PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (45)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Prediction of Age-related Macular Degeneration in the General Population 
Ophthalmology  2013;120(12):2644-2655.
Purpose
Prediction models for age-related macular degeneration (AMD) based on case-control studies have a tendency to overestimate risks. The aim of this study is to develop a prediction model for late AMD based on data from population-based studies.
Design
Three population-based studies: the Rotterdam Study (RS), the Beaver Dam Eye Study (BDES), and the Blue Mountains Eye Study (BMES) from the Three Continent AMD Consortium (3CC).
Participants
People (n = 10106) with gradable fundus photographs, genotype data, and follow-up data without late AMD at baseline.
Methods
Features of AMD were graded on fundus photographs using the 3CC AMD severity scale. Associations with known genetic and environmental AMD risk factors were tested using Cox proportional hazard analysis. In the RS, the prediction of AMD was estimated for multivariate models by area under receiver operating characteristic curves (AUCs). The best model was validated in the BDES and BMES, and associations of variables were re-estimated in the pooled data set. Beta coefficients were used to construct a risk score, and risk of incident late AMD was calculated using Cox proportional hazard analysis. Cumulative incident risks were estimated using Kaplan–Meier product-limit analysis.
Main Outcome Measures
Incident late AMD determined per visit during a median follow-up period of 11.1 years with a total of 4 to 5 visits.
Results
Overall, 363 participants developed incident late AMD, 3378 participants developed early AMD, and 6365 participants remained free of any AMD. The highest AUC was achieved with a model including age, sex, 26 single nucleotide polymorphisms in AMD risk genes, smoking, body mass index, and baseline AMD phenotype. The AUC of this model was 0.88 in the RS, 0.85 in the BDES and BMES at validation, and 0.87 in the pooled analysis. Individuals with low-risk scores had a hazard ratio (HR) of 0.02 (95% confidence interval [CI], 0.01–0.04) to develop late AMD, and individuals with high-risk scores had an HR of 22.0 (95% CI, 15.2–31.8). Cumulative risk of incident late AMD ranged from virtually 0 to more than 65% for those with the highest risk scores.
Conclusions
Our prediction model is robust and distinguishes well between those who will develop late AMD and those who will not. Estimated risks were lower in these population-based studies than in previous case-control studies.
doi:10.1016/j.ophtha.2013.07.053
PMCID: PMC3986722  PMID: 24120328
2.  Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology 
Genetic epidemiology  2015;39(3):207-216.
Primary open-angle glaucoma is the most common optic neuropathy and an important cause of irreversible blindness worldwide. The optic nerve head or optic disc is divided in two parts: a central cup (without nerve fibers) surrounded by the neuroretinal rim (containing axons of the retinal ganglion cells). The International Glaucoma Genetics Consortium conducted a meta-analysis of genome-wide association studies consisting of 17,248 individuals of European ancestry and 6,841 individuals of Asian ancestry. The outcomes of the genome-wide association studies were disc area and cup area. These specific measurements describe optic nerve morphology in another way than the vertical cup-disc ratio, which is a clinically used measurement, and may shed light on new glaucoma mechanisms. We identified 10 new loci associated with disc area (CDC42BPA, F5, DIRC3, RARB, ABI3BP, DCAF4L2, ELP4, TMTC2, NR2F2, and HORMAD2) and another 10 new loci associated with cup area (DHRS3, TRIB2, EFEMP1, FLNB, FAM101, DDHD1, ASB7, KPNB1, BCAS3, and TRIOBP). The new genes participate in a number of pathways and future work is likely to identify more functions related to the pathogenesis of glaucoma.
doi:10.1002/gepi.21886
PMCID: PMC4480365  PMID: 25631615
GWAS; disc area; cup area; glaucoma
3.  Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT 
Purpose.
To evaluate the validity of a novel fully automated three-dimensional (3D) method capable of segmenting the choroid from two different optical coherence tomography scanners: swept-source OCT (SS-OCT) and spectral-domain OCT (SD-OCT).
Methods.
One hundred eight subjects were imaged using SS-OCT and SD-OCT. A 3D method was used to segment the choroid and quantify the choroidal thickness along each A-scan. The segmented choroidal posterior boundary was evaluated by comparing to manual segmentation. Differences were assessed to test the agreement between segmentation results of the same subject. Choroidal thickness was defined as the Euclidian distance between Bruch's membrane and the choroidal posterior boundary, and reproducibility was analyzed using automatically and manually determined choroidal thicknesses.
Results.
For SS-OCT, the average choroidal thickness of the entire 6- by 6-mm2 macular region was 219.5 μm (95% confidence interval [CI], 204.9–234.2 μm), and for SD-OCT it was 209.5 μm (95% CI, 197.9–221.0 μm). The agreement between automated and manual segmentations was high: Average relative difference was less than 5 μm, and average absolute difference was less than 15 μm. Reproducibility of choroidal thickness between repeated SS-OCT scans was high (coefficient of variation [CV] of 3.3%, intraclass correlation coefficient [ICC] of 0.98), and differences between SS-OCT and SD-OCT results were small (CV of 11.0%, ICC of 0.73).
Conclusions.
We have developed a fully automated 3D method for segmenting the choroid and quantifying choroidal thickness along each A-scan. The method yielded high validity. Our method can be used reliably to study local choroidal changes and may improve the diagnosis and management of patients with ocular diseases in which the choroid is affected.
The assessment of regional choroidal changes is of great interest. We show high validity for a fully automated and three-dimensional, highly reproducible method for segmentation and quantification of choroidal thickness of each A-scan in swept-source and spectral-domain OCT images.
doi:10.1167/iovs.14-15669
PMCID: PMC4451615  PMID: 26024104
choroid; automated segmentation; quantification; swept-source OCT; spectral-domain OCT
4.  The Rotterdam Study: 2016 objectives and design update 
The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in over 1200 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods.
doi:10.1007/s10654-015-0082-x
PMCID: PMC4579264  PMID: 26386597
Biomarkers; Cardiovascular diseases; Cohort study; Dermatological diseases; Endocrine diseases; Epidemiologic methods; Genetic epidemiology; Liver diseases; Neurological diseases; Oncology; Ophthalmic diseases; Otolaryngological diseases; Pharmacoepidemiology; Renal diseases; Psychiatric diseases; Respiratory diseases
5.  Lipids, Lipid Genes and Incident Age-Related Macular Degeneration: The Three Continent Age-Related Macular Degeneration Consortium 
American journal of ophthalmology  2014;158(3):513-524.e3.
Purpose
To describe associations of serum lipid levels and lipid pathway genes to the incidence of age-related macular degeneration (AMD).
Design
Meta-analysis.
Methods
Setting
Three population-based cohorts.
Population
6950 participants from the Beaver Dam Eye Study (BDES), Blue Mountains Eye Study (BMES) and Rotterdam Study (RS).
Observation Procedures
Participants were followed over 20 years and examined at 5-year intervals. Hazard ratios (HRs) associated with lipid levels per standard deviation above the mean or associated with each additional risk allele for each lipid pathway gene were calculated using random-effects inverse-weighted meta-analysis models, adjusting for known AMD risk factors.
Main Outcome Measures
Incidence of AMD.
Results
The average 5-year incidences of early AMD were 8.1%, 15.1%, and 13.0% in the BDES, BMES, and RS, respectively. Substantial heterogeneity in the effect of cholesterol and lipid pathway genes on the incidence and progression of AMD was evident when the data from the three studies were combined in meta-analysis. After correction for multiple comparisons, we did not find a statistically significant association between any of the cholesterol measures, statin use, or serum lipid genes and any of the AMD outcomes in the meta-analysis.
Conclusion
In a meta-analysis, there were no associations of cholesterol measures, history of statin use, or lipid pathway genes to the incidence and progression of AMD. These findings add to inconsistencies in earlier reports from our studies and others showing weak associations, no associations, or inverse associations of high-density lipoprotein cholesterol and total cholesterol with AMD.
doi:10.1016/j.ajo.2014.05.027
PMCID: PMC4138281  PMID: 24879949
6.  Characterizing the Impact of Off-Axis Scan Acquisition on the Reproducibility of Total Retinal Thickness Measurements in SDOCT Volumes 
Purpose
Off-axis acquisition of spectral domain optical coherence tomography (SDOCT) images has been shown to increase total retinal thickness (TRT) measurements. We analyzed the reproducibility of TRT measurements obtained using either the retinal pigment epithelium (RPE) or Bruch's membrane as reference surfaces in off-axis scans intentionally acquired through multiple pupil positions.
Methods
Five volumetric SDOCT scans of the macula were obtained from one eye of 25 normal subjects. One scan was acquired through a central pupil position, while subsequent scans were acquired through four peripheral pupil positions. The internal limiting membrane, the RPE, and Bruch's membrane were segmented using automated approaches. These volumes were registered to each other and the TRT was evaluated in 9 Early Treatment of Diabetic Retinopathy Study (ETDRS) regions. The reproducibility of the TRT obtained using the RPE was computed using the mean difference, coefficient of variation (CV), and the intraclass correlation coefficient (ICC), and compared to those obtained using Bruch's membrane as the reference surface. A secondary set of 1545 SDOCT scans was also analyzed in order to gauge the incidence of off-axis scans in a typical acquisition environment.
Results
The photoreceptor tips were dimmer in off-axis images, which affected the RPE segmentation. The overall mean TRT difference and CV obtained using the RPE were 7.04 ± 4.31 μm and 1.46%, respectively, whereas Bruch's membrane was 1.16 ± 1.00 μm and 0.32%, respectively. The ICCs at the subfoveal TRT were 0.982 and 0.999, respectively. Forty-one percent of the scans in the secondary set showed large tilts (> 6%).
Conclusions
RPE segmentation is confounded by its proximity to the interdigitation zone, a structure strongly affected by the optical Stiles-Crawford effect. Bruch's membrane, however, is unaffected leading to a more robust segmentation that is less dependent upon pupil position.
Translational Relevance
The way in which OCT images are acquired can independently affect the accuracy of automated retinal thickness measurements. Assessment of scan angle in a clinical dataset demonstrates that off-axis scans are common, which emphasizes the need for caution when relying on automated thickness parameters when this component of scan acquisition is not controlled for.
doi:10.1167/tvst.4.4.3
PMCID: PMC4525795  PMID: 26257998
total retinal thickness; off-axis scans; Stiles-Crawford effect; SDOCT
7.  Increasing Prevalence of Myopia in Europe and the Impact of Education 
Ophthalmology  2015;122(7):1489-1497.
Purpose
To investigate whether myopia is becoming more common across Europe and explore whether increasing education levels, an important environmental risk factor for myopia, might explain any temporal trend.
Design
Meta-analysis of population-based, cross-sectional studies from the European Eye Epidemiology (E3) Consortium.
Participants
The E3 Consortium is a collaborative network of epidemiological studies of common eye diseases in adults across Europe. Refractive data were available for 61 946 participants from 15 population-based studies performed between 1990 and 2013; participants had a range of median ages from 44 to 78 years.
Methods
Noncycloplegic refraction, year of birth, and highest educational level achieved were obtained for all participants. Myopia was defined as a mean spherical equivalent ≤−0.75 diopters. A random-effects meta-analysis of age-specific myopia prevalence was performed, with sequential analyses stratified by year of birth and highest level of educational attainment.
Main Outcome Measures
Variation in age-specific myopia prevalence for differing years of birth and educational level.
Results
There was a significant cohort effect for increasing myopia prevalence across more recent birth decades; age-standardized myopia prevalence increased from 17.8% (95% confidence interval [CI], 17.6–18.1) to 23.5% (95% CI, 23.2–23.7) in those born between 1910 and 1939 compared with 1940 and 1979 (P = 0.03). Education was significantly associated with myopia; for those completing primary, secondary, and higher education, the age-standardized prevalences were 25.4% (CI, 25.0–25.8), 29.1% (CI, 28.8–29.5), and 36.6% (CI, 36.1–37.2), respectively. Although more recent birth cohorts were more educated, this did not fully explain the cohort effect. Compared with the reference risk of participants born in the 1920s with only primary education, higher education or being born in the 1960s doubled the myopia prevalence ratio–2.43 (CI, 1.26–4.17) and 2.62 (CI, 1.31–5.00), respectively—whereas individuals born in the 1960s and completing higher education had approximately 4 times the reference risk: a prevalence ratio of 3.76 (CI, 2.21–6.57).
Conclusions
Myopia is becoming more common in Europe; although education levels have increased and are associated with myopia, higher education seems to be an additive rather than explanatory factor. Increasing levels of myopia carry significant clinical and economic implications, with more people at risk of the sight-threatening complications associated with high myopia.
doi:10.1016/j.ophtha.2015.03.018
PMCID: PMC4504030  PMID: 25983215
CI, confidence interval; D, diopters; E3, European Eye Epidemiology
8.  Population-Based Evaluation of Retinal Nerve Fiber Layer, Retinal Ganglion Cell Layer, and Inner Plexiform Layer as a Diagnostic Tool For Glaucoma 
Purpose.
We determined the glaucoma screening performance of regional optical coherence tomography (OCT) layer thickness measurements in the peripapillary and macular region, in a population-based setting.
Methods.
Subjects (n = 1224) in the Rotterdam Study underwent visual field testing (Humphrey Field Analyzer) and OCT of the macula and optic nerve head (Topcon 3-D OCT-1000). We determined the mean thicknesses of the retinal nerve fiber layer (RNFL), retinal ganglion cell layer (RGCL), and inner plexiform layer for regions-of-interest; thus, defining a series of OCT parameters, using the Iowa Reference Algorithms. Reference standard was the presence of glaucomatous visual field loss (GVFL); controls were subjects without GVFL, an intraocular pressure (IOP) of 21 mm Hg or less, and no positive family history for glaucoma. We calculated the area under the receiver operating characteristics curve (AUCs) and the sensitivity at 97.5% specificity for each parameter.
Results.
After excluding 23 subjects with an IOP > 21 mm Hg and 73 subjects with a positive family history for glaucoma, there were 1087 controls and 41 glaucoma cases. Mean RGCL thickness in the inferior half of the macular region showed the highest AUC (0.85; 95% confidence interval [CI] 0.77–0.92) and sensitivity (53.7%; 95% CI, 38.7–68.0%). The mean thickness of the peripapillary RNFL had an AUC of 0.77 (95% CI, 0.69–0.85) and a sensitivity of 24.4% (95% CI, 13.7–39.5%).
Conclusions.
Macular RGCL loss is at least as common as peripapillary RNFL abnormalities in population-based glaucoma cases. Screening for glaucoma using OCT-derived regional thickness identifies approximately half of those cases of glaucoma as diagnosed by perimetry.
In this population-based study, macular damage was the most common OCT finding in cases with glaucomatous visual field loss. Half of the cases were missed on OCT, reassuring the need of functional testing in glaucoma.
doi:10.1167/iovs.14-15506
PMCID: PMC4280090  PMID: 25414193
OCT; retinal thickness measurement; Iowa Reference Algorithms; population-based evaluation
9.  Comprehensive Analysis of the Candidate Genes CCL2, CCR2, and TLR4 in Age-Related Macular Degeneration 
PURPOSE
To determine whether variants in the candidate genes TLR4, CCL2, and CCR2 are associated with age-related macular degeneration (AMD).
METHODS
This study was performed in two independent Caucasian populations that included 357 cases and 173 controls from the Netherlands and 368 cases and 368 controls from the United States. Exon 4 of the TLR4 gene and the promoter, all exons, and flanking intronic regions of the CCL2 and CCR2 genes were analyzed in the Dutch study and common variants were validated in the U.S. study. Quantitative (q)PCR reactions were performed to evaluate expression of these genes in laser-dissected retinal pigment epithelium from 13 donor AMD and 13 control eyes.
RESULTS
Analysis of single nucleotide polymorphisms (SNPs) in the TLR4 gene did not show a significant association between D299G or T399I and AMD, nor did haplotypes containing these variants. Univariate analyses of the SNPs in CCL2 and CCR2 did not demonstrate an association with AMD. For CCR2, haplotype frequencies were not significantly different between cases and controls. For CCL2, one haplotype containing the minor allele of C35C was significantly associated with AMD (P = 0.03), but this did not sustain after adjustment for multiple testing (q = 0.30). Expression analysis did not demonstrate altered RNA expression of CCL2 and CCR2 in the retinal pigment epithelium from AMD eyes (for CCL2 P = 0.62; for CCR2 P = 0.97).
CONCLUSIONS
No evidence was found of an association between TLR4, CCR2, and CCL2 and AMD, which implies that the common genetic variation in these genes does not play a significant role in the etiology of AMD.
doi:10.1167/iovs.07-0656
PMCID: PMC2754756  PMID: 18172114
10.  Genome-wide analysis of multiethnic cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma 
Hysi, Pirro G | Cheng, Ching-Yu | Springelkamp, Henriët | Macgregor, Stuart | Bailey, Jessica N Cooke | Wojciechowski, Robert | Vitart, Veronique | Nag, Abhishek | Hewitt, Alex W | Höhn, René | Venturini, Cristina | Mirshahi, Alireza | Ramdas, Wishal D. | Thorleifsson, Gudmar | Vithana, Eranga | Khor, Chiea-Chuen | Stefansson, Arni B | Liao, Jiemin | Haines, Jonathan L | Amin, Najaf | Wang, Ya Xing | Wild, Philipp S | Ozel, Ayse B | Li, Jun Z | Fleck, Brian W | Zeller, Tanja | Staffieri, Sandra E | Teo, Yik-Ying | Cuellar-Partida, Gabriel | Luo, Xiaoyan | Allingham, R Rand | Richards, Julia E | Senft, Andrea | Karssen, Lennart C | Zheng, Yingfeng | Bellenguez, Céline | Xu, Liang | Iglesias, Adriana I | Wilson, James F | Kang, Jae H | van Leeuwen, Elisabeth M | Jonsson, Vesteinn | Thorsteinsdottir, Unnur | Despriet, Dominiek D.G. | Ennis, Sarah | Moroi, Sayoko E | Martin, Nicholas G | Jansonius, Nomdo M | Yazar, Seyhan | Tai, E-Shyong | Amouyel, Philippe | Kirwan, James | van Koolwijk, Leonieke M.E. | Hauser, Michael A | Jonasson, Fridbert | Leo, Paul | Loomis, Stephanie J | Fogarty, Rhys | Rivadeneira, Fernando | Kearns, Lisa | Lackner, Karl J | de Jong, Paulus T.V.M. | Simpson, Claire L | Pennell, Craig E | Oostra, Ben A | Uitterlinden, André G | Saw, Seang-Mei | Lotery, Andrew J | Bailey-Wilson, Joan E | Hofman, Albert | Vingerling, Johannes R | Maubaret, Cécilia | Pfeiffer, Norbert | Wolfs, Roger C.W. | Lemij, Hans G | Young, Terri L | Pasquale, Louis R | Delcourt, Cécile | Spector, Timothy D | Klaver, Caroline C.W. | Small, Kerrin S | Burdon, Kathryn P | Stefansson, Kari | Wong, Tien-Yin | Viswanathan, Ananth | Mackey, David A | Craig, Jamie E | Wiggs, Janey L | van Duijn, Cornelia M | Hammond, Christopher J | Aung, Tin
Nature genetics  2014;46(10):1126-1130.
Elevated intraocular pressure (IOP) is an important risk factor in developing glaucoma and IOP variability may herald glaucomatous development or progression. We report the results of a genome-wide association study meta-analysis of 18 population cohorts from the International Glaucoma Genetics Consortium (IGGC), comprising 35,296 multiethnic participants for IOP. We confirm genetic association of known loci for IOP and primary open angle glaucoma (POAG) and identify four new IOP loci located on chromosome 3q25.31 within the FNDC3B gene (p=4.19×10−08 for rs6445055), two on chromosome 9 (p=2.80×10−11 for rs2472493 near ABCA1 and p=6.39×10−11 for rs8176693 within ABO) and one on chromosome 11p11.2 (best p=1.04×10−11 for rs747782). Separate meta-analyses of four independent POAG cohorts, totaling 4,284 cases and 95,560 controls, show that three of these IOP loci are also associated with POAG.
doi:10.1038/ng.3087
PMCID: PMC4177225  PMID: 25173106
11.  Prevalence of refractive error in Europe: the European Eye Epidemiology (E3) Consortium 
European Journal of Epidemiology  2015;30(4):305-315.
To estimate the prevalence of refractive error in adults across Europe. Refractive data (mean spherical equivalent) collected between 1990 and 2013 from fifteen population-based cohort and cross-sectional studies of the European Eye Epidemiology (E3) Consortium were combined in a random effects meta-analysis stratified by 5-year age intervals and gender. Participants were excluded if they were identified as having had cataract surgery, retinal detachment, refractive surgery or other factors that might influence refraction. Estimates of refractive error prevalence were obtained including the following classifications: myopia ≤−0.75 diopters (D), high myopia ≤−6D, hyperopia ≥1D and astigmatism ≥1D. Meta-analysis of refractive error was performed for 61,946 individuals from fifteen studies with median age ranging from 44 to 81 and minimal ethnic variation (98 % European ancestry). The age-standardised prevalences (using the 2010 European Standard Population, limited to those ≥25 and <90 years old) were: myopia 30.6 % [95 % confidence interval (CI) 30.4–30.9], high myopia 2.7 % (95 % CI 2.69–2.73), hyperopia 25.2 % (95 % CI 25.0–25.4) and astigmatism 23.9 % (95 % CI 23.7–24.1). Age-specific estimates revealed a high prevalence of myopia in younger participants [47.2 % (CI 41.8–52.5) in 25–29 years-olds]. Refractive error affects just over a half of European adults. The greatest burden of refractive error is due to myopia, with high prevalence rates in young adults. Using the 2010 European population estimates, we estimate there are 227.2 million people with myopia across Europe.
Electronic supplementary material
The online version of this article (doi:10.1007/s10654-015-0010-0) contains supplementary material, which is available to authorized users.
doi:10.1007/s10654-015-0010-0
PMCID: PMC4385146  PMID: 25784363
Refractive error; Myopia; Epidemiology; Prevalence; Consortium
12.  Screening of a large cohort of Leber congenital amaurosis and retinitis pigmentosa patients identifies novel LCA5 mutations and new genotype-phenotype correlations 
Human mutation  2013;34(11):1537-1546.
To investigate the prevalence of sequence variants in LCA5 in patients with Leber congenital amaurosis (LCA), early onset rod-cone dystrophy (EORD) and autosomal recessive retinitis pigmentosa (RP), to delineate the ocular phenotypes, and to provide an overview of all published LCA5 variants in an online database._Patients underwent standard ophthalmic evaluations after providing informed consent. In selected patients, optical coherence tomography (OCT) and fundus autofluorescence imaging was possible. DNA samples from 797 unrelated patients with LCA and 211 with the various types of RP were screened by Sanger sequence analysis of all LCA5 exons and intron/exon junctions. Some LCA patients were pre-screened by APEX technology or selected based on homozygosity mapping. In silico analyses were performed to assess the pathogenicity of the variants. Segregation analysis was performed where possible. Published and novel LCA5 variants were collected, amended for their correct nomenclature, and listed in a Leiden Open Variation Database (LOVD). Sequence analysis identified 18 new probands with 19 different LCA5 variants. Seventeen of the 19 LCA5 variants were novel. Except for two missense variants and one splice site variant, all variants were protein-truncating mutations. Most patients expressed a severe phenotype, typical of LCA. However, some LCA subjects had better vision and intact inner segment/outer segment (IS/OS) junctions on OCT imaging. In two families with LCA5 variants, the phenotype was more compatible with EORD with affected individuals displaying preserved islands of RPE. One of these milder families harbored a homozygous splice site mutation, a second family was found to have a combination of a stop mutation and a missense mutation. This is the largest LCA5 study to date. We sequenced 1008 patients (797 with LCA, 211 with arRP) and identified 18 probands with LCA5 mutations. Mutations in LCA5 are a rare cause of childhood retinal dystrophy accounting for ~2% of disease in this cohort and the majority of LCA5 mutations are likely null. The LCA5 protein truncating mutations are predominantly associated with LCA. However, in two families with the milder EORD, the LCA5 gene analysis revealed a homozygous splice site mutation in one and a stop mutation in combination with a missense mutation in a second family, suggesting that this milder phenotype is due to residual function of lebercilin and expanding the currently known phenotypic spectrum to include the milder early onset RP. Some patients have remaining foveal cone structures (intact IS/OS junctions on OCT imaging) and remaining visual acuities, which may bode well for upcoming treatment trials.
doi:10.1002/humu.22398
PMCID: PMC4337959  PMID: 23946133
LCA; RP; retinal dystrophy; blindness; LCA5; lebercilin
13.  The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice 
Molecular Vision  2015;21:461-476.
Purpose
To determine the efficacy of multiple versions of a commercially available arrayed primer extension (APEX) microarray chip for autosomal recessive retinitis pigmentosa (arRP).
Methods
We included 250 probands suspected of arRP who were genetically analyzed with the APEX microarray between January 2008 and November 2013. The mode of inheritance had to be autosomal recessive according to the pedigree (including isolated cases). If the microarray identified a heterozygous mutation, we performed Sanger sequencing of exons and exon–intron boundaries of that specific gene. The efficacy of this microarray chip with the additional Sanger sequencing approach was determined by the percentage of patients that received a molecular diagnosis. We also collected data from genetic tests other than the APEX analysis for arRP to provide a detailed description of the molecular diagnoses in our study cohort.
Results
The APEX microarray chip for arRP identified the molecular diagnosis in 21 (8.5%) of the patients in our cohort. Additional Sanger sequencing yielded a second mutation in 17 patients (6.8%), thereby establishing the molecular diagnosis. In total, 38 patients (15.2%) received a molecular diagnosis after analysis using the microarray and additional Sanger sequencing approach. Further genetic analyses after a negative result of the arRP microarray (n = 107) resulted in a molecular diagnosis of arRP (n = 23), autosomal dominant RP (n = 5), X-linked RP (n = 2), and choroideremia (n = 1).
Conclusions
The efficacy of the commercially available APEX microarray chips for arRP appears to be low, most likely caused by the limitations of this technique and the genetic and allelic heterogeneity of RP. Diagnostic yields up to 40% have been reported for next-generation sequencing (NGS) techniques that, as expected, thereby outperform targeted APEX analysis.
PMCID: PMC4415583  PMID: 25999674
14.  Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process 
Springelkamp, Henriët. | Höhn, René | Mishra, Aniket | Hysi, Pirro G. | Khor, Chiea-Chuen | Loomis, Stephanie J. | Bailey, Jessica N. Cooke | Gibson, Jane | Thorleifsson, Gudmar | Janssen, Sarah F. | Luo, Xiaoyan | Ramdas, Wishal D. | Vithana, Eranga | Nongpiur, Monisha E. | Montgomery, Grant W. | Xu, Liang | Mountain, Jenny E. | Gharahkhani, Puya | Lu, Yi | Amin, Najaf | Karssen, Lennart C. | Sim, Kar-Seng | van Leeuwen, Elisabeth M. | Iglesias, Adriana I. | Verhoeven, Virginie J. M. | Hauser, Michael A. | Loon, Seng-Chee | Despriet, Dominiek D. G. | Nag, Abhishek | Venturini, Cristina | Sanfilippo, Paul G. | Schillert, Arne | Kang, Jae H. | Landers, John | Jonasson, Fridbert | Cree, Angela J. | van Koolwijk, Leonieke M. E. | Rivadeneira, Fernando | Souzeau, Emmanuelle | Jonsson, Vesteinn | Menon, Geeta | Weinreb, Robert N. | de Jong, Paulus T. V. M. | Oostra, Ben A. | Uitterlinden, André G. | Hofman, Albert | Ennis, Sarah | Thorsteinsdottir, Unnur | Burdon, Kathryn P. | Spector, Timothy D. | Mirshahi, Alireza | Saw, Seang-Mei | Vingerling, Johannes R. | Teo, Yik-Ying | Haines, Jonathan L. | Wolfs, Roger C. W. | Lemij, Hans G. | Tai, E-Shyong | Jansonius, Nomdo M. | Jonas, Jost B. | Cheng, Ching-Yu | Aung, Tin | Viswanathan, Ananth C. | Klaver, Caroline C. W. | Craig, Jamie E. | Macgregor, Stuart | Mackey, David A. | Lotery, Andrew J. | Stefansson, Kari | Bergen, Arthur A. B. | Young, Terri L. | Wiggs, Janey L. | Pfeiffer, Norbert | Wong, Tien-Yin | Pasquale, Louis R. | Hewitt, Alex W. | van Duijn, Cornelia M. | Hammond, Christopher J.
Nature Communications  2014;5:4883.
Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irreversible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis of genome-wide association studies of vertical cup-disc ratio (VCDR), an important disease-related optic nerve parameter. In 21,094 individuals of European ancestry and 6,784 individuals of Asian ancestry, we identify 10 new loci associated with variation in VCDR. In a separate risk-score analysis of five case-control studies, Caucasians in the highest quintile have a 2.5-fold increased risk of primary open-angle glaucoma as compared with those in the lowest quintile. This study has more than doubled the known loci associated with optic disc cupping and will allow greater understanding of mechanisms involved in this common blinding condition.
Glaucoma is the most common cause of irreversible blindness worldwide. Here, the authors carry out a large meta-analysis of genetic data from individuals of European and Asian ancestry and identify 10 new loci associated with vertical cup-disc ratio, a key factor in the clinical assessment of patients with glaucoma.
doi:10.1038/ncomms5883
PMCID: PMC4199103  PMID: 25241763
15.  Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci 
PLoS ONE  2014;9(9):e107110.
Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10−8), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10−11) and 8q12 (minimum p value 1.82×10−11) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. “Replication-level” association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive error across the distribution.
doi:10.1371/journal.pone.0107110
PMCID: PMC4169415  PMID: 25233373
16.  A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25 
Nature genetics  2010;42(10):902-905.
Myopia and hyperopia are at opposite ends of the continuum of refraction, the measure of the eye’s ability to focus light, which is an important cause of visual impairment (when aberrant) and is a highly heritable trait. We conducted a genome-wide association study for refractive error in 4,270 individuals from the TwinsUK cohort. We identified SNPs on 15q25 associated with refractive error (rs8027411, P = 7.91 × 10−8). We replicated this association in six adult cohorts of European ancestry with a combined 13,414 individuals (combined P = 2.07 × 10−9). This locus overlaps the transcription initiation site of RASGRF1, which is highly expressed in neurons and retina and has previously been implicated in retinal function and memory consolidation. Rasgrf1−/− mice show a heavier average crystalline lens (P = 0.001). The identification of a susceptibility locus for refractive error on 15q25 will be important in characterizing the molecular mechanism responsible for the most common cause of visual impairment.
doi:10.1038/ng.664
PMCID: PMC4115148  PMID: 20835236
17.  A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14 
Nature genetics  2010;42(10):897-901.
Refractive errors are the most common ocular disorders worldwide and may lead to blindness. Although this trait is highly heritable, identification of susceptibility genes has been challenging. We conducted a genome-wide association study for refractive error in 5,328 individuals from a Dutch population-based study with replication in four independent cohorts (combined 10,280 individuals in the replication stage). We identified a significant association at chromosome 15q14 (rs634990, P = 2.21 × 10−14). The odds ratio of myopia compared to hyperopia for the minor allele (minor allele frequency = 0.47) was 1.41 (95% CI 1.16–1.70) for individuals heterozygous for the allele and 1.83 (95% CI 1.42–2.36) for individuals homozygous for the allele. The associated locus is near two genes that are expressed in the retina, GJD2 and ACTC1, and appears to harbor regulatory elements which may influence transcription of these genes. Our data suggest that common variants at 15q14 influence susceptibility for refractive errors in the general population.
doi:10.1038/ng.663
PMCID: PMC4115149  PMID: 20835239
18.  Meta-analysis of genome-wide association studies in five cohorts reveals common variants in RBFOX1, a regulator of tissue-specific splicing, associated with refractive error 
Human Molecular Genetics  2013;22(13):2754-2764.
Visual refractive errors (REs) are complex genetic traits with a largely unknown etiology. To date, genome-wide association studies (GWASs) of moderate size have identified several novel risk markers for RE, measured here as mean spherical equivalent (MSE). We performed a GWAS using a total of 7280 samples from five cohorts: the Age-Related Eye Disease Study (AREDS); the KORA study (‘Cooperative Health Research in the Region of Augsburg’); the Framingham Eye Study (FES); the Ogliastra Genetic Park-Talana (OGP-Talana) Study and the Multiethnic Study of Atherosclerosis (MESA). Genotyping was performed on Illumina and Affymetrix platforms with additional markers imputed to the HapMap II reference panel. We identified a new genome-wide significant locus on chromosome 16 (rs10500355, P = 3.9 × 10−9) in a combined discovery and replication set (26 953 samples). This single nucleotide polymorphism (SNP) is located within the RBFOX1 gene which is a neuron-specific splicing factor regulating a wide range of alternative splicing events implicated in neuronal development and maturation, including transcription factors, other splicing factors and synaptic proteins.
doi:10.1093/hmg/ddt116
PMCID: PMC3674806  PMID: 23474815
19.  High Bone Mineral Density and Fracture Risk in Type 2 Diabetes as Skeletal Complications of Inadequate Glucose Control 
Diabetes Care  2013;36(6):1619-1628.
OBJECTIVE
Individuals with type 2 diabetes have increased fracture risk despite higher bone mineral density (BMD). Our aim was to examine the influence of glucose control on skeletal complications.
RESEARCH DESIGN AND METHODS
Data of 4,135 participants of the Rotterdam Study, a prospective population-based cohort, were available (mean follow-up 12.2 years). At baseline, 420 participants with type 2 diabetes were classified by glucose control (according to HbA1c calculated from fructosamine), resulting in three comparison groups: adequately controlled diabetes (ACD; n = 203; HbA1c <7.5%), inadequately controlled diabetes (ICD; n = 217; HbA1c ≥7.5%), and no diabetes (n = 3,715). Models adjusted for sex, age, height, and weight (and femoral neck BMD) were used to test for differences in bone parameters and fracture risk (hazard ratio [HR] [95% CI]).
RESULTS
The ICD group had 1.1–5.6% higher BMD, 4.6–5.6% thicker cortices, and −1.2 to −1.8% narrower femoral necks than ACD and ND, respectively. Participants with ICD had 47–62% higher fracture risk than individuals without diabetes (HR 1.47 [1.12–1.92]) and ACD (1.62 [1.09–2.40]), whereas those with ACD had a risk similar to those without diabetes (0.91 [0.67–1.23]).
CONCLUSIONS
Poor glycemic control in type 2 diabetes is associated with fracture risk, high BMD, and thicker femoral cortices in narrower bones. We postulate that fragility in apparently “strong” bones in ICD can result from microcrack accumulation and/or cortical porosity, reflecting impaired bone repair.
doi:10.2337/dc12-1188
PMCID: PMC3661786  PMID: 23315602
20.  Identification of a Rare Coding Variant in Complement 3 Associated with Age-related Macular Degeneration 
Nature genetics  2013;45(11):1375-1379.
Macular degeneration is a common cause of blindness in the elderly. To identify rare coding variants associated with a large increase in risk of age-related macular degeneration (AMD), we sequenced 2,335 cases and 789 controls in 10 candidate loci (57 genes). To increase power, we augmented our control set with ancestry-matched exome sequenced controls. An analysis of coding variation in 2,268 AMD cases and 2,268 ancestry matched controls revealed two large-effect rare variants; previously described R1210C in the CFH gene (fcase = 0.51%, fcontrol = 0.02%, OR = 23.11), and newly identified K155Q in the C3 gene (fcase = 1.06%, fcontrol = 0.39%, OR = 2.68). The variants suggest decreased inhibition of C3 by Factor H, resulting in increased activation of the alternative complement pathway, as a key component of disease biology.
doi:10.1038/ng.2758
PMCID: PMC3812337  PMID: 24036949
21.  Analysis of Rare Variants in the C3 Gene in Patients with Age-Related Macular Degeneration 
PLoS ONE  2014;9(4):e94165.
Age-related macular degeneration (AMD) is a progressive retinal disorder affecting over 33 million people worldwide. Genome-wide association studies (GWASs) for AMD identified common variants at 19 loci accounting for 15–65% of the heritability and it has been hypothesized that the missing heritability may be attributed to rare variants with large effect sizes. Common variants in the complement component 3 (C3) gene have been associated with AMD and recently a rare C3 variant (Lys155Gln) was identified which exerts a large effect on AMD susceptibility independent of the common variants. To explore whether additional rare variants in the C3 gene are associated with AMD, we sequenced all coding exons in 84 unrelated AMD cases. Subsequently, we genotyped all identified variants in 1474 AMD cases and 2258 controls. Additionally, because of the known genetic overlap between AMD and atypical hemolytic uremic syndrome (aHUS), we genotyped two recurrent aHUS-associated C3 mutations in the entire cohort. Overall, we identified three rare variants (Lys65Gln (P = 0.04), Arg735Trp (OR = 17.4, 95% CI = 2.2–136; P = 0.0003), and Ser1619Arg (OR = 5.2, 95% CI = 1.0–25; P = 0.05) at the C3 locus that are associated with AMD in our EUGENDA cohort. However, the Arg735Trp and Ser1619Arg variants were not found to be associated with AMD in the Rotterdam Study. The Lys65Gln variant was only identified in patients from Nijmegen, the Netherlands, and thus may represent a region-specific AMD risk variant.
doi:10.1371/journal.pone.0094165
PMCID: PMC3988049  PMID: 24736606
22.  Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus 
Lu, Yi | Vitart, Veronique | Burdon, Kathryn P | Khor, Chiea Chuen | Bykhovskaya, Yelena | Mirshahi, Alireza | Hewitt, Alex W | Koehn, Demelza | Hysi, Pirro G | Ramdas, Wishal D | Zeller, Tanja | Vithana, Eranga N | Cornes, Belinda K | Tay, Wan-Ting | Tai, E Shyong | Cheng, Ching-Yu | Liu, Jianjun | Foo, Jia-Nee | Saw, Seang Mei | Thorleifsson, Gudmar | Stefansson, Kari | Dimasi, David P | Mills, Richard A | Mountain, Jenny | Ang, Wei | Hoehn, René | Verhoeven, Virginie J M | Grus, Franz | Wolfs, Roger | Castagne, Raphaële | Lackner, Karl J | Springelkamp, Henriët | Yang, Jian | Jonasson, Fridbert | Leung, Dexter Y L | Chen, Li J | Tham, Clement C Y | Rudan, Igor | Vatavuk, Zoran | Hayward, Caroline | Gibson, Jane | Cree, Angela J | MacLeod, Alex | Ennis, Sarah | Polasek, Ozren | Campbell, Harry | Wilson, James F | Viswanathan, Ananth C | Fleck, Brian | Li, Xiaohui | Siscovick, David | Taylor, Kent D | Rotter, Jerome I | Yazar, Seyhan | Ulmer, Megan | Li, Jun | Yaspan, Brian L | Ozel, Ayse B | Richards, Julia E | Moroi, Sayoko E | Haines, Jonathan L | Kang, Jae H | Pasquale, Louis R | Allingham, R Rand | Ashley-Koch, Allison | Mitchell, Paul | Wang, Jie Jin | Wright, Alan F | Pennell, Craig | Spector, Timothy D | Young, Terri L | Klaver, Caroline C W | Martin, Nicholas G | Montgomery, Grant W | Anderson, Michael G | Aung, Tin | Willoughby, Colin E | Wiggs, Janey L | Pang, Chi P | Thorsteinsdottir, Unnur | Lotery, Andrew J | Hammond, Christopher J | van Duijn, Cornelia M | Hauser, Michael A | Rabinowitz, Yaron S | Pfeiffer, Norbert | Mackey, David A | Craig, Jamie E | Macgregor, Stuart | Wong, Tien Y
Nature genetics  2013;45(2):155-163.
Central corneal thickness (CCT) is associated with eye conditions including keratoconus and glaucoma. We performed a meta-analysis on >20,000 individuals in European and Asian populations that identified 16 new loci associated with CCT at genome-wide significance (P < 5 × 10−8). We further showed that 2 CCT-associated loci, FOXO1 and FNDC3B, conferred relatively large risks for keratoconus in 2 cohorts with 874 cases and 6,085 controls (rs2721051 near FOXO1 had odds ratio (OR) = 1.62, 95% confidence interval (CI) = 1.4–1.88, P = 2.7 × 10−10, and rs4894535 in FNDC3B had OR = 1.47, 95% CI = 1.29–1.68, P = 4.9 × 10−9). FNDC3B was also associated with primary open-angle glaucoma (P = 5.6 × 10−4; tested in 3 cohorts with 2,979 cases and 7,399 controls). Further analyses implicate the collagen and extracellular matrix pathways in the regulation of CCT.
doi:10.1038/ng.2506
PMCID: PMC3720123  PMID: 23291589
23.  Heritability and Genome-wide Association Study To Assess Genetic Differences Between Advanced Age-Related Macular Degeneration Subtypes  
Ophthalmology  2012;119(9):1874-1885.
Purpose
To investigate whether the two subtypes of advanced age-related macular degeneration (AMD), choroidal neovascularization (CNV) and geographic atrophy (GA), segregate separately in families and to identify which genetic variants are associated with these two subtypes.
Design
Sibling correlation study and genome-wide association study (GWAS)
Participants
For the sibling correlation study, we included 209 sibling pairs with advanced AMD. For the GWAS, we included 2594 participants with advanced AMD subtypes and 4134 controls. Replication cohorts included 5383 advanced AMD participants and 15,240 controls.
Methods
Participants had AMD grade assigned based on fundus photography and/or examination. To determine heritability of advanced AMD subtypes, we performed a sibling correlation study. For the GWAS, we conducted genome-wide genotyping and imputed 6,036,699 single nucleotide polymorphism (SNPs). We then analyzed SNPs with a generalized linear model controlling for genotyping platform and genetic ancestry. The most significant associations were evaluated in independent cohorts.
Main Outcome Measures
Concordance of advanced AMD subtypes in sibling pairs and associations between SNPs with GA and CNV advanced AMD subtypes.
Results
The difference between the observed and expected proportion of siblings concordant for the same subtype of advanced AMD was different to a statistically significant degree (P=4.2 x 10−5) meaning that siblings of probands with CNV or GA are more likely to develop CNV or GA, respectively. In the analysis comparing participants with CNV to those with GA, we observed a statistically significant association at the ARMS2/HTRA1 locus [rs10490924, odds ratio (OR)=1.47, P=4.3 ×10−9] which was confirmed in the replication samples (OR=1.38, P=7.4 x 10−14 for combined discovery and replication analysis).
Conclusions
Whether a patient with AMD develops CNV vs. GA is determined in part by genetic variation. In this large GWAS meta-analysis and replication analysis, the ARMS2/HTRA1 locus confers increased risk for both advanced AMD subtypes but imparts greater risk for CNV than for GA. This locus explains a small proportion of the excess sibling correlation for advanced AMD subtype. Other loci were detected with suggestive associations which differ for advanced AMD subtypes and deserve follow-up in additional studies.
doi:10.1016/j.ophtha.2012.03.014
PMCID: PMC3899891  PMID: 22705344
24.  Education influences the role of genetics in myopia 
European Journal of Epidemiology  2013;28(12):973-980.
Myopia is a complex inherited ocular trait resulting from an interplay of genes and environmental factors, most of which are currently unknown. In two independent population-based cohorts consisting of 5,256 and 3,938 individuals from European descent, we tested for biological interaction between genetic predisposition and level of education on the risk of myopia. A genetic risk score was calculated based on 26 myopia-associated single nucleotide polymorphisms recently discovered by the Consortium for Refractive Error and Myopia. Educational level was obtained by questionnaire and categorized into primary, intermediate, and higher education. Refractive error was measured during a standardized ophthalmological examination. Biological interaction was assessed by calculation of the synergy index. Individuals at high genetic risk in combination with university-level education had a remarkably high risk of myopia (OR 51.3; 95 % CI 18.5–142.6), while those at high genetic risk with only primary schooling were at a much lower increased risk of myopia (OR 7.2, 95 % CI 3.1–17.0). The combined effect of genetic predisposition and education on the risk of myopia was far higher than the sum of these two effects (synergy index 4.2, 95 % CI 1.9–9.5). This epidemiological study provides evidence of a gene-environment interaction in which an individual’s genetic risk of myopia is significantly affected by his or her educational level.
Electronic supplementary material
The online version of this article (doi:10.1007/s10654-013-9856-1) contains supplementary material, which is available to authorized users.
doi:10.1007/s10654-013-9856-1
PMCID: PMC3898347  PMID: 24142238
Myopia; Refractive error; GxE; Gene-environment; Environmental factors
25.  Genome-wide meta-analyses of multi-ethnic cohorts identify multiple new susceptibility loci for refractive error and myopia 
Verhoeven, Virginie J.M. | Hysi, Pirro G. | Wojciechowski, Robert | Fan, Qiao | Guggenheim, Jeremy A. | Höhn, René | MacGregor, Stuart | Hewitt, Alex W. | Nag, Abhishek | Cheng, Ching-Yu | Yonova-Doing, Ekaterina | Zhou, Xin | Ikram, M. Kamran | Buitendijk, Gabriëlle H.S. | McMahon, George | Kemp, John P. | St. Pourcain, Beate | Simpson, Claire L. | Mäkelä, Kari-Matti | Lehtimäki, Terho | Kähönen, Mika | Paterson, Andrew D. | Hosseini, S. Mohsen | Wong, Hoi Suen | Xu, Liang | Jonas, Jost B. | Pärssinen, Olavi | Wedenoja, Juho | Yip, Shea Ping | Ho, Daniel W. H. | Pang, Chi Pui | Chen, Li Jia | Burdon, Kathryn P. | Craig, Jamie E. | Klein, Barbara E. K. | Klein, Ronald | Haller, Toomas | Metspalu, Andres | Khor, Chiea-Chuen | Tai, E-Shyong | Aung, Tin | Vithana, Eranga | Tay, Wan-Ting | Barathi, Veluchamy A. | Chen, Peng | Li, Ruoying | Liao, Jiemin | Zheng, Yingfeng | Ong, Rick T. | Döring, Angela | Evans, David M. | Timpson, Nicholas J. | Verkerk, Annemieke J.M.H. | Meitinger, Thomas | Raitakari, Olli | Hawthorne, Felicia | Spector, Tim D. | Karssen, Lennart C. | Pirastu, Mario | Murgia, Federico | Ang, Wei | Mishra, Aniket | Montgomery, Grant W. | Pennell, Craig E. | Cumberland, Phillippa M. | Cotlarciuc, Ioana | Mitchell, Paul | Wang, Jie Jin | Schache, Maria | Janmahasathian, Sarayut | Igo, Robert P. | Lass, Jonathan H. | Chew, Emily | Iyengar, Sudha K. | Gorgels, Theo G.M.F. | Rudan, Igor | Hayward, Caroline | Wright, Alan F. | Polasek, Ozren | Vatavuk, Zoran | Wilson, James F. | Fleck, Brian | Zeller, Tanja | Mirshahi, Alireza | Müller, Christian | Uitterlinden, Andre’ G. | Rivadeneira, Fernando | Vingerling, Johannes R. | Hofman, Albert | Oostra, Ben A. | Amin, Najaf | Bergen, Arthur A.B. | Teo, Yik-Ying | Rahi, Jugnoo S. | Vitart, Veronique | Williams, Cathy | Baird, Paul N. | Wong, Tien-Yin | Oexle, Konrad | Pfeiffer, Norbert | Mackey, David A. | Young, Terri L. | van Duijn, Cornelia M. | Saw, Seang-Mei | Wilson, Joan E. Bailey | Stambolian, Dwight | Klaver, Caroline C. | Hammond, Christopher J.
Nature genetics  2013;45(3):314-318.
Refractive error is the most common eye disorder worldwide, and a prominent cause of blindness. Myopia affects over 30% of Western populations, and up to 80% of Asians. The CREAM consortium conducted genome-wide meta-analyses including 37,382 individuals from 27 studies of European ancestry, and 8,376 from 5 Asian cohorts. We identified 16 new loci for refractive error in subjects of European ancestry, of which 8 were shared with Asians. Combined analysis revealed 8 additional loci. The new loci include genes with functions in neurotransmission (GRIA4), ion channels (KCNQ5), retinoic acid metabolism (RDH5), extracellular matrix remodeling (LAMA2, BMP2), and eye development (SIX6, PRSS56). We also confirmed previously reported associations with GJD2 and RASGRF1. Risk score analysis using associated SNPs showed a tenfold increased risk of myopia for subjects with the highest genetic load. Our results, accumulated across independent multi-ethnic studies, considerably advance understanding of mechanisms involved in refractive error and myopia.
doi:10.1038/ng.2554
PMCID: PMC3740568  PMID: 23396134

Results 1-25 (45)