PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Rapamycin slows aging in mice 
Aging cell  2012;11(4):675-682.
Summary
Rapamycin increases lifespan in mice, but whether this represents merely inhibition of lethal neoplastic diseases, or an overall slowing in multiple aspects of aging is currently unclear. We report here that many forms of age-dependent change, including alterations in heart, liver, adrenal glands, endometrium, and tendon, as well as age-dependent decline in spontaneous activity, occur more slowly in rapamycin-treated mice, suggesting strongly that rapamycin retards multiple aspects of aging in mice, in addition to any beneficial effects it may have on neoplastic disease. We also note, however, that mice treated with rapamycin starting at 9 months of age have significantly higher incidence of testicular degeneration and cataracts; harmful effects of this kind will guide further studies on timing, dosage, and tissue-specific actions of rapamycin relevant to the development of clinically useful inhibitors of TOR action.
doi:10.1111/j.1474-9726.2012.00832.x
PMCID: PMC3434687  PMID: 22587563
interventions; longevity pathology; TOR
2.  Characterization of novel RS1 exonic deletions in juvenile X-linked retinoschisis 
Molecular Vision  2013;19:2209-2216.
Purpose
X-linked juvenile retinoschisis (XLRS) is a vitreoretinal dystrophy characterized by schisis (splitting) of the inner layers of the neuroretina. Mutations within the retinoschisis (RS1) gene are responsible for this disease. The mutation spectrum consists of amino acid substitutions, splice site variations, small indels, and larger genomic deletions. Clinically, genomic deletions are rarely reported. Here, we characterize two novel full exonic deletions: one encompassing exon 1 and the other spanning exons 4–5 of the RS1 gene. We also report the clinical findings in these patients with XLRS with two different exonic deletions.
Methods
Unrelated XLRS men and boys and their mothers (if available) were enrolled for molecular genetics evaluation. The patients also underwent ophthalmologic examination and in some cases electroretinogram (ERG) recording. All the exons and the flanking intronic regions of the RS1 gene were analyzed with direct sequencing. Two patients with exonic deletions were further evaluated with array comparative genomic hybridization to define the scope of the genomic aberrations. After the deleted genomic region was identified, primer walking followed by direct sequencing was used to determine the exact breakpoints.
Results
Two novel exonic deletions of the RS1 gene were identified: one including exon 1 and the other spanning exons 4 and 5. The exon 1 deletion extends from the 5′ region of the RS1 gene (including the promoter) through intron 1 (c.(−35)-1723_c.51+2664del4472). The exon 4–5 deletion spans introns 3 to intron 5 (c.185–1020_c.522+1844del5764).
Conclusions
Here we report two novel exonic deletions within the RS1 gene locus. We have also described the clinical presentations and hypothesized the genomic mechanisms underlying these schisis phenotypes.
PMCID: PMC3820431  PMID: 24227916
3.  EPHA2 Polymorphisms and Age-Related Cataract in India 
PLoS ONE  2012;7(3):e33001.
Objective
We investigated whether previously reported single nucleotide polymorphisms (SNPs) of EPHA2 in European studies are associated with cataract in India.
Methods
We carried out a population-based genetic association study. We enumerated randomly sampled villages in two areas of north and south India to identify people aged 40 and over. Participants attended a clinical examination including lens photography and provided a blood sample for genotyping. Lens images were graded by the Lens Opacification Classification System (LOCS III). Cataract was defined as a LOCS III grade of nuclear ≥4, cortical ≥3, posterior sub-capsular (PSC) ≥2, or dense opacities or aphakia/pseudophakia in either eye. We genotyped SNPs rs3754334, rs7543472 and rs11260867 on genomic DNA extracted from peripheral blood leukocytes using TaqMan assays in an ABI 7900 real-time PCR. We used logistic regression with robust standard errors to examine the association between cataract and the EPHA2 SNPs, adjusting for age, sex and location.
Results
7418 participants had data on at least one of the SNPs investigated. Genotype frequencies of controls were in Hardy-Weinberg Equilibrium (p>0.05). There was no association of rs3754334 with cataract or type of cataract. Minor allele homozygous genotypes of rs7543472 and rs11260867 compared to the major homozygote genotype were associated with cortical cataract, Odds ratio (OR) = 1.8, 95% Confidence Interval (CI) (1.1, 3.1) p = 0.03 and 2.9 (1.2, 7.1) p = 0.01 respectively, and with PSC cataract, OR = 1.5 (1.1, 2.2) p = 0.02 and 1.8 (0.9, 3.6) p = 0.07 respectively. There was no consistent association of SNPs with nuclear cataract or a combined variable of any type of cataract including operated cataract.
Conclusions
Our results in the Indian population agree with previous studies of the association of EPHA2 variants with cortical cataracts. We report new findings for the association with PSC which is particularly prevalent in Indians.
doi:10.1371/journal.pone.0033001
PMCID: PMC3297613  PMID: 22412971
4.  Identification and functional clustering of global gene expression differences between human age-related cataract and clear lenses 
Molecular vision  2003;9:515-537.
Purpose
Age-related cataract is a multi-factorial disease with a poorly understood etiology. Numerous studies provide evidence that the human eye lens has evolved specific regulatory and protective systems to ameliorate lens damage associated with cataract. Other studies suggest that the presence of cataract is associated with the altered expression of specific genes including metallothionein IIa, osteonectin, transglutaminase 2, betaig-h3, multiple ribosomal proteins, ADAM9, and protein phosphatase 2A. Here, we sought to identify further gene expression changes that are associated with cataract and to cluster the identified genes into specific biological pathways.
Methods
Oligonucleotide microarray hybridization was used to analyze the full complement of gene expression differences between lens epithelia isolated from human age-related cataract relative to clear lenses. The expression levels of a subset of the identified genes were further evaluated by semi-quantitative RT-PCR. The identified genes were functionally clustered into specific categories and the probability of over-representation of each category was determined using the computer program EASE.
Results
412 transcripts were observed to be increased and 919 transcripts were observed to be decreased by 2 fold or more in lens epithelia isolated from age-related cataract relative to clear lenses. Of these, 74 were increased and 241 were decreased at the 5 fold level or greater. Seventeen genes selected for further confirmation exhibited similar trends in expression when examined by RT-PCR using both the original and separately prepared clear and cataract RNA populations. Functional clustering of the identified genes using the EASE bioinformatics software package revealed that, among others, transcripts increased in cataract are associated with transcriptional control, chromosomal organization, ionic and cytoplasmic transport, and extracellular matrix components while transcripts decreased in cataract are associated with protein synthesis, defense against oxidative stress, heat-shock/chaperone activity, structural components of the lens, and cell cycle control.
Conclusions
These data suggest that cataract is associated with multiple previously identified and novel changes in lens epithelial gene expression and they point to numerous pathways likely to play important roles in lens protection, maintenance, and age-related cataract.
PMCID: PMC2831407  PMID: 14551530
5.  Five novel mutations of the FRMD7 gene in Chinese families with X-linked infantile nystagmus 
Molecular Vision  2008;14:733-738.
Purpose
Infantile nystagmus (IN) is an inherited disorder characterized by bilateral ocular oscillatory movements. Recently, mutations in FRMD7 were found to be responsible for X-linked idiopathic infantile nystagmus . We investigated the role of the FRMD7 gene mutations in seven Chinese families with infantile nystagmus.
Methods
Linkage analysis was performed with fluorescently labeled microsatellite markers, DXS1001 and DXS1047. Analysis of FRMD7 gene mutations was performed by direct sequence to the whole coding regions and exon-intron boundaries of FRMD7 gene in all affected members in seven families with IN.
Results
Five novel FRMD7 gene mutations, 70 G>T(p.G24W) in exon 2, c.689–690delAG (p.Ser232del) in exon8, c. 782G>A (p.R260Q) and c. 812G>T (p. C271F) in exon 9, and c. 910C>T (R303X) in exon 10, were identified in five of seven Chinese families with X-linked infantile nystagmus. But we didn’t detect the FRMD7 gene mutation in one of seven families, although a positive LOD score of 2.42 (θmax=0.1) was obtained at DXS1047 . We also found the same mutation, which is c. 782G>A (p.R260Q), occurred in two different families.
Conclusions
This is first report that five kinds of FRMD7 gene mutation types occurred in Chinese families with IN, which further support that FRMD7 gene mutations are the underlying pathogenesis of the molecular mechanism for infantile nystagmus.
PMCID: PMC2324116  PMID: 18431453

Results 1-5 (5)