers, including any lipid, inflammation, or coagulation trait, nor with telomere length. Addition to the FRS of this variant plus rs10757278 on chromosome 9p21 improved the area under the receiver-operating characteristic curve (AROC) from 0.61 to 0.64 (P= 0.03) as well as improving the reclassification (net reclassification index = 11.1%, P= 0.007).
This study replicates a previous association of a variant in DAB2IP with CHD. Addition of multiple variants improves the performance of predictive models based upon classical cardiovascular risk factors.
PMCID: PMC3345557  PMID: 21444365
DAB2IP; Coronary heart disease; Genetic; Single-nucleotide polymorphism; Genomics
12.  Complex disease genetics: present and future translational applications 
Genome Medicine  2009;1(11):104.
A report on the British Atherosclerosis Society autumn meeting 'Genetics of Complex Diseases', Cambridge, UK, 17-18 September 2009.
PMCID: PMC2808739  PMID: 19891794
13.  An Ecological Correlation Study of Late Age-Related Macular Degeneration and the Complement Factor H Y402H Polymorphism 
Based on published data, this ecological correlation study showed evidence to support the hypothesis that variation in the risk allele frequency of the Y402H polymorphism across ethnicities explains variation in prevalence of late AMD when data on people of African ancestry are excluded.
To investigate whether variation in the distribution of the risk allele frequency of the Y402H single-nucleotide polymorphism (SNP) across various ethnicities and geographic regions reflects differences in the prevalence of late age-related macular degeneration (AMD) in those ethnicities.
Published data were obtained via a systematic search. Study samples were grouped into clusters by ethnicity and geographic location and the Spearman correlation coefficient of the prevalence of late AMD and risk allele frequencies was calculated across clusters.
Across all ethnicities, AMD prevalence was seen to increase with age. Populations of European descent had both higher risk allele frequencies and prevalence of late AMD than did Japanese, Chinese, and Hispanic descendants. Results for African descendants were anomalous: although allele frequency was similar to that in European populations, the age-specific prevalence of late AMD was considerably lower. The correlation coefficient for the association between allele frequency and AMD prevalence was 0.40 (95% confidence interval [CI] = −0.36 to 0.84, P = 0.28) in all populations combined and 0.71 (95% CI = 0.02–0.94, P = 0.04) when people of African descent were excluded.
Evidence was found at the population level to support a positive association between the Y204H risk allele and the prevalence of AMD after exclusion of studies undertaken on persons of African ancestry. Data in African, Middle Eastern, and South American populations are needed to provide a better understanding of the association of late AMD genetic risk across ethnicities.
PMCID: PMC2868481  PMID: 20042653
14.  Separating the mechanism-based and off-target actions of CETP-inhibitors using CETP gene polymorphisms 
Circulation  2009;121(1):52-62.
Cholesteryl ester transfer protein (CETP) inhibitors raise HDL-cholesterol but torcetrapib, the first-in-class inhibitor tested in a large outcome trial caused unexpected blood pressure elevation and increased cardiovascular events. Whether the hypertensive effect resulted from CETP-inhibition or an off-target action of torcetrapib has been debated. We hypothesised that common single nucleotide polymorphisms (SNPs) in the CETP-gene could help distinguish mechanism-based from off-target actions of CETP-inhibitors to inform on the validity of CETP as a therapeutic target.
Methods and Results
We compared the effect of CETP SNPs and torcetrapib treatment on lipid fractions, blood pressure and electrolytes in up to 67,687 individuals from genetic studies and 17,911 from randomised trials. CETP SNPs and torcetrapib treatment reduced CETP activity and had directionally concordant effect on eight lipid and lipoprotein traits (total-, LDL- and HDL-cholesterol, HDL2, HDL3, apolipoproteins A-I, -B, and triglycerides), with the genetic effect on HDL-cholesterol (0.13 mmol/L; 95% CI: 0.11, 0.14) being consistent with that expected of a 10 mg dose of torcetrapib (0.13 mmol/L; 0.10, 0.15). In trials, 60mg torcetrapib elevated systolic and diastolic blood pressure by 4.47mmHg (4.10, 4.84) and 2.08mmHg (1.84, 2.31) respectively. However, the effect of CETP SNPs on systolic 0.16mmHg (−0.28, 0.60) and diastolic blood pressure −0.04mmHg (−0.36, 0.28) was null and significantly different from that expected of 10 mg torcetrapib.
Discordance in the effects of CETP SNPs and torcetrapib treatment on blood pressure despite the concordant effects on lipids indicates the hypertensive action of torcetrapib is unlikely to be due to CETP-inhibition, or shared by chemically dissimilar CETP inhibitors. Genetic studies could find use in drug development programmes as a new source of randomised evidence for drug target validation in man.
PMCID: PMC2811869  PMID: 20026784
genetics; pharmacology; epidemiology
15.  Critical appraisal of CRP measurement for the prediction of coronary heart disease events: new data and systematic review of 31 prospective cohorts 
Background Non-uniform reporting of relevant relationships and metrics hampers critical appraisal of the clinical utility of C-reactive protein (CRP) measurement for prediction of later coronary events.
Methods We evaluated the predictive performance of CRP in the Northwick Park Heart Study (NPHS-II) and the Edinburgh Artery Study (EAS) comparing discrimination by area under the ROC curve (AUC), calibration and reclassification. We set the findings in the context of a systematic review of published studies comparing different available and imputed measures of prediction. Risk estimates per-quantile of CRP were pooled using a random effects model to infer the shape of the CRP-coronary event relationship.
Results NPHS-II and EAS (3441 individuals, 309 coronary events): CRP alone provided modest discrimination for coronary heart disease (AUC 0.61 and 0.62 in NPHS-II and EAS, respectively) and only modest improvement in the discrimination of a Framingham-based risk score (FRS) (increment in AUC 0.04 and –0.01, respectively). Risk models based on FRS alone and FRS + CRP were both well calibrated and the net reclassification improvement (NRI) was 8.5% in NPHS-II and 8.8% in EAS with four risk categories, falling to 4.9% and 3.0% for 10-year coronary disease risk threshold of 15%. Systematic review (31 prospective studies 84 063 individuals, 11 252 coronary events): pooled inferred values for the AUC for CRP alone were 0.59 (0.57, 0.61), 0.59 (0.57, 0.61) and 0.57 (0.54, 0.61) for studies of <5, 5–10 and >10 years follow up, respectively. Evidence from 13 studies (7201 cases) indicated that CRP did not consistently improve performance of the Framingham risk score when assessed by discrimination, with AUC increments in the range 0–0.15. Evidence from six studies (2430 cases) showed that CRP provided statistically significant but quantitatively small improvement in calibration of models based on established risk factors in some but not all studies. The wide overlap of CRP values among people who later suffered events and those who did not appeared to be explained by the consistently log-normal distribution of CRP and a graded continuous increment in coronary risk across the whole range of values without a threshold, such that a large proportion of events occurred among the many individuals with near average levels of CRP.
Conclusions CRP does not perform better than the Framingham risk equation for discrimination. The improvement in risk stratification or reclassification from addition of CRP to models based on established risk factors is small and inconsistent. Guidance on the clinical use of CRP measurement in the prediction of coronary events may require updating in light of this large comparative analysis.
PMCID: PMC2639366  PMID: 18930961
C-reactive protein; prediction; coronary heart disease; primary prevention; risk stratification
16.  Could NICE guidance on the choice of blood pressure lowering drugs be simplified? 
Reecha Sofat and colleagues argue that prescribing advice needs updating in the light of recent evidence that all classes of blood pressure lowering drugs are broadly equivalent
PMCID: PMC3957318  PMID: 22246267
17.  Translating genomics into improved healthcare 
PMCID: PMC3957319  PMID: 21056961

Results 1-17 (17)