Search tips
Search criteria

Results 1-15 (15)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Three Different Cone Opsin Gene Array Mutational Mechanisms with Genotype–Phenotype Correlation and Functional Investigation of Cone Opsin Variants 
Human Mutation  2014;35(11):1354-1362.
Mutations in the OPN1LW (L-) and OPN1MW (M-)cone opsin genes underlie a spectrum of cone photoreceptor defects from stationary loss of color vision to progressive retinal degeneration. Genotypes of 22 families with a range of cone disorders were grouped into three classes: deletions of the locus control region (LCR); missense mutation (p.Cys203Arg) in an L-/M-hybrid gene; and exon 3 single-nucleotide polymorphism (SNP) interchange haplotypes in an otherwise normal gene array. Moderate-to-high myopia was observed in all mutation categories. Individuals with LCR deletions or p.Cys203Arg mutations were more likely to have nystagmus and poor vision, with disease progression in some p.Cys203Arg patients. Three disease-associated exon 3 SNP haplotypes encoding LIAVA, LVAVA, or MIAVA were identified in our cohort. These patients were less likely to have nystagmus but more likely to show progression, with all patients over the age of 40 years having marked macular abnormalities. Previously, the haplotype LIAVA has been shown to result in exon 3 skipping. Here, we show that haplotypes LVAVA and MIAVA also result in aberrant splicing, with a residual low level of correctly spliced cone opsin. The OPN1LW/OPN1MW:c.532A>G SNP, common to all three disease-associated haplotypes, appears to be principally responsible for this mutational mechanism.
PMCID: PMC4285181  PMID: 25168334
opsin; blue cone monochromacy; splicing; cone dystrophy; OPN1LW; OPN1MW
2.  Molecular modeling indicates distinct classes of missense variants with mild and severe XLRS phenotypes 
Human Molecular Genetics  2013;22(23):4756-4767.
X-linked retinoschisis (XLRS) is a vitreo-retinal degeneration caused by mutations in the RS1 gene which encodes the protein retinoschisin (RS1), required for the structural and functional integrity of the retina. Data are presented from a group of 38 XLRS patients from Moorfields Eye Hospital (London, UK) who had one of 18 missense mutations in RS1. Patients were grouped based on mutation severity predicted by molecular modeling: mild (class I), moderate (intermediate) and severe (class II). Most patients had an electronegative scotopic bright flash electroretinogram  (ERG) (reduced b/a-wave ratio) in keeping with predominant inner retinal dysfunction. An association between the type of structural RS1 alterations and the severity of b/a-wave reduction was found in all but the oldest group of patients, significant in patients aged 15–30 years. Severe RS1 missense changes were associated with a lower ERG b/a ratio than were mild changes, suggesting that the extent of inner retinal dysfunction is influenced by the effect of the mutations on protein structure. The majority of class I mutations showed no changes involving cysteine residues. Class II mutations caused severe perturbations due to the removal or insertion of cysteine residues or due to changes in the hydrophobic core. The ERG b/a ratio in intermediate cases was abnormal but showed significant variability, possibly related to the role of proline or arginine residues. We also conducted a second study, using a completely independent cohort, to indicate a genotype–ERG phenotype correlation.
PMCID: PMC3820135  PMID: 23847049
3.  Clinical characteristics of early retinal disease due to CDHR1 mutation 
Molecular Vision  2013;19:2250-2259.
To describe the early clinical and electrophysiological features of cone-rod dystrophy due to a mutation of cadherin-related family member 1 (CDHR1).
Three affected siblings from a consanguineous family were ascertained. The clinical data included retinal examination, Goldmann visual fields, fundus autofluorescence imaging, optical coherence tomography (OCT), and pattern and full-field electroretinograms. Exome sequencing was performed in two siblings.
The three siblings presented at age 24, 18, and 16 years, respectively. Their main symptoms were blurred central vision, dyschromatopsia, and photoaversion. All were myopic with best-corrected visual acuities of 20/60, 20/60, and 20/40, respectively. Fundoscopy revealed a range of macular appearances from mild retinal pigment epithelial changes to symmetric, subfoveal pigmented lesions. Fundus autofluorescence imaging and OCT revealed evidence of mild structural abnormalities in the two older siblings. Electroretinography findings in all three patients indicated severe generalized cone-rod dysfunction. Mutational screening in the three siblings showed them to be homozygous for a previously reported frame-shifting mutation in exon 13 of CDHR1, c.1463delG, p.G488fs.
The initial clinical signs in this specific retinopathy may be relatively subtle despite a significant functional deficit, with unusual, bilateral, subfoveal pigmented lesions in one 16-year-old patient. Lack of CDHR1 in the human retina causes symptoms related to cone photoreceptor dysfunction in the first instance. A near-normal retinal structure, at least in the first two decades, suggests that CDHR1-related retinopathy may be a good candidate for gene replacement or other novel stabilizing treatments.
PMCID: PMC3834600  PMID: 24265541
4.  The Structure and Function of the Macula in Patients with Advanced Retinitis Pigmentosa 
OCT image segmentation was used to reveal the correlation of structural and functional changes in retinitis pigmentosa. The authors show that the inner retina is damaged only at a more advanced stage in contrast to the early changes of the outer retina.
To assess the structure and function of the macula in advanced retinitis pigmentosa (RP).
Twenty-nine eyes of 22 patients with RP were compared against 17 control eyes. Time-domain optical coherence tomography (OCT) data were processed using OCTRIMA (optical coherence tomography retinal image analysis) as a means of quantifying commercial OCT system images. The thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer and outer plexiform layer complex (INL+OPL), and the outer nuclear layer (ONL) were measured. Multifocal electroretinography (mfERG) was performed; two groups were formed based on the mfERG findings. Fourteen eyes had no detectable central retinal function (NCRF) on mfERG; detectable but abnormal retinal function (DRF) was present in the mfERG of the other 15 eyes.
The thickness of the ONL in the central macular region was significantly less in the NCRF eyes compared with that in both DRF eyes and controls. The ONL was significantly thinner in the pericentral region in both patient groups compared with that in controls, whereas the thickness of the GCL+IPL and INL+OPL was significantly decreased only in the NCRF eyes. The RNFL in the peripheral region was significantly thicker, whereas the thickness of the GCL+IPL and ONL was significantly thinner in both patient groups compared with that in controls.
The results are consistent with degeneration of the outer retina preceding inner retinal changes in RP. OCT image segmentation enables objective evaluation of retinal structural changes in RP, with potential use in the planning of therapeutic interventions and conceivably as an outcome measure.
PMCID: PMC3253539  PMID: 21948552
5.  The PROM1 Mutation p.R373C Causes an Autosomal Dominant Bull's Eye Maculopathy Associated with Rod, Rod–Cone, and Macular Dystrophy 
Sequence variation in PROM1 should be considered in patients presenting with bull's eye maculopathy.
To characterize in detail the phenotype of five unrelated families with autosomal dominant bull's eye maculopathy (BEM) due to the R373C mutation in the PROM1 gene.
Forty-one individuals of five families of Caribbean (family A), British (families B, D, E), and Italian (family C) origin, segregating the R373C mutation in PROM1, were ascertained. Electrophysiological assessment, fundus autofluorescence (FAF) imaging, fundus fluorescein angiography (FFA), and optical coherence tomography (OCT) were performed in available subjects. Mutation screening of PROM1 was performed.
The R373C mutant was present heterozygously in all affected patients. The age at onset was variable and ranged between 9 and 58 years, with most of the individuals presenting with reading difficulties. Subjects commonly had a mild to moderate reduction in visual acuity except for members of family C who experienced markedly reduced central vision. The retinal phenotype was characterized by macular dystrophy, with retinal pigment epithelial mottling in younger subjects, progressing to typical BEM over time, with the development of macular atrophy in older patients. In addition, all members of family C had typical features of RP. The electrophysiological findings were variable both within and between families.
Mutations in PROM1 have been described to cause a severe form of autosomal recessive RP in two families of Indian and Pakistani descent. The results of this study have demonstrated that a distinct redundant PROM1 mutation (R373C) can also produce an autosomal dominant, fully penetrant retinopathy, characterized by BEM with little inter- and intrafamilial variability, and retinal dystrophy with variable rod or rod–cone dysfunction and marked intra- and interfamilial variability, ranging from isolated maculopathy without generalized photoreceptor dysfunction to maculopathy associated with very severe rod–cone dysfunction.
PMCID: PMC2941169  PMID: 20393116
6.  Autosomal dominant Best disease with an unusual electrooculographic light rise and risk of angle-closure glaucoma: a clinical and molecular genetic study 
Molecular Vision  2011;17:2272-2282.
To describe the clinical and molecular characteristics of two families with autosomal dominant Best disease and atypical electrooculography (EOG).
Four affected individuals from two families were ascertained. Detailed ophthalmic examinations, refraction, and biometry (anterior chamber depth [ACD] and axial length [AL]), gonioscopy, optical coherence tomography of the anterior segment and retina, retinal imaging, and electrophysiological assessment were performed. Arden ratios from EOG testing were calculated by direct measurement of the light peak to dark trough amplitudes. Mutations in bestrophin 1 (BEST1) were identified by bidirectional Sanger sequencing. In family 1, segregation of BEST1 alleles was performed by assaying four microsatellite markers (D11S935, D11S4102, D11S987, and D11S4162) that flank BEST1.
The proband from family 1 (three of four siblings affected with Best disease) was 42 years old with bilateral macular vitelliform lesions, advanced angle closure glaucoma (ACG), a normal electroretinogram, and no EOG light rise. Her 44-year-old brother had similar fundus appearances and an EOG light rise of 170%. Their 48-year-old sister had a normal left fundus, whereas the right fundus showed a vitelliform lesion and subretinal thickening. There was no EOG light rise detectable from either eye. Mutation analysis of BEST1 showed all affected siblings to be heterozygous for a missense mutation, c.914T>C, p.Phe305Ser. Their unaffected sister had an EOG light rise of 200%, a normal fundus appearance, and did not harbor the BEST1 mutation. Haplotype analysis of family 1 showed that the affected brother with the 170% EOG light rise had inherited the same nondiseased parental BEST1 allele as his unaffected sister. The other two affected sisters with undetectable EOG light rises shared a different nondiseased parental BEST1 allele. An unrelated 53-year-old female carrying the same c.914T>C, p.Phe305Ser mutation showed typical features of Best disease and an EOG light rise of 180%. All four siblings from family 1 had shorter axial biometry (ACD range 2.06–2.74 mm; AL range 20.46–22.60 mm) than the normal population, contributing to their risk of ACG development. Proband 2 had deeper ACDs (2.83 mm OD and 2.85 mm OS), but similar ALs (21.52 mm OD and 21.42 mm OS) compared to family 1. She had no gonioscopic evidence of angle closure.
A near normal EOG light rise is uncommon in molecularly confirmed Best disease, and in the present report is associated with the same mutation in two families, suggesting a specific role for this amino acid in the retinal pigment epithelium dysfunction associated with this disorder. Haplotype analysis in family 1 was consistent with an effect of the nondisease allele in mediating the presence of an EOG light rise. Clinical assessment of ACG risk is recommended for BEST1 mutation carriers and their first degree relatives.
PMCID: PMC3171497  PMID: 21921978
7.  RDH12 retinopathy: novel mutations and phenotypic description 
Molecular Vision  2011;17:2706-2716.
To identify patients with autosomal recessive retinal dystrophy caused by mutations in the gene, retinal dehydrogenase 12 (RDH12), and to report the associated phenotype.
After giving informed consent, all patients underwent full clinical evaluation. Patients were selected for mutation analysis based upon positive results from the Asper Ophthalmics Leber congenital amaurosis arrayed primer extansion (APEX) microarray screening, linkage analysis, or their clinical phenotype. All coding exons of RDH12 were screened by direct Sanger sequencing. Potential variants were checked for segregation in the respective families and screened in controls, and their pathogenicity analyzed using in silico prediction programs.
Screening of 389 probands by the APEX microarray and/or direct sequencing identified bi-allelic mutations in 29 families. Seventeen novel mutations were identified. The phenotype in these patients presented with a severe early-onset rod-cone dystrophy. Funduscopy showed severe generalized retinal pigment epithelial and retinal atrophy, which progressed to dense, widespread intraretinal pigment migration by adulthood. The macula showed severe atrophy, with pigmentation and yellowing, and corresponding loss of fundus autofluorescence. Optical coherence tomography revealed marked retinal thinning and excavation at the macula.
RDH12 mutations account for approximately 7% of disease in our cohort of patients diagnosed with Leber congenital amaurosis and early-onset retinal dystrophy. The clinical features of this disorder are highly characteristic and facilitate candidate gene screening. The term RDH12 retinopathy is proposed as a more accurate description.
PMCID: PMC3209419  PMID: 22065924
8.  Novel mutations in MERTK associated with childhood onset rod-cone dystrophy 
Molecular Vision  2010;16:369-377.
To report the clinical phenotype in patients with a retinal dystrophy associated with novel mutations in the MER tyrosine kinase (MERTK) gene.
A consanguineous family of Middle Eastern origin was identified, and affected members underwent a full clinical evaluation. Linkage analysis was performed using the Affymetrix 50K chip. Regions of homozygosity were identified. The positional candidate genes protocadherin 21 (PCDH21), retinal G protein-coupled receptor (RGR), and MERTK were polymerase chain reaction (PCR) amplified and sequenced. Long-range PCR was performed to characterize the deletion. Two hundred and ninety-two probands with autosomal recessive, childhood onset, retinal dystrophies were analyzed using the Asper Ophthalmics Leber congenital amaurosis chip to screen for known MERTK mutations.
Analysis of a 50K-Affymetrix whole genome scan identified three regions of homozygosity on chromosomes 2 and 10. Screening of the candidate gene MERTK showed a possible deletion of exon 8. Long-range PCR identified a ~9 kb deletion within MERTK that removes exon 8. Screening of DNA from a panel of Saudi Arabian patients with autosomal recessive retinitis pigmentosa identified a second consanguineous family with the same mutation. One patient with a known MERTK mutation (p.R651X) was identified using the Asper Ophthalmics Leber congenital amaurosis chip. Further screening of the gene identified a second novel splice site mutation in intron 1. The phenotype associated with these identified MERTK mutations is of a childhood onset rod–cone dystrophy with early macular atrophy. The optical coherence tomography (OCT) appearance is distinctive with evidence of debris beneath the sensory retina.
Mutations in MERTK are a rare cause of retinal dystrophy. Non homologous recombination between Alu Y repeats near or within disease genes may be an important cause of retinal dystrophies.
PMCID: PMC2838735  PMID: 20300561
9.  A detailed phenotypic assessment of individuals affected by MFRP-related oculopathy 
Molecular Vision  2010;16:540-548.
To determine the spectrum of mutations and phenotypic variability within patients with mutations in membrane-type frizzled related protein gene (MFRP).
Individuals were initially ascertained based on a phenotype similar to that previously published in association with MFRP mutations. Affected patients underwent a full ophthalmic examination (best-corrected visual acuity, slit-lamp examination, applanation tonometry, and fundoscopy), color fundus photography, optical coherence tomography, autofluorescence imaging, and electrophysiology. MFRP was identified by a genome-wide scan in the fourth-largest autozygous region in one consanguineous family. Sanger sequencing of all the exons and intron-exon boundaries of MFRP was undertaken in the affected individuals.
Seven affected individuals from four families were identified as having mutations in MFRP. Patients from two families were homozygous for mutations already previously described (c.1143_1144 insC and c.492 delC), while those from the other two were compound heterozygous for mutations (c.201G>A and c.491_492 insT, and c.492 delC, and c.1622_1625 delTCTG), three of which were novel. There was considerable phenotypic variability within and among families. Autofluorescence imaging revealed the central macula to be relatively well preserved. Foveal cysts and optic nerve head drusen were present in two of the four families. Electrophysiology results showed rod-cone dystrophy with mild to moderate reduction in macular function in all affected members.
We report three novel MFRP mutations and expand the phenotypic data available on patients with MFRP mutations.
PMCID: PMC2846851  PMID: 20361016
10.  Novel Phenotypic and Genotypic Findings in X-Linked Retinoschisis 
Archives of ophthalmology  2007;125(2):259-267.
To describe atypical phenotypes associated with the retinoschisis (X-linked, juvenile) 1 mutation (RS1).
Seven patients with multiple fine white dots at the macula and reduced visual acuity were evaluated. Six patients underwent pattern and full-field electroretinography (ERG). On-off ERG, optical coherence tomography, and fundus autofluorescence imaging were performed in some patients. Mutational screening of RS1 was prompted by the ERG findings.
Fine white dots resembling drusenlike deposits and sometimes associated with retinal pigment epithelial abnormalities were present in the maculae. An electronegative bright-flash ERG configuration was present in all patients tested, and abnormal pattern ERG findings confirmed macular dysfunction. A parafoveal ring of high-density autofluorescence was present in 3 eyes; 1 patient showed high-density foci concordant with the white dots. Optical coherence tomography did not show foveal schisis in 3 of 4 eyes. All patients carried mutations in RS1, including 1 with a novel 206T→C mutation in exon 4.
Multiple fine white dots at the macula may be the initial fundus feature in RS1 mutation. Electrophysiologic findings suggest dysfunction after phototransduction and enable focused mutational screening. Autofluorescence imaging results suggest early retinal pigment epithelium involvement; a parafoveal ring of high-density autofluorescence has not previously been described in this disorder.
PMCID: PMC2757628  PMID: 17296904
11.  Blue cone monochromacy: Causative mutations and associated phenotypes 
Molecular Vision  2009;15:876-884.
To perform a phenotypic assessment of members of three British families with blue cone monochromatism (BCM), and to determine the underlying molecular genetic basis of disease.
Affected members of three British families with BCM were examined clinically and underwent detailed electrophysiological and psychophysical testing. Blood samples were taken for DNA extraction. Molecular analysis involved the amplification of the coding regions of the long (L) and medium (M) wave cone opsin genes and the upstream locus control region (LCR) by polymerase chain reaction (PCR). Gene products were directly sequenced and analyzed.
In all three families, genetic analysis identified that the underlying cause of BCM involved an unequal crossover within the opsin gene array, with an inactivating mutation. Family 1 had a single 5′-L–M-3′ hybrid gene, with an inactivating Cys203Arg (C203R) mutation. Family 3 had an array composed of a C203R inactivated 5′-L–M-3′ hybrid gene followed by a second inactive gene. Families 1 and 3 had typical clinical, electrophysiological, and psychophysical findings consistent with stationary BCM. A novel mutation was detected in Family 2 that had a single hybrid gene lacking exon 2. This family presented clinical and psychophysical evidence of a slowly progressive phenotype.
Two of the BCM-causing family genotypes identified in this study comprised different hybrid genes, each of which contained the commonly described C203R inactivating mutation. The genotype in the family with evidence of a slowly progressive phenotype represents a novel BCM mutation. The deleted exon 2 in this family is not predicted to result in a shift in the reading frame, therefore we hypothesize that an abnormal opsin protein product may accumulate and lead to cone cell loss over time. This is the first report of slow progression associated with this class of mutation in the L or M opsin genes in BCM.
PMCID: PMC2676201  PMID: 19421413
12.  A rare de novo nonsense mutation in OTX2 causes early onset retinal dystrophy and pituitary dysfunction 
Molecular Vision  2009;15:2442-2447.
To describe the clinical findings of a patient with an early onset retinal dystrophy and a novel mutation in OTX2, and to compare these findings with previously reported cases.
Using direct sequencing, we screened 142 patients, who had either Leber congenital amaurosis (LCA) or early onset retinal dystrophy (EORD), for mutations in OTX2. All patients received a detailed ophthalmic examination including electroretinography and retinal imaging.
Only one mutation in OTX2 was identified. A novel heterozygous p.S138X stop mutation was identified in a seven-year-old male who had an infantile onset retinal dystrophy. The mutation was not present in either parent or in 181 blood donor samples. There was a history of failure to thrive in infancy, poor feeding, and growth hormone deficiency. Poor vision and nyctalopia was present from the first year. Funduscopy revealed a hyperpigmented peripapillary ring with a fine granular pigmentation of the RPE throughout the fundus. The scotopic bright flash ERG a-wave was subnormal and the waveform electronegative, in keeping with dysfunction both at the level of the photoreceptor and post-phototransduction. Visual function has been stable to date.
Mutations in OTX2 have been reported in association with major developmental malformations of the eye, with retinal dystrophies such as LCA, and with pituitary dysfunction and seizure activity in some cases. This case adds further support for a role of OTX2 both in retinal development and pituitary function, and highlights a novel retinal dystrophy phenotype seen in association with mutations in OTX2.
PMCID: PMC2786888  PMID: 19956411
13.  Functional characteristics of patients with retinal dystrophy that manifest abnormal parafoveal annuli of high density fundus autofluorescence; a review and update 
Purpose To examine the presence and functional significance of annular fundus autofluorescence abnormalities in patients with different retinal dystrophies. Methods Eighty one patients were ascertained who had a parafoveal ring of high density on fundus autofluorescence imaging. Sixty two had had a clinical diagnosis of retinitis pigmentosa (RP) or Usher syndrome with normal visual acuity. Others included a case of Leber congenital amaurosis and genetically confirmed cases of cone or cone-rod dystrophy (GUCA1A, RPGR, RIMS1), “cone dystrophy with supernormal rod ERG” (KCNV2) and X-linked retinoschisis (RS1). International-standard full-field and pattern electroretinography (ERG; PERG) were performed. Some patients with rod-cone or cone-rod dystrophy underwent multifocal ERG (mfERG) testing and photopic and scotopic fine matrix mapping (FMM). Results In patients with RP, the radius of the parafoveal ring of high density correlated with PERG P50 (R = 0.83, P < 0.0005, N = 62) and encircled areas of preserved photopic function. In the other patients, AF rings either resembled those seen in RP or encircled an area of central atrophy. Ring radius was inversely related to the PERG P50 component in 4 of 18 cases with a detectable response. FMM showed that arcs of high density were associated with a gradient of sensitivity change. Conclusions Parafoveal rings of high density autofluorescence are a non-specific manifestation of retinal dysfunction that can occur in different retinal dystrophies. Electrophysiology remains essential for accurate diagnosis. The high correlation of autofluorescence with PERG, mfERG and FMM demonstrates that AF abnormalities have functional significance and may help identify suitable patients and retinal areas amenable to future therapeutic intervention.
PMCID: PMC2244701  PMID: 17985165
Electroretinography; Retinitis pigmentosa; Cone-rod dystrophy; Usher syndrome; Autofluorescence imaging; Genotype-phenotype correlation
14.  ISCEV standard for clinical pattern electroretinography—2007 update 
The pattern electroretinogram (PERG) is a retinal response evoked by viewing a temporally alternating pattern, usually a black and white checkerboard or grating. The PERG is important in clinical and research applications because it provides information both about retinal ganglion cell function and, because the stimulus is customarily viewed with central fixation, the function of the macula. The PERG can therefore facilitate interpretation of an abnormal pattern VEP by revealing the retinal responses to a similar stimulus to that used for the VEP. However, practitioners may have difficulty choosing between the different techniques for recording the PERG that have been described in the literature. The International Society for Clinical Electrophysiology of Vision published a standard for clinical PERG recording in 2000 to assist practitioners in obtaining good quality reliable responses and to facilitate inter-laboratory communication and comparison. This document is the scheduled revision of that standard.
PMCID: PMC1896293  PMID: 17435967
Clinical electrophysiology; Electroretinogram; Pattern electroretinogram; Retina; Macula
15.  A randomised controlled trial investigating the effect of n-3 long-chain polyunsaturated fatty acid supplementation on cognitive and retinal function in cognitively healthy older people: the Older People And n-3 Long-chain polyunsaturated fatty acids (OPAL) study protocol [ISRCTN72331636] 
Nutrition Journal  2006;5:20.
The number of individuals with age-related cognitive impairment is rising dramatically in the UK and globally. There is considerable interest in the general hypothesis that improving the diet of older people may slow the progression of cognitive decline. To date, there has been little attention given to the possible protective role of n-3 long-chain polyunsaturated fatty acids (n-3 LCPs) most commonly found in oily fish, in age-related loss of cognitive function. The main research hypothesis of this study is that an increased dietary intake of n-3 LCPs will have a positive effect on cognitive performance in older people in the UK.
To test this hypothesis, a double-blind randomised placebo-controlled trial will be carried out among adults aged 70–79 years in which the intervention arm will receive daily capsules containing n-3 LCP (0.5 g/day docosahexaenoic acid and 0.2 g/day eicosapentaenoic acid) while the placebo arm will receive daily capsules containing olive oil. The main outcome variable assessed at 24 months will be cognitive performance and a second major outcome variable will be retinal function. Retinal function tests are included as the retina is a specifically differentiated neural tissue and therefore represents an accessible window into the functioning of the brain.
The overall purpose of this public-health research is to help define a simple and effective dietary intervention aimed at maintaining cognitive and retinal function in later life. This will be the first trial of its kind aiming to slow the decline of cognitive and retinal function in older people by increasing daily dietary intake of n-3 LCPs. The link between cognitive ability, visual function and quality of life among older people suggests that this novel line of research may have considerable public health importance.
PMCID: PMC1564406  PMID: 16945130

Results 1-15 (15)