PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-22 (22)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphene-based nanomaterial family 
Background
Graphene, a monolayer of carbon, is an engineered nanomaterial (ENM) with physical and chemical properties that may offer application advantages over other carbonaceous ENMs, such as carbon nanotubes (CNT). The goal of this study was to comparatively assess pulmonary and systemic toxicity of graphite nanoplates, a member of the graphene-based nanomaterial family, with respect to nanoplate size.
Methods
Three sizes of graphite nanoplates [20 μm lateral (Gr20), 5 μm lateral (Gr5), and <2 μm lateral (Gr1)] ranging from 8–25 nm in thickness were characterized for difference in surface area, structure,, zeta potential, and agglomeration in dispersion medium, the vehicle for in vivo studies. Mice were exposed by pharyngeal aspiration to these 3 sizes of graphite nanoplates at doses of 4 or 40 μg/mouse, or to carbon black (CB) as a carbonaceous control material. At 4 h, 1 day, 7 days, 1 month, and 2 months post-exposure, bronchoalveolar lavage was performed to collect fluid and cells for analysis of lung injury and inflammation. Particle clearance, histopathology and gene expression in lung tissue were evaluated. In addition, protein levels and gene expression were measured in blood, heart, aorta and liver to assess systemic responses.
Results
All Gr samples were found to be similarly composed of two graphite structures and agglomerated to varying degrees in DM in proportion to the lateral dimension. Surface area for Gr1 was approximately 7-fold greater than Gr5 and Gr20, but was less reactive reactive per m2. At the low dose, none of the Gr materials induced toxicity. At the high dose, Gr20 and Gr5 exposure increased indices of lung inflammation and injury in lavage fluid and tissue gene expression to a greater degree and duration than Gr1 and CB. Gr5 and Gr20 showed no or minimal lung epithelial hypertrophy and hyperplasia, and no development of fibrosis by 2 months post-exposure. In addition, the aorta and liver inflammatory and acute phase genes were transiently elevated in Gr5 and Gr20, relative to Gr1.
Conclusions
Pulmonary and systemic toxicity of graphite nanoplates may be dependent on lateral size and/or surface reactivity, with the graphite nanoplates > 5 μm laterally inducing greater toxicity which peaked at the early time points post-exposure relative to the 1–2 μm graphite nanoplate.
Electronic supplementary material
The online version of this article (doi:10.1186/s12989-016-0145-5) contains supplementary material, which is available to authorized users.
doi:10.1186/s12989-016-0145-5
PMCID: PMC4915050  PMID: 27328692
Graphene-based nanomaterials; Pulmonary exposure; Cardiovascular toxicity; Lung toxicity; Particle size
2.  Cardiovascular effects in rats after intratracheal instillation of metal welding particles 
Inhalation toxicology  2015;27(1):45-53.
Studies have indicated that pulmonary exposure to welding fumes can induce a series of adverse effects in the respiratory system, including infection, bronchitis, siderosis and decreased pulmonary function. Recent clinical and epidemiological studies have found that pulmonary exposure to welding fumes is also associated with a higher incidence of cardiovascular events. However, there is insufficient evidence to confirm a direct effect of welding fumes on the cardiovascular system. The present study investigated the effects of pulmonary exposure to welding fumes on the heart and the vascular system in rats. Two chemically distinct welding fumes generated from manual metal arc-hard surfacing (MMA-HS) and gas metal arc-mild steel (GMA-MS) welding were tested. Three groups of rats were instilled intratracheally with MMA-HS (2 mg/rat), GMA-MS (2 mg/rat) or saline as control once a week for seven weeks. On days 1 and 7 after the last treatment, basal cardiovascular function and the cardiovascular response to increasing doses of adrenoreceptor agonists were assessed. MMA-HS treatment reduced the basal levels of left ventricle end-systolic pressure and dP/dtmax at 1 day post-treatment, and decreased dP/dtmin in response to isoproterenol (ISO) at 7 days post-treatment. Unlike MMA-HS, GMA-MS only affected left ventricular end-diastolic pressure in response to ISO at 7 days post-treatment. Treatment with MMA-HS or GMA-MS did not alter heart rate and blood pressure. Our findings suggest that exposure to different welding fumes can induce different adverse effects on the cardiovascular system, and that cardiac contractility may be a sensitive indicator of cardiovascular dysfunction.
doi:10.3109/08958378.2014.982309
PMCID: PMC4698874  PMID: 25600139
Cardiovascular function; pulmonary exposure; welding fume
3.  Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes 
Toxicology  2014;328:168-178.
Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson’s disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m3; 3 h/day × 5 d/week × 2 weeks) to fumes generated by gas–metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their ne counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks.
doi:10.1016/j.tox.2014.12.015
PMCID: PMC4695973  PMID: 25549921
Manganese; Neurotoxicity; Parkinson’s disease; Parkinsonism; Prevention; Welding
4.  Molecular insights into the progression of crystalline silica-induced pulmonary toxicity in rats 
Identification of molecular target(s) and mechanism(s) of silica-induced pulmonary toxicity is important for the intervention and/or prevention of diseases associated with exposure to silica. Rats were exposed to crystalline silica by inhalation (15 mg m−3, 6 h per day, 5 days) and global gene expression profile was determined in the lungs by microarray analysis at 1, 2, 4, 8 and 16 weeks following termination of silica exposure. The number of significantly differentially expressed genes (>1.5-fold change and <0.01 false discovery rate P-value) detected in the lungs during the post-exposure time intervals analyzed exhibited a steady increase in parallel with the progression of silica-induced pulmonary toxicity noticed in the rats. Quantitative real-time PCR analysis of a representative set of 10 genes confirmed the microarray findings. The number of biological functions, canonical pathways and molecular networks significantly affected by silica exposure, as identified by the bioinformatics analysis of the significantly differentially expressed genes detected during the post-exposure time intervals, also exhibited a steady increase similar to the silica-induced pulmonary toxicity. Genes involved in oxidative stress, inflammation, respiratory diseases, cancer, and tissue remodeling and fibrosis were significantly differentially expressed in the rat lungs; however, unresolved inflammation was the single most significant biological response to pulmonary exposure to silica. Excessive mucus production, as implicated by significant overexpression of the pendrin coding gene, SLC26A4, was identified as a potential novel mechanism for silica-induced pulmonary toxicity. Collectively, the findings of our study provided insights into the molecular mechanisms underlying the progression of crystalline silica-induced pulmonary toxicity in the rat. Published 2012. This article is a US Government work and is in the public domain in the USA.
doi:10.1002/jat.2733
PMCID: PMC4677774  PMID: 22431001
silica; pulmonary toxicity; gene expression; inflammation
5.  Transcriptomics analysis of lungs and peripheral blood of crystalline silica-exposed rats 
Inhalation toxicology  2012;24(9):570-579.
Minimally invasive approaches to detect/predict target organ toxicity have significant practical applications in occupational toxicology. The potential application of peripheral blood transcriptomics as a practical approach to study the mechanisms of silica-induced pulmonary toxicity was investigated. Rats were exposed by inhalation to crystalline silica (15 mg/m3, 6 h/day, 5 days) and pulmonary toxicity and global gene expression profiles of lungs and peripheral blood were determined at 32 weeks following termination of exposure. A significant elevation in bronchoalveolar lavage fluid lactate dehydrogenase activity and moderate histological changes in the lungs, including type II pneumocyte hyperplasia and fibrosis, indicated pulmonary toxicity in the rats. Similarly, significant infiltration of neutrophils and elevated monocyte chemotactic protein-1 levels in the lungs showed pulmonary inflammation in the rats. Microarray analysis of global gene expression profiles identified significant differential expression [>1.5-fold change and false discovery rate (FDR) p < 0.01] of 520 and 537 genes, respectively, in the lungs and blood of the exposed rats. Bioinformatics analysis of the differentially expressed genes demonstrated significant similarity in the biological processes, molecular networks, and canonical pathways enriched by silica exposure in the lungs and blood of the rats. Several genes involved in functions relevant to silica-induced pulmonary toxicity such as inflammation, respiratory diseases, cancer, cellular movement, fibrosis, etc, were found significantly differentially expressed in the lungs and blood of the silica-exposed rats. The results of this study suggested the potential application of peripheral blood gene expression profiling as a toxicologically relevant and minimally invasive surrogate approach to study the mechanisms underlying silica-induced pulmonary toxicity.
doi:10.3109/08958378.2012.697926
PMCID: PMC4672741  PMID: 22861000
Crystalline silica; pulmonary toxicity; gene expression profile; blood; mechanisms
6.  Pulmonary Toxicity, Distribution, and Clearance of Intratracheally Instilled Silicon Nanowires in Rats 
Journal of nanomaterials  2012;2012:398302.
Silicon nanowires (Si NWs) are being manufactured for use as sensors and transistors for circuit applications. The goal was to assess pulmonary toxicity and fate of Si NW using an in vivo experimental model. Male Sprague-Dawley rats were intratracheally instilled with 10, 25, 50, 100, or 250 μg of Si NW (~20–30 nm diameter; ~2–15 μm length). Lung damage and the pulmonary distribution and clearance of Si NW were assessed at 1, 3, 7, 28, and 91 days after-treatment. Si NW treatment resulted in dose-dependent increases in lung injury and inflammation that resolved over time. At day 91 after treatment with the highest doses, lung collagen was increased. Approximately 70% of deposited Si NW was cleared by 28 days with most of the Si NW localized exclusively in macrophages. In conclusion, Si NW induced transient lung toxicity which may be associated with an early rapid particle clearance; however, persistence of Si NW over time related to dose or wire length may lead to increased collagen deposition in the lung.
doi:10.1155/2012/398302
PMCID: PMC4668952  PMID: 26640479
7.  Adjuvant effect of zymosan after pulmonary treatment in a mouse ovalbumin allergy model 
Experimental lung research  2013;39(1):48-57.
An association has been observed between indoor mold contamination and lung allergy and asthma. This relationship is not fully understood. 1→3-β-Glucan is the major cell wall component of fungi and a good marker of fungi exposure. The objective was to evaluate the adjuvant effect of zymosan, a crude yeast cell wall preparation of 1→3-β-glucan, during ovalbumin (OVA) sensitization in an allergy model. BALB/c mice were sensitized by pharyngeal aspiration with saline, 50 µg of OVA, or OVA with 1, 10, 50, or 75 µg of zymosan on days 0, 7, and 14. One week after sensitization, each sensitized animal group was challenged with an aspiration dose of 50 µg of OVA once a week for 2 weeks. At 1 day after the last aspiration, bronchoalveolar lavage fluid and blood was collected, and markers of lung allergy and inflammation were assessed. An adjuvant effect of zymosan on OVA allergy during sensitization was observed as indicated by significant elevations in lung eosinophils, serum OVA-specific IgE, and lung IL-5 in the groups sensitized with zymosan and OVA. Pulmonary treatment with zymosan also amplified lung inflammation. Elevations were observed in lung neutrophils, TNF-α, and parameters of lung injury in the groups primed with both zymosan and OVA. In nearly all parameters, a non-linear dose–response relationship was observed in the groups primed with OVA and zymosan. The optimum adjuvant dose of zymosan was 10 µg. This study demonstrated an adjuvant effect of zymosan when exposures occurred during the sensitization phase in an OVA-induced allergy model in BALB/c mice.
doi:10.3109/01902148.2012.749960
PMCID: PMC4562424  PMID: 23282019
1→3-β-glucan; allergy; fungi; inflammation; zymosan
8.  Comparative Microscopic Study of Human and Rat Lungs After Overexposure to Welding Fume 
The Annals of occupational hygiene  2013;57(9):1167-1179.
Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2 mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable.
doi:10.1093/annhyg/met032
PMCID: PMC4556273  PMID: 23798603
human; microscopy; pulmonary toxicity; rat; welding fume
9.  Evaluation of Pulmonary and Systemic Toxicity of Oil Dispersant (COREXIT EC9500A®) Following Acute Repeated Inhalation Exposure 
Environmental Health Insights  2015;8(Suppl 1):63-74.
INTRODUCTION
Oil spill cleanup workers come into contact with numerous potentially hazardous chemicals derived from the oil spills, as well as chemicals applied for mitigation of the spill, including oil dispersants. In response to the Deepwater Horizon Macondo well oil spill in the Gulf of Mexico in 2010, a record volume of the oil dispersant, COREXIT EC9500A, was delivered via aerial applications, raising concern regarding potential health effects that may result from pulmonary exposure to the dispersant.
METHODS
The current study examined the effects on pulmonary functions, cardiovascular functions, and systemic immune responses in rats to acute repeated inhalation exposure of COREXIT EC9500A at 25 mg/m3, five hours per day, over nine work days, or filtered air (control). At one and seven days following the last exposure, a battery of parameters was measured to evaluate lung function, injury, and inflammation; cardiovascular function; peripheral vascular responses; and systemic immune responses.
RESULTS
No significant alterations in airway reactivity were observed at one or seven days after exposure either in baseline values or following methacholine (MCh) inhalation challenge. Although there was a trend for an increase in lung neutrophils and phagocyte oxidant production at one-day post exposure, there were no significant differences in parameters of lung inflammation. In addition, increased blood monocytes and neutrophils, and decreased lymphocyte numbers at one-day post exposure also did not differ significantly from air controls, and no alterations in splenocyte populations, or serum or spleen immunoglobulin M (IgM) to antigen were observed. There were no significant differences in peripheral vascular responsiveness to vasoconstrictor and vasodilator agonists or in blood pressure (BP) responses to these agents; however, the baseline heart rate (HR) and HR responses to isoproterenol (ISO) were significantly elevated at one-day post exposure, with resolution by day 7.
CONCLUSIONS
In summary, acute repeated exposure to COREXIT EC9500A did not alter pulmonary function, lung injury/inflammation, systemic immune responses, or vascular tone, but did cause transient chronotropic effects on cardiac function.
doi:10.4137/EHI.S15262
PMCID: PMC4325826  PMID: 25861220
inhalation; oil dispersant; pulmonary toxicity; immunotoxicity; cardiovascular effects
10.  Generation of Reactive Oxygen Species from Silicon Nanowires 
Environmental Health Insights  2014;8(Suppl 1):21-29.
Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor–liquid–solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals.
doi:10.4137/EHI.S15261
PMCID: PMC4227628  PMID: 25452695
reactive oxygen species; nanomaterials; nanotoxicology; free radicals; silicon
11.  Evaluation of the Pulmonary Toxicity of a Fume Generated from a Nickel-, Copper-Based Electrode to be Used as a Substitute in Stainless Steel Welding 
Environmental Health Insights  2014;8(Suppl 1):11-20.
Epidemiology has indicated a possible increase in lung cancer among stainless steel welders. Chromium (Cr) is a primary component of stainless steel welding fume. There is an initiative to develop alternative welding consumables [nickel (Ni)- and copper (Cu)-based alloys] that do not contain Cr. No study has been performed to evaluate the toxicity of fumes generated from Ni- and Cu-based consumables. Dose–response and time-course effects on lung toxicity of a Ni- and Cu-based welding fume (Ni–Cu WF) were examined using an in vivo and in vitro bioassay, and compared with two other well-characterized welding fumes. Even though only trace amounts of Cr were present, a persistent increase in lung injury and inflammation was observed for the Ni–Cu WF compared to the other fumes. The difference in response appears to be due to a direct cytotoxic effect by the Ni–Cu WF sample on lung macrophages as opposed to an elevated production of reactive oxygen species (ROS).
doi:10.4137/EHI.S15260
PMCID: PMC4216652  PMID: 25392698
welding fume; pulmonary toxicity; chromium; nickel; copper; particulate matter
12.  Oxidative stress and reduced responsiveness of challenged circulating leukocytes following pulmonary instillation of metal-rich particulate matter in rats 
Welding fume is an exposure that consists of a mixture of metal-rich particulate matter with gases (ozone, carbon monoxide) and/or vapors (VOCs). Data suggests that welders are immune compromised. Given the inability of pulmonary leukocytes to properly respond to a secondary infection in animal models, the question arose whether the dysfunction persisted systemically. Our aim was to evaluate the circulating leukocyte population in terms of cellular activation, presence of oxidative stress, and functionality after a secondary challenge, following welding fume exposure. Rats were intratracheally instilled (ITI) with PBS or 2 mg of welding fume collected from a stainless steel weld. Rats were sacrificed 4 and 24 h post-exposure and whole blood was collected. Whole blood was used for cellular differential counts, RNA isolation with subsequent microarray and Ingenuity Pathway Analysis, and secondary stimulation with LPS utilizing TruCulture technology. In addition, mononuclear cells were isolated 24 h post-exposure to measure oxidative stress by flow cytometry and confocal microscopy. Welding fume exposure had rapid effects on the circulating leukocyte population as identified by relative mRNA expression changes. Instillation of welding fume reduced inflammatory protein production of circulating leukocytes when challenged with the secondary stimulus LPS. The effects were not related to transcription, but were observed in conjunction with oxidative stress. These findings support previous studies of an inadequate pulmonary immune response following a metal-rich exposure and extend those findings showing leukocyte dysfunction occurs systemically.
doi:10.1186/s12989-014-0034-8
PMCID: PMC4151022  PMID: 25123171
Microarray; Welding; Immunosuppression; Cardiovascular disease; Chromium; Whole blood cell gene expression
13.  Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats 
Background
The potential use of quantum dots (QD) in biomedical applications, as well as in other systems that take advantage of their unique physiochemical properties, has led to concern regarding their toxicity, potential systemic distribution, and biopersistence. In addition, little is known about workplace exposure to QD in research, manufacturing, or medical settings. The goal of the present study was to assess pulmonary toxicity, clearance, and biodistribution of QD with different functional groups in rats after pulmonary exposure.
Methods
QD were composed of a cadmium-selenide (CdSe) core (~5nm) with a zinc sulfide (ZnS) shell functionalized with carboxyl (QD-COOH) or amine (QD-NH2) terminal groups. Male Sprague–Dawley rats were intratracheally-instilled (IT) with saline, QD-COOH, or QD-NH2 (12.5, 5.0, or 1.25 μg/rat). On days 0, 1, 3, 5, 7, 14, and 28 post-IT, the left lung, lung-associated lymph nodes (LALN), heart, kidneys, spleen, liver, brain, and blood were collected for metal analysis of Cd content by neutron activation to evaluate clearance and biodistribution. One right lobe was ligated and fixed for microscopy and histopathological analysis. The remaining right lobes from rats in each group were subjected to bronchoalveolar lavage (BAL) to retrieve BAL fluid and cells for analysis of injury and inflammation.
Results
Lung injury and inflammation was found to be dose-dependent and peaked at days 7 and 14 post-exposure for both forms of QD, with slight variations in degree of toxicity at early and later time points. Both QD appeared to lose their fluorescent properties and destabilize after 1 week in the lung. Cd persisted up to 28 days for both forms of QD; however, clearance rate was slightly greater for QD-COOH over time. No Cd was detected in the liver, spleen, heart, brain, or blood at any time point. Cd appeared in the LALN and kidneys beginning at 1–2 weeks post-exposure.
Conclusions
QD-COOH and QD-NH2 differed in clearance rate and differed slightly in degree of toxicity at different time points; however, the overall pattern of toxicity and biodistribution was similar between the two particles. Toxicity may be dependent on the dissolution rate and bioavailability of free Cd.
doi:10.1186/1743-8977-10-5
PMCID: PMC3599433  PMID: 23497258
Nanoparticles; Cadmium; Toxicology; Lung; Tissue distribution
14.  The Feedback Intervention Trial (FIT) — Improving Hand-Hygiene Compliance in UK Healthcare Workers: A Stepped Wedge Cluster Randomised Controlled Trial 
PLoS ONE  2012;7(10):e41617.
Introduction
Achieving a sustained improvement in hand-hygiene compliance is the WHO’s first global patient safety challenge. There is no RCT evidence showing how to do this. Systematic reviews suggest feedback is most effective and call for long term well designed RCTs, applying behavioural theory to intervention design to optimise effectiveness.
Methods
Three year stepped wedge cluster RCT of a feedback intervention testing hypothesis that the intervention was more effective than routine practice in 16 English/Welsh Hospitals (16 Intensive Therapy Units [ITU]; 44 Acute Care of the Elderly [ACE] wards) routinely implementing a national cleanyourhands campaign). Intervention-based on Goal & Control theories. Repeating 4 week cycle (20 mins/week) of observation, feedback and personalised action planning, recorded on forms. Computer-generated stepwise entry of all hospitals to intervention. Hospitals aware only of own allocation. Primary outcome: direct blinded hand hygiene compliance (%).
Results
All 16 trusts (60 wards) randomised, 33 wards implemented intervention (11 ITU, 22 ACE). Mixed effects regression analysis (all wards) accounting for confounders, temporal trends, ward type and fidelity to intervention (forms/month used).
Intention to Treat Analysis
Estimated odds ratio (OR) for hand hygiene compliance rose post randomisation (1.44; 95% CI 1.18, 1.76;p<0.001) in ITUs but not ACE wards, equivalent to 7–9% absolute increase in compliance.
Per-Protocol Analysis for Implementing Wards
OR for compliance rose for both ACE (1.67 [1.28–2.22]; p<0.001) & ITUs (2.09 [1.55–2.81];p<0.001) equating to absolute increases of 10–13% and 13–18% respectively. Fidelity to intervention closely related to compliance on ITUs (OR 1.12 [1.04, 1.20];p = 0.003 per completed form) but not ACE wards.
Conclusion
Despite difficulties in implementation, intention-to-treat, per-protocol and fidelity to intervention, analyses showed an intervention coupling feedback to personalised action planning produced moderate but significant sustained improvements in hand-hygiene compliance, in wards implementing a national hand-hygiene campaign. Further implementation studies are needed to maximise the intervention’s effect in different settings.
Trial Registration
Controlled-Trials.com ISRCTN65246961
doi:10.1371/journal.pone.0041617
PMCID: PMC3479093  PMID: 23110040
15.  Sequential Exposure to Carbon Nanotubes and Bacteria Enhances Pulmonary Inflammation and Infectivity 
Carbon nanotubes (CNT), with their applications in industry and medicine, may lead to new risks to human health. CNT induce a robust pulmonary inflammation and oxidative stress in rodents. Realistic exposures to CNT may occur in conjunction with other pathogenic impacts (microbial infections) and trigger enhanced responses. We evaluated interactions between pharyngeal aspiration of single-walled CNT (SWCNT) and bacterial pulmonary infection of C57BL/6 mice with Listeria monocytogenes (LM). Mice were given SWCNT (0, 10, and 40 μg/mouse) and 3 days later were exposed to LM (103 bacteria/mouse). Sequential exposure to SWCNT/LM amplified lung inflammation and collagen formation. Despite this robust inflammatory response, SWCNT pre-exposure significantly decreased the pulmonary clearance of LM-exposed mice measured 3 to 7 days after microbial infection versus PBS/LM-treated mice. Decreased bacterial clearance in SWCNT-pre-exposed mice was associated with decreased phagocytosis of bacteria by macrophages and a decrease in nitric oxide production by these phagocytes. Pre-incubation of naïve alveolar macrophages with SWCNT in vitro also resulted in decreased nitric oxide generation and suppressed phagocytizing activity toward LM. Failure of SWCNT-exposed mice to clear LM led to a continued elevation in nearly all major chemokines and acute phase cytokines into the later course of infection. In SWCNT/LM-exposed mice, bronchoalveolar lavage neutrophils, alveolar macrophages, and lymphocytes, as well as lactate dehydrogenase level, were increased compared with mice exposed to SWCNT or LM alone. In conclusion, enhanced acute inflammation and pulmonary injury with delayed bacterial clearance after SWCNT exposure may lead to increased susceptibility to lung infection in exposed populations.
doi:10.1165/rcmb.2007-0255OC
PMCID: PMC2335338  PMID: 18096873
nanoparticles; infection; inflammation; lung disease; pulmonary injury
16.  Pulmonary inflammation and tumor induction in lung tumor susceptible A/J and resistant C57BL/6J mice exposed to welding fume 
Background
Welding fume has been categorized as "possibly carcinogenic" to humans. Our objectives were to characterize the lung response to carcinogenic and non-carcinogenic metal-containing welding fumes and to determine if these fumes caused increased lung tumorigenicity in A/J mice, a lung tumor susceptible strain. We exposed male A/J and C57BL/6J, a lung tumor resistant strain, by pharyngeal aspiration four times (once every 3 days) to 85 μg of gas metal arc-mild steel (GMA-MS), GMA-stainless steel (SS), or manual metal arc-SS (MMA-SS) fume, or to 25.5 μg soluble hexavalent chromium (S-Cr). Shams were exposed to saline vehicle. Bronchoalveolar lavage (BAL) was done at 2, 7, and 28 days post-exposure. For the lung tumor study, gross tumor counts and histopathological changes were assessed in A/J mice at 48 and 78 weeks post-exposure.
Results
BAL revealed notable strain-dependent differences with regards to the degree and resolution of the inflammatory response after exposure to the fumes. At 48 weeks, carcinogenic metal-containing GMA-SS fume caused the greatest increase in tumor multiplicity and incidence, but this was not different from sham. By 78 weeks, tumor incidence in the GMA-SS group versus sham approached significance (p = 0.057). A significant increase in perivascular/peribronchial lymphoid infiltrates for the GMA-SS group versus sham and an increased persistence of this fume in lung cells compared to the other welding fumes was found.
Conclusion
The increased persistence of GMA-SS fume in combination with its metal composition may trigger a chronic, but mild, inflammatory state in the lung possibly enhancing tumorigenesis in this susceptible mouse strain.
doi:10.1186/1743-8977-5-12
PMCID: PMC2546436  PMID: 18778475
17.  Accelerated Ovarian Failure Induced by 4-Vinyl Cyclohexene Diepoxide in Nrf2 Null Mice 
Molecular and Cellular Biology  2006;26(3):940-954.
Genetic and biochemical analyses have uncovered an essential role for nuclear factor erythroid 2-related factor 2 (Nrf2) in regulating phase II xenobiotic metabolism and antioxidant response. Here we show that Nrf2 protects against the ovarian toxicity of 4-vinylcyclohexene diepoxide (VCD) in mice. Nrf2−/− female mice exposed to VCD exhibit an age-dependent decline in reproduction leading to secondary infertility accompanied by hypergonadotropic hypogonadism after 30 weeks of age. VCD is shown to selectively destroy small ovarian follicles, resulting in early depletion of functional follicles. Treatment with VCD induces apoptotic death in cultured cells and in ovarian follicles, suggesting apoptosis as a mechanism of follicle loss. Loss of Nrf2 function blocks the basal and inducible expression of microsomal epoxide hydrolase, a key enzyme in the detoxification of VCD, and increases the oxidative stress in cells that is further exacerbated by VCD. Foxo3a, a repressor in the early stages of follicle activation, displays reduced expression in Nrf2−/− ovaries, causing accelerated growth of follicles in the absence of exposure to exogenous chemicals. Furthermore, Foxo3a is degraded through the 26S proteasome pathway in untreated cells and is induced by VCD via both Nrf2-dependent transcription and protein stabilization. This study demonstrates that Nrf2 serves as an essential sensor and regulator of chemical homeostasis in ovarian cells, protecting the cells from toxic chemicals by controlling metabolic detoxification, reactive oxygen species defense, and Foxo3a expression. In addition, these findings raise the possibility that exposure to environmental or occupational ovotoxicants plays a role in the premature ovarian failure commonly associated with infertility and premature aging in women.
doi:10.1128/MCB.26.3.940-954.2006
PMCID: PMC1347017  PMID: 16428448
18.  Trends in influenza vaccination uptake among people aged over 74 years, 1997–2000: Survey of 73 general practices in Britain 
Background
Influenza vaccination policy for elderly people in Britain has changed twice since 1997 to increase protection against influenza but there is no information available on how this has affected vaccine uptake, and socioeconomic variation therein, among people aged over 74 years.
Methods
Vaccination information for 1997–2000 was collected directly from general practices taking part in a MRC-funded Trial of the Assessment and Management of Older People in the Community. This was linked to information collected during assessments carried out as part of the Trial. Regression modelling was used to assess relative probabilities (as relative risks, RR) of having vaccination according to year, gender, age, area and individual socioeconomic characteristics.
Results
Out of 106 potential practices, 73 provided sufficient information to be included in the analysis. Uptake was 48% (95% CI 45%, 55%) in 1997 and did not increase substantially until 2000 when the uptake was a third higher at 63% (50%, 66%). Vaccination uptake was lower among women than men (RR 0.9), people aged 85 or more compared to people aged under 80 (RR 0.9), those in the most deprived areas (RR 0.8) compared to the least deprived, and was relatively high for those in owner-occupied homes with central heating compared to other non-supported housing (RR for remainder = 0.9). This pattern did not change over the years studied.
Conclusions
Increased uptake in 2000 may have resulted from the additional financial resources given to practices; it was not at the expense of more disadvantaged socioeconomic groups but nor did they benefit disproportionately.
doi:10.1186/1471-2296-5-8
PMCID: PMC421730  PMID: 15099402
19.  Skin as a route of exposure and sensitization in chronic beryllium disease. 
Environmental Health Perspectives  2003;111(9):1202-1208.
Chronic beryllium disease is an occupational lung disease that begins as a cell-mediated immune response to beryllium. Although respiratory and engineering controls have significantly decreased occupational beryllium exposures over the last decade, the rate of beryllium sensitization has not declined. We hypothesized that skin exposure to beryllium particles would provide an alternative route for sensitization to this metal. We employed optical scanning laser confocal microscopy and size-selected fluorospheres to demonstrate that 0.5- and 1.0- micro m particles, in conjunction with motion, as at the wrist, penetrate the stratum corneum of human skin and reach the epidermis and, occasionally, the dermis. The cutaneous immune response to chemical sensitizers is initiated in the skin, matures in the local lymph node (LN), and releases hapten-specific T cells into the peripheral blood. Topical application of beryllium to C3H mice generated beryllium-specific sensitization that was documented by peripheral blood and LN beryllium lymphocyte proliferation tests (BeLPT) and by changes in LN T-cell activation markers, increased expression of CD44, and decreased CD62L. In a sensitization-challenge treatment paradigm, epicutaneous beryllium increased murine ear thickness following chemical challenge. These data are consistent with development of a hapten-specific, cell-mediated immune response following topical application of beryllium and suggest a mechanistic link between the persistent rate of beryllium worker sensitization and skin exposure to fine and ultrafine beryllium particles.
PMCID: PMC1241575  PMID: 12842774
20.  Alteration of pulmonary immunity to Listeria monocytogenes by diesel exhaust particles (DEPs). II. Effects of DEPs on T-cell-mediated immune responses in rats. 
Environmental Health Perspectives  2003;111(4):524-530.
Previously, we showed that diesel exhaust particles (DEPs) suppressed pulmonary clearance of Listeria monocytogenes (Listeria) and inhibited the phagocytosis of alveolar macrophages and their response to Listeria in the secretion of interleukin (IL)-1 beta, tumor necrosis factor alpha, and IL-12. In this report we examined the effects of DEPs and/or Listeria on T-cell development and secretion of IL-2, IL-6, and interferon (IFN)-gamma. We exposed Brown Norway rats to clean air or DEPs at 50 or 100 mg/m3 for 4 hr by nose-only inhalation and inoculated with 100,000 Listeria. Lymphocytes in the lung-draining lymph nodes were isolated at 3 and 7 days postexposure, analyzed for CD4+ and CD8+ cells, and measured for cytokine production in response to concanavalin A or heat-killed L. monocytogenes. Listeria infection induced lymphocyte production of IL-6. At 7 days postinfection, lymphocytes from Listeria-infected rats showed significant increases in CD4+ and CD8+ cell counts and the CD8+/CD4+ ratio and exhibited increased production of IFN-gamma and IL-2 receptor expression compared with the noninfected control. These results suggest an immune response that involves the action of IL-6 on T-cell activation, yielding Listeria-specific CD8+ cells. DEP exposure alone enhanced lymphocyte production of both IL-2 and IL-6 but inhibited lymphocyte secretion of IFN-gamma. In rats exposed to 100 mg/m3 DEPs and Listeria, a 10-fold increase occurred in pulmonary bacterial count at 3 days postinfection when compared with the Listeria-only exposure group. The isolated lymphocytes showed a significant increase in the CD4+ and CD8+ cell counts and the CD8+/CD4+ ratio and exhibited increased IL-2 responsiveness and increased capacity in the secretion of IL-2, IL-6, and IFN-gamma. This T-cell immune response was sufficient to allow the Brown Norway rats to clear the bacteria at 7 days postinfection and overcome the down-regulation of the innate immunity by the acute DEP exposure.
PMCID: PMC1241439  PMID: 12676610
21.  Alteration of pulmonary immunity to Listeria monocytogenes by diesel exhaust particles (DEPs). I. Effects of DEPs on early pulmonary responses. 
Environmental Health Perspectives  2002;110(11):1105-1111.
It has been hypothesized that diesel exhaust particles (DEPs) aggravate pulmonary bacterial infection by both innate and cell-mediated immune mechanisms. To test this hypothesis, we investigated the effects of DEP exposure on the functions of alveolar macrophages (AMs) and lymphocytes from lung-draining lymph nodes using a rat Listeria monocytogenes infection model. In the present study, we focused on the effects of DEP exposure on AM functions, including phagocytic activity and secretion of proinflammatory cytokines. The Listeria infection model was characterized by an increase in neutrophil count, albumin content, and acellular lactate dehydrogenase activity in the bronchoalveolar lavage (BAL) fluid at 3 and 7 days postinfection. Short-term DEP inhalation (50 and 100 mg/m(3), 4 hr) resulted in a dose-dependent suppression of lung clearance of Listeria, with the highest bacteria count occurring at day 3. This aggravated bacterial infection was consistent with the inhibitory effect of DEPs on macrophage functions. DEPs suppressed phagocytosis and Listeria-induced basal secretion of interleukin-1ss (IL-1ss) and IL-12 by AMs in a dose-dependent manner. The amount of IL-1ss and IL-12 in the BAL fluid was also reduced by DEP exposure. In addition, DEPs decreased Listeria-induced lipopolysaccharide-stimulated secretion of tumor necrosis factor-alpha (TNF-alpha), IL-1ss, and IL-12 from AMs. These results suggest that DEPs retard bacterial clearance by inhibiting AM phagocytosis and weaken the innate immunity by inhibiting AM secretion of IL-1ss and TNF-alpha. DEPs may also suppress cell-mediated immunity by inhibiting AM secretion of IL-12, a key cytokine for the initiation of T helper type 1 cell development in Listeria infection.
PMCID: PMC1241066  PMID: 12417481

Results 1-22 (22)