PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (29)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Autonomic Dysreflexia Causes Chronic Immune Suppression after Spinal Cord Injury 
The Journal of Neuroscience  2013;33(32):12970-12981.
Autonomic dysreflexia (AD), a potentially dangerous complication of high-level spinal cord injury (SCI) characterized by exaggerated activation of spinal autonomic (sympathetic) reflexes, can cause pulmonary embolism, stroke, and, in severe cases, death. People with high-level SCI also are immune compromised, rendering them more susceptible to infectious morbidity and mortality. The mechanisms underlying postinjury immune suppression are not known. Data presented herein indicate that AD causes immune suppression. Using in vivo telemetry, we show that AD develops spontaneously in SCI mice with the frequency of dysreflexic episodes increasing as a function of time postinjury. As the frequency of AD increases, there is a corresponding increase in splenic leucopenia and immune suppression. Experimental activation of spinal sympathetic reflexes in SCI mice (e.g., via colorectal distension) elicits AD and exacerbates immune suppression via a mechanism that involves aberrant accumulation of norepinephrine and glucocorticoids. Reversal of postinjury immune suppression in SCI mice can be achieved by pharmacological inhibition of receptors for norepinephrine and glucocorticoids during the onset and progression of AD. In a human subject with C5 SCI, stimulating the micturition reflex caused AD with exaggerated catecholamine release and impaired immune function, thus confirming the relevance of the mouse data. These data implicate AD as a cause of secondary immune deficiency after SCI and reveal novel therapeutic targets for overcoming infectious complications that arise due to deficits in immune function.
doi:10.1523/JNEUROSCI.1974-13.2013
PMCID: PMC3735880  PMID: 23926252
2.  System xc- regulates microglia and macrophage glutamate excitotoxicity in vivo 
Experimental Neurology  2011;233(1):333-341.
It is widely believed that microglia and monocyte-derived macrophages (collectively referred to as central nervous system (CNS) macrophages) cause excitotoxicity in the diseased or injured CNS. This view has evolved mostly from in vitro studies showing that neurotoxic concentrations of glutamate are released from CNS macrophages stimulated with lipopolysaccharide (LPS), a potent inflammogen. We hypothesized that excitotoxic killing by CNS macrophages is more rigorously controlled in vivo, requiring both the activation of the glutamate/cystine antiporter (system xc-) and an increase in extracellular cystine, the substrate that drives glutamate release. Here, we show that non-traumatic microinjection of low-dose LPS into spinal cord gray matter activates CNS macrophages but without causing overt neuropathology. In contrast, neurotoxic inflammation occurs when LPS and cystine are co-injected. Simultaneous injection of NBQX, an antagonist of AMPA glutamate receptors, reduces the neurotoxic effects of LPS+cystine, implicating glutamate as a mediator of neuronal cell death in this model. Surprisingly, neither LPS nor LPS+cystine adversely affects survival of oligodendrocytes or oligodendrocyte progenitor cells. Ex vivo analyses show that redox balance in microglia and macrophages is controlled by induction of system xc- and that high GSH:GSSG ratios predict the neurotoxic potential of these cells. Together, these data indicate that modulation of redox balance in CNS macrophages, perhaps through regulating system xc-, could be a novel approach for attenuating injurious neuroinflammatory cascades.
doi:10.1016/j.expneurol.2011.10.025
PMCID: PMC3268895  PMID: 22079587
system xc-; redox; neuroinflammation; spinal cord injury; glutamate
3.  PPAR agonists as therapeutics for CNS trauma and neurological diseases 
ASN NEURO  2013;5(5):e00129.
Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS.
doi:10.1042/AN20130030
PMCID: PMC3866683  PMID: 24215544
Alzheimer’s disease; astrocyte; experimental autoimmune encephalomyelitis (EAE); macrophage; multiple sclerosis; spinal cord injury; ALS, amyotrophic lateral sclerosis; Arg1, Arginase 1; BMP, bone morphogenetic protein; 15d-PGJ2, 15-deoxy-Δ-12,14-prostaglandin J-2; EAE, experimental autoimmune encephalomyelitis; GR, glucocorticoid receptor; IL, interleukin; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; MS, multiple sclerosis; NF-κB, nuclear factor κB; NGF, nerve growth factor; OPC, oligodendrocyte precursor cell; PPAR, peroxisome proliferator-activated receptor; RXR, retinoid X receptor; SCI, spinal cord injury; SHP-2, Src homology region 2-containing protein tyrosine phosphatase-2; TBI, traumatic brain injury; Th1, T helper type 1; TNFα, tumour necrosis factor α; UCP, uncoupling protein
4.  B cells and Autoantibodies: Complex Roles in CNS Injury 
Trends in immunology  2010;31(9):332-338.
Emerging data indicate that traumatic injury to the brain or spinal cord activates B lymphocytes, culminating in the production of antibodies specific for antigens found within and outside the central nervous system (CNS). In this article, we summarize what is known about the effects of CNS injury on B cells. We outline the potential mechanisms for CNS trauma-induced B cell activation and discuss the potential consequences of these injury-induced B cell responses. Based on recent data, we hypothesize that a subset of autoimmune B cell responses initiated by CNS injury are pathogenic and that targeted inhibition of B cells could improve recovery in brain and spinal cord injured patients.
doi:10.1016/j.it.2010.06.006
PMCID: PMC2933277  PMID: 20691635
5.  Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury 
Neuroscience  2008;158(3):1112-1121.
Traumatic spinal cord injury (SCI) in mammals causes widespread glial activation and recruitment to the CNS of innate (e.g., neutrophils, monocytes) and adaptive (e.g., T and B lymphocytes) immune cells. To date, most studies have sought to understand or manipulate the post-traumatic functions of astrocytes, microglia, neutrophils or monocytes. Significantly less is known about the consequences of SCI-induced lymphocyte activation. Yet, emerging data suggest that T and B cells are activated by SCI and play significant roles in shaping post-traumatic inflammation and downstream cascades of neurodegeneration and repair. Here, we provide neurobiologists with a timely review of the mechanisms and implications of SCI-induced lymphocyte activation, including a discussion of different experimental strategies that have been designed to manipulate lymphocyte function for therapeutic gain.
doi:10.1016/j.neuroscience.2008.07.001
PMCID: PMC2661571  PMID: 18674593
autoimmune; lymphocyte; autoantibody; T cell; B cell; CNS injury
6.  Macrophage Migration Inhibitory Factor (MIF) is Essential for Inflammatory and Neuropathic Pain and Enhances Pain in Response to Stress 
Experimental Neurology  2012;236(2):351-362.
Stress and glucocorticoids exacerbate pain via undefined mechanisms. Macrophage migration inhibitory factor (MIF) is a constitutively expressed protein that is secreted to maintain immune function when glucocorticoids are elevated by trauma or stress. Here we show that MIF is essential for the development of neuropathic and inflammatory pain, and for stress-induced enhancement of neuropathic pain. Mif null mutant mice fail to develop pain-like behaviors in response to inflammatory stimuli or nerve injury. Pharmacological inhibition of MIF attenuates pain-like behaviors caused by nerve injury and prevents sensitization of these behaviors by stress. Conversely, injection of recombinant MIF into naïve mice produces dose-dependent mechanical sensitivity that is exacerbated by stress. MIF elicits pro-inflammatory signaling in microglia and activates sensory neurons, mechanisms that underlie pain. These data implicate MIF as a key regulator of pain and provide a mechanism whereby stressors exacerbate pain. MIF inhibitors warrant clinical investigation for the treatment of chronic pain.
doi:10.1016/j.expneurol.2012.04.018
PMCID: PMC3392533  PMID: 22575600
MIF; Pain; Stress; Glucocorticoids; Axon; Neuroplasticity; Microglia; Macrophage; Cytokine; Inflammation
7.  B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice 
The Journal of Clinical Investigation  2009;119(10):2990-2999.
Traumatic injury to the mammalian spinal cord activates B cells, which culminates in the synthesis of autoantibodies. The functional significance of this immune response is unclear. Here, we show that locomotor recovery was improved and lesion pathology was reduced after spinal cord injury (SCI) in mice lacking B cells. After SCI, antibody-secreting B cells and Igs were present in the cerebrospinal fluid and/or injured spinal cord of WT mice but not mice lacking B cells. In mice with normal B cell function, large deposits of antibody and complement component 1q (C1q) accumulated at sites of axon pathology and demyelination. Antibodies produced after SCI caused pathology, in part by activating intraspinal complement and cells bearing Fc receptors. These data indicate that B cells, through the production of antibodies, affect pathology in SCI. One or more components of this pathologic immune response could be considered as novel therapeutic targets for minimizing tissue injury and/or promoting repair after SCI.
doi:10.1172/JCI39780
PMCID: PMC2752085  PMID: 19770513
8.  Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury 
Experimental neurology  2007;209(2):378-388.
Trauma to the central nervous system (CNS) triggers intraparenchymal inflammation and activation of systemic immunity with the capacity to exacerbate neuropathology and stimulate mechanisms of tissue repair. Despite our incomplete understanding of the mechanisms that control these divergent functions, immune-based therapies are becoming a therapeutic focus. This review will address the complexities and controversies of post-traumatic neuroinflammation, particularly in spinal cord. In addition, current therapies designed to target neuroinflammatory cascades will be discussed.
doi:10.1016/j.expneurol.2007.06.009
PMCID: PMC2692462  PMID: 17662717
macrophages; lymphocytes; neuroinflammation; spinal cord injury; traumatic brain injury; blood-brain barrier
9.  Independent evaluation of the effects of glibenclamide on reducing progressive hemorrhagic necrosis after cervical spinal cord injury 
Experimental Neurology  2010;233(2):615-622.
These experiments were completed as part of an NIH-NINDS contract entitled “Facilities of Research Excellence – Spinal Cord Injury (FORE-SCI) – Replication”. Our goal was to replicate pre-clinical data from Simard et al. (2007) showing that glibenclamide, an FDA approved anti-diabetic drug that targets sulfonylurea receptor 1 (SUR1)-regulated Ca2+ activated, [ATP]i-sensitive nonspecific cation channels, attenuates secondary intraspinal hemorrhage and secondary neurodegeneration caused by hemicontusion injury in rat cervical spinal cord. In an initial replication attempt, the Infinite Horizons impactor was used to deliver a standard unilateral contusion injury near the spinal cord midline. Glibenclamide was administered continuously via osmotic pump beginning immediately post-SCI. The ability of glibenclamide to limit intraspinal hemorrhage was analyzed at 6, 12 and 24 hours using a colorimetric assay. Acute recovery (24 hours) of forelimb function also was assessed. Analysis of data from these initial studies revealed no difference between glibenclamide and vehicle-treated SCI rats. Later, it was determined that differences in primary trauma affect the efficacy of glibenclamide. Indeed, the magnitude and distribution of primary intraspinal hemorrhage was greater when the impact was directed to the dorsomedial region of the cervical hemicord (as in our initial replication experiment), as compared to the dorsolateral spinal cord (as in the Simard et al. experiment). In three subsequent experiments, injury was directed to the dorsolateral spinal cord. In each case, glibenclamide reduced post-traumatic hemorrhage 24-48 hours post-injury. In the third experiment, we also assessed function and found that acute reduction of hemorrhage led to improved functional recovery. Thus, independent replication of the Simard et al. data was achieved. These data illustrate that the injury model and type of trauma can determine the efficacy of pre-clinical pharmacological treatments after SCI.
doi:10.1016/j.expneurol.2010.11.016
PMCID: PMC3272125  PMID: 21145891
cervical spinal cord injury; hemorrhage; secondary injury; sulfonylurea receptor; glibenclamide; injury models
10.  A reassessment of a classic neuroprotective combination therapy for spinal cord injured rats: LPS/pregnenolone/indomethacin 
Experimental neurology  2011;233(2):677-685.
These experiments were completed as part of an NIH-NINDS contract entitled “Facilities of Research Excellence-Spinal Cord Injury (FORE-SCI)—Replication”. Our goal was to replicate data from a paper published by Dr. Lloyd Guth and colleagues in which combined injections of lipopolysaccharide, indomethacin and pregnenolone (referred to herein as LIP therapy) conferred marked neuroprotection in a pre-clinical model of spinal cord injury (SCI). Specifically, post-injury injection of the combination LIP therapy was found to significantly reduce tissue damage at/nearby the site of injury and significantly improve recovery of locomotor function. In this report, we confirm the primary observations made by Guth et al., however, the effects of LIP treatment were modest. Specifically, LIP treatment improved myelin and axon sparing, axonal sprouting while reducing lesion cavitation. However, spontaneous recovery of locomotion, as assessed using historical (Tarlov scoring) and more current rating scales (i.e., BBB scoring), was not affected by LIP treatment. Instead, more refined parameters of functional recovery (paw placement accuracy during grid walk) revealed a significant effect of treatment. Possible explanations for the neuroprotective effects of LIP therapy are described along with reasons why the magnitude of neuroprotection may have differed between this study and that of Guth and colleagues.
doi:10.1016/j.expneurol.2011.11.045
PMCID: PMC3477520  PMID: 22177997
Neuroinflammation; LPS; Steroids; Spinal cord injury; Replication
11.  Ferritin stimulates oligodendrocyte genesis in the adult spinal cord and can be transferred from macrophages to NG2 cells in vivo 
Injured CNS tissue often contains elevated iron and its storage protein ferritin, which may exacerbate tissue damage through pro-oxidative mechanisms. Therefore, therapeutic studies often target iron reduction as a neuroprotective strategy. However, iron may be crucial for oligodendrocyte replacement and remyelination. For instance, we previously showed that intraspinal TLR4 macrophage activation induced the generation of new ferritin+ oligodendrocytes, and that iron chelation significantly reduced this oligodendrogenic response. Since macrophages can secrete ferritin, we hypothesize that ferritin is a macrophage-derived signal that promotes oligodendrogenesis. To test this, we microinjected ferritin into the intact adult rat spinal cords. Within 6h, NG2+ progenitor cells proliferated and accumulated ferritin. By 3d, many of these cells had differentiated into new oligodendrocytes. However, acute neuron and oligodendrocyte toxicity occurred in gray matter. Interestingly, ferritin+ NG2 cells and macrophages accumulated in the area of cell loss, revealing that NG2+ cells thrive in an environment that is toxic to other CNS cells. To test if ferritin can be transferred from macrophages to NG2 cells in vivo, we loaded macrophages with fluorescent ferritin then transplanted them into intact spinal white matter. Within 3–6d, proliferating NG2 cells migrated into the macrophage transplants and accumulated fluorescently-labeled ferritin. These results show that activated macrophages can be an in vivo source of ferritin for NG2 cells, which induces their proliferation and differentiation into new oligodendrocytes. This work has relevance for conditions in which iron-mediated injury and/or repair likely occur, such as hemorrhage, stroke, spinal cord injury, aging, Parkinson’s disease and Alzheimer’s disease.
doi:10.1523/JNEUROSCI.3517-11.2012
PMCID: PMC3521599  PMID: 22514302
iron; spinal cord injury; myelin; macrophage; progenitor; inflammation
12.  Effects of gabapentin on muscle spasticity and both induced as well as spontaneous autonomic dysreflexia after complete spinal cord injury 
We recently reported that the neuropathic pain medication, gabapentin (GBP; Neurontin), significantly attenuated both noxious colorectal distension (CRD)-induced autonomic dysreflexia (AD) and tail pinch-induced spasticity compared to saline-treated cohorts 2–3 weeks after complete high thoracic (T4) spinal cord injury (SCI). Here we employed long-term blood pressure telemetry to test, firstly, the efficacy of daily versus acute GBP treatment in modulating AD and tail spasticity in response to noxious stimuli at 2 and 3 weeks post-injury. Secondly, we determined whether daily GBP alters baseline cardiovascular parameters, as well as spontaneous AD events detected using a novel algorithm based on blood pressure telemetry data. At both 14 and 21 days after SCI, irrespective of daily treatment, acute GBP given 1 h prior to stimulus significantly attenuated CRD-induced AD and pinch-evoked tail spasticity; conversely, acute saline had no such effects. Moreover, daily GBP did not alter 24 h mean arterial pressure (MAP) or heart rate (HR) values compared to saline treatment, nor did it reduce the incidence of spontaneous AD events compared to saline over the three week assessment period. Power spectral density (PSD) analysis of the MAP signals demonstrated relative power losses in mid frequency ranges (0.2–0.8 Hz) for all injured animals relative to low frequency MAP power (0.02–0.08 Hz). However, there was no significant difference between groups over time post-injury; hence, GBP had no effect on the persistent loss of MAP fluctuations in the mid frequency range after injury. In summary, the mechanism(s) by which acute GBP treatment mitigate aberrant somatosensory and cardiophysiological responses to noxious stimuli after SCI remain unclear. Nevertheless, with further refinements in defining the dynamics associated with AD events, such as eliminating requisite concomitant bradycardia, the objective repeatability of automatic detection of hypertensive crises provides a potentially useful tool for assessing autonomic function pre- and post-SCI, in conjunction with experimental pharmacotherapeutics for neuropathic pain, such as GBP.
doi:10.3389/fphys.2012.00329
PMCID: PMC3429097  PMID: 22934077
neuropathic pain; colorectal distension; power spectral density; telemetry; blood pressure; heart rate
13.  Emerging Concepts in Myeloid Cell Biology after Spinal Cord Injury 
Neurotherapeutics  2011;8(2):252-261.
Summary
Traumatic spinal cord injury (SCI) affects the activation, migration, and function of microglia, neutrophils and monocyte/macrophages. Because these myeloid cells can positively and negatively affect survival of neurons and glia, they are among the most commonly studied immune cells. However, the mechanisms that regulate myeloid cell activation and recruitment after SCI have not been adequately defined. In general, the dynamics and composition of myeloid cell recruitment to the injured spinal cord are consistent between mammalian species; only the onset, duration, and magnitude of the response vary. Emerging data, mostly from rat and mouse SCI models, indicate that resident and recruited myeloid cells are derived from multiple sources, including the yolk sac during development and the bone marrow and spleen in adulthood. After SCI, a complex array of chemokines and cytokines regulate myelopoiesis and intraspinal trafficking of myeloid cells. As these cells accumulate in the injured spinal cord, the collective actions of diverse cues in the lesion environment help to create an inflammatory response marked by tremendous phenotypic and functional heterogeneity. Indeed, it is difficult to attribute specific reparative or injurious functions to one or more myeloid cells because of convergence of cell function and difficulties in using specific molecular markers to distinguish between subsets of myeloid cell populations. Here we review each of these concepts and include a discussion of future challenges that will need to be overcome to develop newer and improved immune modulatory therapies for the injured brain or spinal cord.
Electronic supplementary material
The online version of this article (doi:10.1007/s13311-011-0032-6) contains supplementary material, which is available to authorized users.
doi:10.1007/s13311-011-0032-6
PMCID: PMC3101835  PMID: 21400005
Monocytes; macrophages; neutrophils; microglia; cytokine; chemokine
14.  Spinal cord injury with unilateral versus bilateral primary hemorrhage — Effects of glibenclamide 
Experimental Neurology  2011;233(2):829-835.
In spinal cord injury (SCI), block of Sur1-regulated NCCa-ATP channels by glibenclamide protects penumbral capillaries from delayed fragmentation, resulting in reduced secondary hemorrhage, smaller lesions and better neurological function. All published experiments demonstrating a beneficial effect of glibenclamide in rat models of SCI have used a cervical hemicord impact calibrated to produce primary hemorrhage located exclusively ipsilateral to the site of impact. Here, we tested the hypothesis that glibenclamide also would be protective in a model with more extensive, bilateral primary hemorrhage. We studied the effect of glibenclamide in 2 rat cervical hemicord contusion models with identical impact force (10 g, 25 mm), one with the impactor positioned laterally to yield unilateral primary hemorrhage (UPH), and the other with the impactor positioned more medially, yielding larger, bilateral primary hemorrhages (BPH) and 6-week lesion volumes that were 45% larger. Functional outcome measures included: modified (unilateral) Basso, Beattie, and Bresnahan scores, angled plane performance, and rearing times. In the UPH model, the effects of glibenclamide were similar to previous observations, including a functional benefit as early as 24 h after injury and 6-week lesion volumes that were 57% smaller than controls. In the BPH model, glibenclamide exerted a significant benefit over controls, but the functional benefit was smaller than in the UPH model and 6-week lesion volumes were 33% smaller than controls. We conclude that glibenclamide is beneficial in different models of cervical SCI, with the magnitude of the benefit depending on the magnitude and extent of primary hemorrhage.
doi:10.1016/j.expneurol.2011.11.048
PMCID: PMC3272086  PMID: 22197047
Spinal cord injury; Hemorrhage; Glibenclamide
15.  Deficient CX3CR1 Signaling Promotes Recovery after Mouse Spinal Cord Injury by Limiting the Recruitment and Activation of Ly6Clo/iNOS+ Macrophages 
Macrophages exert divergent effects in the injured CNS causing either neurotoxicity or regeneration. The mechanisms regulating these divergent functions are not understood but can be attributed to the recruitment of distinct macrophage subsets and the activation of specific intracellular signaling pathways. Here, we show that impaired signaling via the chemokine receptor CX3CR1 promotes recovery after traumatic spinal cord injury (SCI) in mice. Deficient CX3CR1 signaling in intraspinal microglia and monocyte-derived macrophages (MDMs) attenuates their ability to synthesize and release inflammatory cytokines and oxidative metabolites. Also, impaired CX3CR1 signaling abrogates the recruitment or maturation of MDMs with presumed neurotoxic effects after SCI. Indeed, in wild-type mice, Ly6Clo/iNOS+/MHCII+/CD11c− MDMs dominate the lesion site whereas CCR2+/Ly6Chi/MHCII−/CD11c+ monocytes predominate in the injured spinal cord of CX3CR1-deficient mice. Replacement of wild-type MDMs with those unable to signal via CX3CR1 resulted in anatomical and functional improvements after SCI. Thus, blockade of CX3CR1 signaling represents a selective anti-inflammatory therapy that is able to promote neuroprotection, in part by reducing inflammatory signaling in microglia and MDMs and recruitment of a novel monocyte subset.
doi:10.1523/JNEUROSCI.2114-11.2011
PMCID: PMC3139517  PMID: 21734283
fractalkine; CX3CL1; CX3CR1; microglia; macrophage; neuroprotection; chimera; spinal cord injury
16.  A Mouse Model of Ischemic Spinal Cord Injury with Delayed Paralysis Caused by Aortic Cross-clamping 
Anesthesiology  2010;113(4):880-891.
Background
Spinal cord ischemia and paralysis are devastating perioperative complications that can accompany open or endovascular repair surgery for aortic aneurysms. Here, we report on the development of a new mouse model of spinal cord ischemia with delayed paralysis induced by cross-clamping the descending aorta.
Methods
Transient aortic occlusion was produced in mice by cross clamping the descending aorta through a lateral thoracotomy. To establish an optimal surgical procedure with limited mortality, variable cross-clamp times and core temperatures were tested between experiments.
Results
The onset of paresis or paralysis and postsurgical mortality varied as a function of cross-clamp time and core temperature that was maintained during the period of cross-clamp. Using optimal surgical parameters (7.5 min cross-clamp duration @ 33°C core temperature), the onset of paralysis is delayed 24–36 h postreperfusion and > 95% of mice survive through 9 weeks postsurgery. These mice are further stratified into two groups, with 70% (n = 19/27) of mice developing severe hindlimb paralysis and the remaining mice showing mild, though still permanent, behavioral deficits.
Conclusion
This new model should prove useful as a preclinical tool for screening neuroprotective therapeutics and for defining the basic biological mechanisms that cause delayed paralysis and neurodegeneration after transient spinal cord ischemia.
doi:10.1097/ALN.0b013e3181ec61ee
PMCID: PMC2945453  PMID: 20808212
17.  Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury 
In this review, we first provide a brief historical perspective, discussing how peripheral nerve injury (PNI) may have caused World War I. We then consider the initiation, progression, and resolution of the cellular inflammatory response after PNI, before comparing the PNI inflammatory response with that induced by spinal cord injury (SCI).
In contrast with central nervous system (CNS) axons, those in the periphery have the remarkable ability to regenerate after injury. Nevertheless, peripheral nervous system (PNS) axon regrowth is hampered by nerve gaps created by injury. In addition, the growth-supportive milieu of PNS axons is not sustained over time, precluding long-distance regeneration. Therefore, studying PNI could be instructive for both improving PNS regeneration and recovery after CNS injury. In addition to requiring a robust regenerative response from the injured neuron itself, successful axon regeneration is dependent on the coordinated efforts of non-neuronal cells which release extracellular matrix molecules, cytokines, and growth factors that support axon regrowth. The inflammatory response is initiated by axonal disintegration in the distal nerve stump: this causes blood-nerve barrier permeabilization and activates nearby Schwann cells and resident macrophages via receptors sensitive to tissue damage. Denervated Schwann cells respond to injury by shedding myelin, proliferating, phagocytosing debris, and releasing cytokines that recruit blood-borne monocytes/macrophages. Macrophages take over the bulk of phagocytosis within days of PNI, before exiting the nerve by the circulation once remyelination has occurred. The efficacy of the PNS inflammatory response (although transient) stands in stark contrast with that of the CNS, where the response of nearby cells is associated with inhibitory scar formation, quiescence, and degeneration/apoptosis. Rather than efficiently removing debris before resolving the inflammatory response as in other tissues, macrophages infiltrating the CNS exacerbate cell death and damage by releasing toxic pro-inflammatory mediators over an extended period of time. Future research will help determine how to manipulate PNS and CNS inflammatory responses in order to improve tissue repair and functional recovery.
doi:10.1186/1742-2094-8-110
PMCID: PMC3180276  PMID: 21878126
Macrophage; microglia; axotomy; Wallerian degeneration; phagocytosis; neuroinflammation; inflammation; spinal cord injury; galectin-1
18.  A Grading System To Evaluate Objectively the Strength of Pre-Clinical Data of Acute Neuroprotective Therapies for Clinical Translation in Spinal Cord Injury 
Journal of Neurotrauma  2011;28(8):1525-1543.
Abstract
The past three decades have seen an explosion of research interest in spinal cord injury (SCI) and the development of hundreds of potential therapies that have demonstrated some promise in pre-clinical experimental animal models. A growing number of these treatments are seeking to be translated into human clinical trials. Conducting such a clinical trial, however, is extremely costly, not only for the time and money required to execute it, but also for the limited resources that will then no longer be available to evaluate other promising therapies. The decision about what therapies have sufficient pre-clinical evidence of efficacy to justify testing in humans is therefore of utmost importance. Here, we have developed a scoring system for objectively grading the body of pre-clinical literature on neuroprotective treatments for acute SCI. The components of the system include an evaluation of a number of factors that are thought to be important in considering the “robustness” of a therapy's efficacy, including the animal species and injury models that have been used to test it, the time window of efficacy, the types of functional improvements effected by it, and whether efficacy has been independently replicated. The selection of these factors was based on the results of a questionnaire that was performed within the SCI research community. A modified Delphi consensus-building exercise was then conducted with experts in pre-clinical SCI research to refine the criteria and decide upon how to score them. Finally, the grading system was applied to a series of potential neuroprotective treatments for acute SCI. This represents a systematic approach to developing an objective method of evaluating the extent to which the pre-clinical literature supports the translation of a particular experimental treatment into human trials.
doi:10.1089/neu.2010.1296
PMCID: PMC3143387  PMID: 20507235
Delphi; grading system; neuroprotection; spinal cord injury
19.  SEMI-AUTOMATED SHOLL ANALYSIS FOR QUANTIFYING CHANGES IN GROWTH AND DIFFERENTIATION OF NEURONS AND GLIA 
Journal of neuroscience methods  2010;190(1):71-79.
There is a need to develop therapies that promote growth or remyelination of mammalian CNS axons. Although the feasibility of pre-clinical treatment strategies should be tested in animal models, in vitro assays are usually faster and less expensive. As a result, in vitro models are ideal for screening large numbers of potential therapeutics prior to use in more complex in vivo systems. In 1953, Sholl introduced a technique that is a reliable and sensitive method for quantifying indices of neurite outgrowth. However, application of the technique is limited because it is labor-intensive. Several methods have been developed to reduce the analysis time for the Sholl technique; but these methods require extensive pre-processing of digital images, they introduce user bias or they have not been compared to manual analysis to ensure accuracy. Here we describe a new, semi-automated Sholl technique for quantifying neuronal and glial process morphology. Using MetaMorph®, we developed an unbiased analysis protocol that can be performed ~3x faster than manual quantification with a comparable level of accuracy regardless of cell morphology. The laborious image processing typical of most computer-aided analysis is avoided by embedding image correction functions into the automated portion of the analysis. The sensitivity and validity of the technique was confirmed by quantifying neuron growth treated with growth factors or oligodendroglial maturation in the presence or absence of thyroid hormone. Thus, this technique provides a rapid and sensitive method for quantifying changes in cell morphology and screening for treatment effects in multiple cell types in vitro.
doi:10.1016/j.jneumeth.2010.04.026
PMCID: PMC2911480  PMID: 20438758
dorsal root ganglion; sensory; regeneration; oligodendrocyte progenitor; myelin; BDNF; NGF; morphometry; morphometric, technique
20.  Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide 
Background
Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-).
Methods
CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions.
Results
LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex.
Conclusions
Taken together, these data indicate that a deficiency of CX3CR1 is permissive to protracted microglial activation and prolonged behavioral alterations in response to transient activation of the innate immune system.
doi:10.1186/1742-2094-7-93
PMCID: PMC3018416  PMID: 21167054
21.  ANXIETY FOLLOWING CARDIAC ARREST/CPR: EXACERBATED BY STRESS AND PREVENTED BY MINOCYCLINE 
Background and Purpose
Stress is an important risk factor for cardiovascular disease; however, most of the research on this topic has focused on incidence rather than outcome. The goal of this study was to determine the effects of prior exposure to chronic stress on ischemia-induced neuronal death, microglial activation, and anxiety-like behavior.
Methods
In Experiment 1, mice were exposed to 3 weeks of daily restraint (3 hrs), then subjected to either 8 min of cardiac arrest/cardiopulmonary resuscitation (CA/CPR) or SHAM surgery. Anxiety-like behavior, microglial activation, and neuronal damage were assessed on post-ischemic day 4. In Experiment 2, mice were infused icv with minocycline (10 μg/day) to determine the effect of inhibiting post-CA/CPR microglial activation on the development of anxiety-like behavior and neuronal death.
Results
CA/CPR precipitated anxiety-like behavior and increased microglial activation and neuronal damage within the hippocampus relative to SHAM. Prior exposure to stress exacerbated these measures among CA/CPR mice, but had no significant effect on SHAM-operated mice. Treatment with minocycline reduced both neuronal damage and anxiety-like behavior among CA/CPR animals. Anxiety-like behavior was significantly correlated with measures of microglial activation but not neuronal damage.
Conclusions
A history of stress exposure increases the pathophysiological response to ischemia and anxiety-like behavior, whereas inhibiting microglial activation reduces neuronal damage and mitigates the development of anxiety-like behavior after CA/CPR. Thus, modulating inflammatory signaling after cerebral ischemia may be beneficial in protecting the brain and preventing the development of affective disorders.
doi:10.1161/STROKEAHA.109.564146
PMCID: PMC2805193  PMID: 19762688
inflammation; anxiety; microglia; stress; cardiac arrest
22.  STRESS HORMONES COLLABORATE TO INDUCE LYMPHOCYTE APOPTOSIS AFTER HIGH LEVEL SPINAL CORD INJURY 
Journal of neurochemistry  2009;110(5):1409-1421.
Post-traumatic immune suppression renders individuals with spinal cord injury (SCI) susceptible to infection. Normally, proper immune function is regulated by collaboration between the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis and involves the controlled release of glucocorticoids (GCs) and norepinephrine (NE). Recently, we showed that after high thoracic (T3) SCI, aberrant levels of GCs and NE accumulate in the blood and spleen, respectively. These changes are associated with splenic atrophy, splenic leucopenia, increased intrasplenic caspase-3 levels and suppressed B lymphocyte function. Since GCs boost SNS function, in part by increasing the expression and affinity of beta-2 adrenergic receptors (β2ARs) while simultaneously preventing β2AR down-regulation, we predicted that surges in stress hormones (i.e., GCs and NE) in the blood and spleen of mice with high-level SCI would act concurrently to adversely affect lymphocyte function and survival. Here, we show that post-SCI concentrations of GCs enhance the sensitivity of lymphocytes to β2AR stimulation causing an increase in intracellular Bim (Bcl2-Interacting Mediator of Cell Death) and subsequent apoptosis. In vivo, the combined antagonism of GC receptors and β2ARs significantly diminished lymphocyte Bim levels and SCI-induced splenic lymphopenia. Together, these data suggest that pharmacological antagonists of the HPA/SNS axes should be considered as adjunct therapies for ameliorating post-traumatic immune suppression in quadriplegics and high paraplegics.
doi:10.1111/j.1471-4159.2009.06232.x
PMCID: PMC2737096  PMID: 19545280
CNS injury; sympathetic nervous system; hypothalamic-pituitary-adrenal axis; Bim
23.  Mucopolysaccharidosis IIIB, a lysosomal storage disease, triggers a pathogenic CNS autoimmune response 
Background
Recently, using a mouse model of mucopolysaccharidosis (MPS) IIIB, a lysosomal storage disease with severe neurological deterioration, we showed that MPS IIIB neuropathology is accompanied by a robust neuroinflammatory response of unknown consequence. This study was to assess whether MPS IIIB lymphocytes are pathogenic.
Methods
Lymphocytes from MPS IIIB mice were adoptively transferred to naïve wild-type mice. The recipient animals were then evaluated for signs of disease and inflammation in the central nervous system.
Results
Our results show for the first time, that lymphocytes isolated from MPS IIIB mice caused a mild paralytic disease when they were injected systemically into naïve wild-type mice. This disease is characterized by mild tail and lower trunk weakness with delayed weight gain. The MPS IIIB lymphocytes also trigger neuroinflammation within the CNS of recipient mice characterized by an increase in transcripts of IL2, IL4, IL5, IL17, TNFα, IFNα and Ifi30, and intraparenchymal lymphocyte infiltration.
Conclusions
Our data suggest that an autoimmune response directed at CNS components contributes to MPS IIIB neuropathology independent of lysosomal storage pathology. Adoptive transfer of purified T-cells will be needed in future studies to identify specific effector T-cells in MPS IIIB neuroimmune pathogenesis.
doi:10.1186/1742-2094-7-39
PMCID: PMC2914668  PMID: 20637096
24.  An efficient and reproducible method for quantifying macrophages in different experimental models of central nervous system pathology 
Journal of neuroscience methods  2009;181(1):36-44.
Historically, microglia/macrophages are quantified in the pathological central nervous system (CNS) by counting cell profiles then expressing the data as cells/mm2. However, because it is difficult to visualize individual cells in dense clusters and in most cases it is unimportant to know the absolute number of macrophages within lesioned tissue, alternative methods may be more efficient for quantifying the magnitude of the macrophage response in the context of different experimental variables (e.g., therapeutic intervention or time post-injury/infection). The present study provides the first in-depth comparison of different techniques commonly used to quantify microglial/macrophage reactions in the pathological spinal cord. Individuals from the same and different laboratories applied techniques of digital image analysis (DIA), standard cell profile counting and a computer-assisted cell counting method with unbiased sampling to quantify macrophages in focal inflammatory lesions, disseminated lesions caused by autoimmune inflammation or at sites of spinal trauma. Our goal was to find a simple, rapid and sensitive method with minimal variability between trials and users. DIA was consistently the least variable and most time-efficient method for assessing the magnitude of macrophage responses across lesions and between users. When used to evaluate the efficacy of an anti-inflammatory treatment, DIA was 5–35x faster than cell counting and was sensitive enough to detect group differences while eliminating inter-user variability. Since lesions are clearly defined and single profiles of microglia/macrophages are difficult to discern in most pathological specimens of brain or spinal cord, DIA offers significant advantages over other techniques for quantifying activated macrophages.
doi:10.1016/j.jneumeth.2009.04.010
PMCID: PMC2737682  PMID: 19393692
image analysis; macrophages; microglia; inflammation; CNS; immunohistochemistry
25.  Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord 
Macrophages dominate sites of central nervous system (CNS) injury where they promote both injury and repair. These divergent effects may be caused by distinct macrophage subsets, i.e., “classically-activated” pro-inflammatory (M1) or “alternatively-activated” anti-inflammatory (M2) cells. Here, we show that an M1 macrophage response is rapidly induced then maintained at sites of traumatic spinal cord injury and that this response overwhelms a comparatively smaller and transient M2 macrophage response. The high M1:M2 macrophage ratio has significant implications for CNS repair. Indeed, we present novel data showing that only M1 macrophages are neurotoxic and M2 macrophages promote a regenerative growth response in adult sensory axons, even in the context of inhibitory substrates that dominate sites of CNS injury (e.g., proteoglycans and myelin). Together, these data suggest that polarizing the differentiation of resident microglia and infiltrating blood monocytes toward an M2 or “alternatively” activated macrophage phenotype could promote CNS repair while limiting secondary inflammatory-mediated injury.
doi:10.1523/JNEUROSCI.3257-09.2009
PMCID: PMC2788152  PMID: 19864556
interleukin-4; interferon-γ; dorsal root ganglion; regeneration; neurotoxicity; spinal cord injury

Results 1-25 (29)