PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Heat-related mortality risk model for climate change impact projection 
Objectives
We previously developed a model for projection of heat-related mortality attributable to climate change. The objective of this paper is to improve the fit and precision of and examine the robustness of the model.
Methods
We obtained daily data for number of deaths and maximum temperature from respective governmental organizations of Japan, Korea, Taiwan, the USA, and European countries. For future projection, we used the Bergen climate model 2 (BCM2) general circulation model, the Special Report on Emissions Scenarios (SRES) A1B socioeconomic scenario, and the mortality projection for the 65+-year-old age group developed by the World Health Organization (WHO). The heat-related excess mortality was defined as follows: The temperature–mortality relation forms a V-shaped curve, and the temperature at which mortality becomes lowest is called the optimum temperature (OT). The difference in mortality between the OT and a temperature beyond the OT is the excess mortality. To develop the model for projection, we used Japanese 47-prefecture data from 1972 to 2008. Using a distributed lag nonlinear model (two-dimensional nonparametric regression of temperature and its lag effect), we included the lag effect of temperature up to 15 days, and created a risk function curve on which the projection is based. As an example, we perform a future projection using the above-mentioned risk function. In the projection, we used 1961–1990 temperature as the baseline, and temperatures in the 2030s and 2050s were projected using the BCM2 global circulation model, SRES A1B scenario, and WHO-provided annual mortality. Here, we used the “counterfactual method” to evaluate the climate change impact; For example, baseline temperature and 2030 mortality were used to determine the baseline excess, and compared with the 2030 excess, for which we used 2030 temperature and 2030 mortality. In terms of adaptation to warmer climate, we assumed 0 % adaptation when the OT as of the current climate is used and 100 % adaptation when the OT as of the future climate is used. The midpoint of the OTs of the two types of adaptation was set to be the OT for 50 % adaptation.
Results
We calculated heat-related excess mortality for 2030 and 2050.
Conclusions
Our new model is considered to be better fit, and more precise and robust compared with the previous model.
doi:10.1007/s12199-013-0354-6
PMCID: PMC3890078  PMID: 23928946
Heat-related mortality; Excess deaths; Climate change; Projection; Adaptation
2.  Climate Change, Crop Yields, and Undernutrition: Development of a Model to Quantify the Impact of Climate Scenarios on Child Undernutrition 
Environmental Health Perspectives  2011;119(12):1817-1823.
Background: Global climate change is anticipated to reduce future cereal yields and threaten food security, thus potentially increasing the risk of undernutrition. The causation of undernutrition is complex, and there is a need to develop models that better quantify the potential impacts of climate change on population health.
Objectives: We developed a model for estimating future undernutrition that accounts for food and nonfood (socioeconomic) causes and can be linked to available regional scenario data. We estimated child stunting attributable to climate change in five regions in South Asia and sub-Saharan Africa (SSA) in 2050.
Methods: We used current national food availability and undernutrition data to parameterize and validate a global model, using a process-driven approach based on estimations of the physiological relationship between a lack of food and stunting. We estimated stunting in 2050 using published modeled national calorie availability under two climate scenarios and a reference scenario (no climate change).
Results: We estimated that climate change will lead to a relative increase in moderate stunting of 1–29% in 2050 compared with a future without climate change. Climate change will have a greater impact on rates of severe stunting, which we estimated will increase by 23% (central SSA) to 62% (South Asia).
Conclusions: Climate change is likely to impair future efforts to reduce child malnutrition in South Asia and SSA, even when economic growth is taken into account. Our model suggests that to reduce and prevent future undernutrition, it is necessary to both increase food access and improve socioeconomic conditions, as well as reduce greenhouse gas emissions.
doi:10.1289/ehp.1003311
PMCID: PMC3261974  PMID: 21844000
cereal crops; climate change; Monte Carlo simulation; quantitative model; undernourishment; undernutrition
3.  Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture 
Environmental Health Perspectives  2008;117(4):508-514.
Objective
Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts.
Data sources
In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems.
Data synthesis
We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks.
Conclusions
Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes.
doi:10.1289/ehp.0800084
PMCID: PMC2679592  PMID: 19440487
agriculture; climate change; environmental fate; health risks; nutrients; pathogens; pesticides
4.  An ecological time-series study of heat-related mortality in three European cities 
Background
Europe has experienced warmer summers in the past two decades and there is a need to describe the determinants of heat-related mortality to better inform public health activities during hot weather. We investigated the effect of high temperatures on daily mortality in three cities in Europe (Budapest, London, and Milan), using a standard approach.
Methods
An ecological time-series study of daily mortality was conducted in three cities using Poisson generalized linear models allowing for over-dispersion. Secular trends in mortality and seasonal confounding factors were controlled for using cubic smoothing splines of time. Heat exposure was modelled using average values of the temperature measure on the same day as death (lag 0) and the day before (lag 1). The heat effect was quantified assuming a linear increase in risk above a cut-point for each city. Socio-economic status indicators and census data were linked with mortality data for stratified analyses.
Results
The risk of heat-related death increased with age, and females had a greater risk than males in age groups ≥65 years in London and Milan. The relative risks of mortality (per °C) above the heat cut-point by gender and age were: (i) Male 1.10 (95%CI: 1.07–1.12) and Female 1.07 (1.05–1.10) for 75–84 years, (ii) M 1.10 (1.06–1.14) and F 1.08 (1.06–1.11) for ≥85 years in Budapest (≥24°C); (i) M 1.03 (1.01–1.04) and F 1.07 (1.05–1.09), (ii) M 1.05 (1.03–1.07) and F 1.08 (1.07–1.10) in London (≥20°C); and (i) M 1.08 (1.03–1.14) and F 1.20 (1.15–1.26), (ii) M 1.18 (1.11–1.26) and F 1.19 (1.15–1.24) in Milan (≥26°C). Mortality from external causes increases at higher temperatures as well as that from respiratory and cardiovascular disease. There was no clear evidence of effect modification by socio-economic status in either Budapest or London, but there was a seemingly higher risk for affluent non-elderly adults in Milan.
Conclusion
We found broadly consistent determinants (age, gender, and cause of death) of heat related mortality in three European cities using a standard approach. Our results are consistent with previous evidence for individual determinants, and also confirm the lack of a strong socio-economic gradient in heat health effects currently in Europe.
doi:10.1186/1476-069X-7-5
PMCID: PMC2266730  PMID: 18226218
5.  Case-control study of environmental and social factors influencing cryptosporidiosis 
European Journal of Epidemiology  2007;22(11):805-811.
We report on the first case-control study to investigate the role of wider environmental and socioeconomic factors upon human cryptosporidiosis. Using GIS the detailed locations of 3368 laboratory-confirmed cases were compared to the locations of an equal number of controls. All cases were genotyped enabling Cryptosporidium hominis and Cryptosporidium parvum to be examined separately. When all cryptosporidiosis cases were analyzed, several location variables were strongly associated with illness: areas with many higher socioeconomic status individuals, many individuals aged less than 4 years, areas with a high estimate of Cryptosporidium applied to land from manure, and areas with poorer water treatment. For C. hominis cases, the strongly significant risk factors were areas with many higher socioeconomic status individuals, areas with many young children and urban areas. Socioeconomic status and areas with many individuals aged less then 4 years had a greater impact for infection with C. hominis than for C. parvum. Policy implications are discussed.
doi:10.1007/s10654-007-9179-1
PMCID: PMC2071968  PMID: 17891460
Agriculture; Cryptosporidiosis; Cryptosporidium; Environment and public health; Social class; Water
6.  Cryptosporidiosis Decline after Regulation, England and Wales, 1989–2005 
Emerging Infectious Diseases  2007;13(4):623-625.
Since new drinking water regulations were implemented in England and Wales in 2000, cryptosporidiosis has been significantly reduced in the first half of the year but not in the second. We estimate an annual reduction in disease of 905 reported cases and ≈6,700 total cases.
doi:10.3201/eid1304.060890
PMCID: PMC2725962  PMID: 17553283
Cryptosporidiosis; Cryptosporidium; environment and public health; weather; regulation; dispatch
7.  An Approach for Assessing Human Health Vulnerability and Public Health Interventions to Adapt to Climate Change 
Environmental Health Perspectives  2006;114(12):1930-1934.
Assessments of the potential human health impacts of climate change are needed to inform the development of adaptation strategies, policies, and measures to lessen projected adverse impacts. We developed methods for country-level assessments to help policy makers make evidence-based decisions to increase resilience to current and future climates, and to provide information for national communications to the United Nations Framework Convention on Climate Change. The steps in an assessment should include the following: a) determine the scope of the assessment; b) describe the current distribution and burden of climate-sensitive health determinants and outcomes; c) identify and describe current strategies, policies, and measures designed to reduce the burden of climate-sensitive health determinants and outcomes; d) review the health implications of the potential impacts of climate variability and change in other sectors; e) estimate the future potential health impacts using scenarios of future changes in climate, socioeconomic, and other factors; f) synthesize the results; and g) identify additional adaptation policies and measures to reduce potential negative health impacts. Key issues for ensuring that an assessment is informative, timely, and useful include stakeholder involvement, an adequate management structure, and a communication strategy.
doi:10.1289/ehp.8430
PMCID: PMC1764166  PMID: 17185287
adaptation; climate change; climate variability; human health methods; vulnerability
8.  Heat waves and health protection 
BMJ : British Medical Journal  2006;333(7563):314-315.
PMCID: PMC1539058  PMID: 16902203
10.  Vulnerability to winter mortality in elderly people in Britain: population based study 
BMJ : British Medical Journal  2004;329(7467):647.
Objective To examine the determinants of vulnerability to winter mortality in elderly British people.
Design Population based cohort study (119 389 person years of follow up).
Setting 106 general practices from the Medical Research Council trial of assessment and management of older people in Britain.
Participants People aged ≥ 75 years.
Main outcome measures Mortality (10 123 deaths) determined by follow up through the Office for National Statistics.
Results Month to month variation accounted for 17% of annual all cause mortality, but only 7.8% after adjustment for temperature. The overall winter:non-winter rate ratio was 1.31 (95% confidence interval 1.26 to 1.36). There was little evidence that this ratio varied by geographical region, age, or any of the personal, socioeconomic, or clinical factors examined, with two exceptions: after adjustment for all major covariates the winter:non-winter ratio in women compared with men was 1.11 (1.00 to 1.23), and those with a self reported history of respiratory illness had a winter:non-winter ratio of 1.20 (1.08 to 1.34) times that of people without a history of respiratory illness. There was no evidence that socioeconomic deprivation or self reported financial worries were predictive of winter death.
Conclusion Except for female sex and pre-existing respiratory illness, there was little evidence for vulnerability to winter death associated with factors thought to lead to vulnerability. The lack of socioeconomic gradient suggests that policies aimed at relief of fuel poverty may need to be supplemented by additional measures to tackle the burden of excess winter deaths in elderly people.
doi:10.1136/bmj.38167.589907.55
PMCID: PMC517639  PMID: 15315961
11.  Hotspots in climate change and human health 
BMJ : British Medical Journal  2002;325(7372):1094-1098.
PMCID: PMC1124582  PMID: 12424173

Results 1-12 (12)