Search tips
Search criteria

Results 1-25 (47)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Nuclear pore component Nup98 is a potential tumor suppressor and regulates post-transcriptional expression of select p53 target genes 
Molecular cell  2012;48(5):799-810.
The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a post-transcriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3′-UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3σ) to be similarly regulated by Nup98. The expression of Nup98 is reduced in murine and human hepatocellular carcinomas (HCC) and correlates with p21 expression in HCC patients. Our study elucidates a previously unrecognized function of wild-type Nup98 in regulating select p53 target genes that is distinct from the well-characterized oncogenic properties of Nup98 fusion proteins.
PMCID: PMC3525737  PMID: 23102701
3.  Cytosolic and nuclear caspase-8 have opposite impact on survival after liver resection for hepatocellular carcinoma 
BMC Cancer  2013;13:532.
An imbalance between proliferation and apoptosis is one of the main features of carcinogenesis. TRAIL (TNF-related apoptosis-inducing ligand) induces apoptosis upon binding to the TRAIL death receptors, TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2, whereas binding to TRAIL-R3 and TRAIL-R4 might promote cell survival and proliferation. The anti-tumor activity of TRAIL-R1 and TRAIL-R2 agonists is currently investigated in clinical trials. To gain further insight into the regulation of apoptosis in hepatocellular carcinoma (HCC), we investigated the TRAIL pathway and the regulators of apoptosis caspase-8, Bcl-xL and Mcl-1 in patients with HCC regarding patient survival.
We analyzed 157 hepatocellular carcinoma patients who underwent partial liver resection or orthotopic liver transplantation and healthy control liver tissue using immunohistochemistry on tissue microarrays for the expression of TRAIL-R1 to TRAIL-R4, caspase-8, Bcl-xL and Mcl-1. Immunohistochemical data were evaluated for potential associations with clinico-pathological parameters and survival.
Whereas TRAIL-R1 was downregulated in HCC in comparison to normal liver tissue, TRAIL-R2 and –R4 were upregulated in HCC, especially in G2 and G3 tumors. TRAIL-R1 downregulation and upregulation of TRAIL-R2 and TRAIL-R4 correlated with tumor dedifferentiation (G2/G3). TRAIL-R3, Bcl-xL and Mcl-1 showed no differential expression in tumor tissue compared to normal tissue. The expression levels of TRAIL receptors did not correlate with patient survival after partial hepatectomy. Interestingly, in tumor tissue, but not in normal hepatocytes, caspase-8 showed a strong nuclear staining. Low cytosolic and high nuclear staining intensity of caspase-8 significantly correlated with impaired survival after partial hepatectomy, which, for cytosolic caspase-8, was independent from tumor grade.
Assessment of TRAIL-receptor expression patterns may have therapeutic implications for the use of TRAIL receptor agonists in HCC therapy. Tumor-specific nuclear localisation of caspase-8 in HCC suggests an apoptosis-independent function of caspase-8 and correlates with patient survival.
PMCID: PMC3834100  PMID: 24209510
HCC; Apoptosis; TRAIL receptors; Nuclear caspase-8
4.  Stathmin Regulates Keratinocyte Proliferation and Migration during Cutaneous Regeneration 
PLoS ONE  2013;8(9):e75075.
Cutaneous regeneration utilizes paracrine feedback mechanisms to fine-tune the regulation of epidermal keratinocyte proliferation and migration. However, it is unknown how fibroblast-derived hepatocyte growth factor (HGF) affects these mutually exclusive processes in distinct cell populations. We here show that HGF stimulates the expression and phosphorylation of the microtubule-destabilizing factor stathmin in primary human keratinocytes. Quantitative single cell- and cell population-based analyses revealed that basal stathmin levels are important for the migratory ability of keratinocytes in vitro; however, its expression is moderately induced in the migration tongue of mouse skin or organotypic multi-layered keratinocyte 3D cultures after full-thickness wounding. In contrast, clearly elevated stathmin expression is detectable in hyperproliferative epidermal areas. In vitro, stathmin silencing significantly reduced keratinocyte proliferation. Automated quantitative and time-resolved analyses in organotypic cocultures demonstrated a high correlation between Stathmin/phospho-Stathmin and Ki67 positivity in epidermal regions with proliferative activity. Thus, activation of stathmin may stimulate keratinocyte proliferation, while basal stathmin levels are sufficient for keratinocyte migration during cutaneous regeneration.
PMCID: PMC3774809  PMID: 24066165
5.  High salt intake causes adverse fetal programming—vascular effects beyond blood pressure 
Nephrology Dialysis Transplantation  2012;27(9):3464-3476.
Do detrimental effects on the vasculature of a high dietary sodium intake precede the development of hypertension?
High salt intake causes hypertension, adverse cardiovascular outcomes and potentially also blood pressure (BP)-independent target organ damage. Excess salt intake in pregnancy is known to affect BP in the offspring. The present study was designed to assess whether high salt intake in pregnancy affects BP and vascular morphology in the offspring.
Sprague–Dawley rats were fed a standard rodent diet with low–normal (0.15%) or high (8.0%) salt content during pregnancy and lactation. After weaning at 4 weeks of age, offspring were maintained on the same diet or switched to a high- or low-salt diet, respectively. Vascular geometry was assessed in male offspring at 7 and 12 weeks postnatally.
Up to 12 weeks of age, there was no significant difference in telemetrically measured BP between the groups of offspring. At 12 weeks of age, wall thickness of central (aorta, carotid), muscular (mesenteric) and intrapulmonary arteries was significantly higher in offspring of mothers on a high-salt diet irrespective of the post-weaning diet. This correlated with increased fibrosis of the aortic wall, more intense nitrotyrosine staining as well as elevated levels of marinobufagenin (MBG) and asymmetric dimethyl arginine (ADMA).
High salt intake in pregnant rats has long-lasting effects on the modeling of central and muscular arteries in the offspring independent of postnatal salt intake and BP. Circulating MBG and ADMA and local oxidative stress correlate with the adverse vascular modeling.
PMCID: PMC3433771  PMID: 22431707
blood pressure; fetal programming; nitric oxide; salt; vessel development
6.  Correction: Automated Universal BRAF State Detection within the Activation Segment in Skin Metastases by Pyrosequencing-Based Assay U-BRAFV600 
PLoS ONE  2013;8(6):10.1371/annotation/b31c5248-91ad-4668-930a-24543b19d6e7.
PMCID: PMC3692735
7.  Focal Nodular Hyperplasia and Hepatocellular Adenoma around the World Viewed through the Scope of the Immunopathological Classification 
Focal nodular hyperplasia (FNH) and hepatocellular adenoma (HCA) are benign hepatocellular tumors. The risk of bleeding and malignant transformation of HCA are strong arguments to differentiate HCA from FNH. Despite great progress that has been made in the differential radiological diagnosis of the 2 types of nodules, liver biopsy is sometimes necessary to separate the 2 entities. Identification of HCA subtypes using immunohistochemical techniques, namely, HNF1A-inactivated HCA (35–40%), inflammatory HCA (IHCA), and beta-catenin-mutated inflammatory HCA (b-IHCA) (50–55%), beta-catenin-activated HCA (5–10%), and unclassified HCA (10%) has greatly improved the diagnostic accuracy of benign hepatocellular nodules. If HCA malignant transformation occurs in all HCA subgroups, the risk is by far the highest in the β-catenin-mutated subgroups (b-HCA, b-IHCA). In the coming decade the management of HCA will be more dependent on the identification of HCA subtypes, particularly for smaller nodules (<5 cm) in terms of imaging, follow-up, and resection.
PMCID: PMC3654480  PMID: 23691331
8.  Automated Universal BRAF State Detection within the Activation Segment in Skin Metastases by Pyrosequencing-Based Assay U-BRAFV600 
PLoS ONE  2013;8(3):e59221.
Malignant melanoma is a highly-aggressive type of malignancy with considerable metastatic potential and frequent resistance to cytotoxic agents. BRAF mutant protein was recently recognized as therapeutic target in metastatic melanoma. We present a newly-developed U-BRAFV600 approach – a universal pyrosequencing-based assay for mutation detection within activation segment in exon 15 of human braf. We identified 5 different BRAF mutations in a single assay analyzing 75 different formalin-fixed paraffin-embedded (FFPE) samples of cutaneous melanoma metastases from 29 patients. We found BRAF mutations in 21 of 29 metastases. All mutant variants were quantitatively detectable by the newly-developed U-BRAFV600 assay. These results were confirmed by ultra-deep-sequencing validation (∼60,000-fold coverage). In contrast to all other BRAF state detection methods, the U-BRAFV600 assay is capable of automated quantitative identification of at least 36 previously-published BRAF mutations. Under the precaution of a minimum of 3% mutated cells in front of a background of wild type cells, U-BRAFV600 assay design completely excludes false wild-type results. The corresponding algorithm for classification of BRAF-mutated variants is provided. The single-reaction assay and data analysis automation makes our approach suitable for the assessment of large clinical sample sizes. Therefore, we suggest U-BRAFV600 assay as a most powerful sequencing-based diagnostic tool to automatically identify BRAF state as a prerequisite to targeted therapy.
PMCID: PMC3608589  PMID: 23555633
9.  A Frequent PNPLA3 Variant Is a Sex Specific Disease Modifier in PSC Patients with Bile Duct Stenosis 
PLoS ONE  2013;8(3):e58734.
Background & Aims
Primary sclerosing cholangitis predominantly affects males and is an important indication for liver transplantation. The rs738409 variant (I148M) of the PNPLA3 gene is associated with alcoholic and non-alcoholic liver disease and we evaluated its impact on the disease course of PSC.
The I148M polymorphism was genotyped in 121 German PSC patients of a long-term prospective cohort and 347 Norwegian PSC patients.
In the prospective German cohort, actuarial survival free of liver transplantation was significantly reduced for I148M carriers (p = 0.011) compared to wildtype patients. This effect was restricted to patients with severe disease, as defined by development of dominant stenosis (DS) requiring endoscopic intervention. DS patients showed markedly decreased survival (p = 0.004) when carrying the I148M variant (I148M: mean 13.8 years; 95% confidence interval: 11.6–16.0 vs. wildtype: mean 18.6 years; 95% confidence interval: 16.3–20.9) while there was no impact on survival in patients without a DS (p = 0.87). In line with previous observations of sex specific effects of the I148M polymorphism, the effect on survival was further restricted to male patients (mean survival 11.9 years; 95% confidence interval: 10.0–14.0 in I148M carriers vs. 18.8 years; 95% confidence interval: 16.2–21.5 in wildtype; p<0.001) while female patients were unaffected by the polymorphism (p = 0.65). These sex specific findings were validated in the Norwegian cohort (p = 0.013).
In male PSC patients with severe disease with bile duct stenosis requiring intervention, the common I148M variant of the PNPLA3 gene is a risk factor for reduced survival.
PMCID: PMC3591368  PMID: 23505555
10.  Chemoradiation in patients with isolated recurrent pancreatic cancer - therapeutical efficacy and probability of re-resection 
In the present retrospective analysis we analysed the therapeutic outcome of a set of patients, who were treated with chemoradiation (CRT) for recurrent pancreatic cancer (RPC) in a single institution.
Patients and Methods
Forty-one patients had a history of primary resection for pancreatic cancer. In case of an unresectable recurrency patients were treated with CRT at our institution between 2002 and 2010 with a median dose of 48.4 Gy (range 39.6–54 Gy). Concurrent chemotherapy regimes included Gemcitabine (GEM) in 37/41 patients (90%) and Fluorouracil (FU) or Capecitabine (CAP) in 4/41 patients (10%). Patients were re-evaluated after CRT with computed tomography and/or explorative laparotomy. During re-resection or laparotomy 15 patients received an additional intraoperative radiotherapy (IORT) with a median dose of 15 Gy (range 12–15 Gy). Median age was 65 years (range 39–76 years) and there were 26 male and 15 female patients.
The median overall survival (mOS), local control (LC) and progression-free survival (PFS) were 16.1, 13.8 and 6.9 months respectively for all patients after the first day of CRT. Re-resection was possible in five patients (12%) and a complete remission (CR) as defined by tumor-free biopsy was seen in 6 patients (15%). When re-resection could be achieved after CRT mOS was improved to 28.3 months (n = 5 patients, 95%-CI 10.2 – 46.3 months). Patients receiving IORT had a significantly improved mOS compared to no IORT (p = 0.034). Fifteen patients (37%) experienced a local tumour progression and main site of distant metastasis was the liver (11 patients, 27%).Overall treatment-related toxicity was mild, grade III hematologic toxicity was observed in 11 patients (27%).
In summary we observed a good therapeutic response with mild to moderate toxicity levels for CRT in RPC. Overall survival and PFS were clearly improved in case of induction of a complete remission (tumor-free biopsies) or after achieving a re-resection, thus providing a curative intended therapy even in case of disease recurrence.
PMCID: PMC3570445  PMID: 23369246
11.  A Systems Biology Study on NFκB Signaling in Primary Mouse Hepatocytes 
The cytokine tumor necrosis factor-alpha (TNFα) is one of the key factors during the priming phase of liver regeneration as well as in hepatocarcinogenesis. TNFα activates the nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) signaling pathway and contributes to the conversion of quiescent hepatocytes to activated hepatocytes that are able to proliferate in response to growth factor stimulation. Different mathematical models have been previously established for TNFα/NFκB signaling in the context of tumor cells. Combining these mathematical models with time-resolved measurements of expression and phosphorylation of TNFα/NFκB pathway constituents in primary mouse hepatocytes revealed that an additional phosphorylation step of the NFκB isoform p65 has to be considered in the mathematical model in order to sufficiently describe the dynamics of pathway activation in the primary cells. Also, we addressed the role of basal protein turnover by experimentally measuring the degradation rate of pivotal players in the absence of TNFα and including this information in the model. To elucidate the impact of variations in the protein degradation rates on TNFα/NFκB signaling on the overall dynamic behavior we used global sensitivity analysis that accounts for parameter uncertainties and showed that degradation and translation of p65 had a major impact on the amplitude and the integral of p65 phosphorylation. Finally, our mathematical model of TNFα/NFκB signaling was able to predict the time-course of the complex formation of p65 and of the inhibitor of NFκB (IκB) in primary mouse hepatocytes, which was experimentally verified. Hence, we here present a mathematical model for TNFα/NFκB signaling in primary mouse hepatocytes that provides an important basis to quantitatively disentangle the complex interplay of multiple factors in liver regeneration and tumorigenesis.
PMCID: PMC3533138  PMID: 23293603
mathematical modeling; p65; IκB; protein degradation; hepatocytes; signaling
12.  Epithelial-to-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma and Pancreatic Tumor Cell Lines: The Role of Neutrophils and Neutrophil-Derived Elastase 
Pancreatic ductal adenocarcinoma (PDAC) is frequently associated with fibrosis and a prominent inflammatory infiltrate in the desmoplastic stroma. Moreover, in PDAC, an epithelial-to-mesenchymal transition (EMT) is observed. To explore a possible connection between the infiltrating cells, particularly the polymorphonuclear neutrophils (PMN) and the tumor cell transition, biopsies of patients with PDAC (n = 115) were analysed with regard to PMN infiltration and nuclear expression of β-catenin and of ZEB1, well-established indicators of EMT. In biopsies with a dense PMN infiltrate, a nuclear accumulation of β-catenin and of ZEB1 was observed. To address the question whether PMN could induce EMT, they were isolated from healthy donors and were cocultivated with pancreatic tumor cells grown as monolayers. Rapid dyshesion of the tumor cells was seen, most likely due to an elastase-mediated degradation of E-cadherin. In parallel, the transcription factor TWIST was upregulated, β-catenin translocated into the nucleus, ZEB1 appeared in the nucleus, and keratins were downregulated. EMT was also induced when the tumor cells were grown under conditions preventing attachment to the culture plates. Here, also in the absence of elastase, E-cadherin was downmodulated. PMN as well as prevention of adhesion induced EMT also in liver cancer cell line. In conclusion, PMN via elastase induce EMT in vitro, most likely due to the loss of cell-to-cell contact. Because in pancreatic cancers the transition to a mesenchymal phenotype coincides with the PMN infiltrate, a contribution of the inflammatory response to the induction of EMT and—by implication—to tumor progression is possible.
PMCID: PMC3514849  PMID: 23227088
13.  Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment 
Cell host & microbe  2011;9(1):32-45.
Hepatitis C virus (HCV) is a major causative agent of chronic liver disease in humans. To gain insight into host factor requirements for HCV replication we performed a siRNA screen of the human kinome and identified 13 different kinases, including phosphatidylinositol-4 kinase III alpha (PI4KIIIα) as required for HCV replication. Consistent with elevated levels of the PI4KIIIα product phosphatidylinositol-4-phosphate (PI4P) detected in HCV infected cultured hepatocytes and liver tissue from chronic hepatitis C patients, the enzymatic activity of PI4KIIIα was critical for HCV replication. Viral nonstructural protein 5A (NS5A) was found to interact with PI4KIIIα and stimulate its kinase activity. The absence of PI4KIIIα activity induced a dramatic change in the ultrastructural morphology of the membranous HCV replication complex. Our analysis suggests that the direct activation of a lipid kinase by HCV NS5A contributes critically to the integrity of the membranous viral replication complex.
PMCID: PMC3433060  PMID: 21238945
14.  Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development 
RNA Biology  2012;9(8):1076-1087.
The metastasis-associated lung adenocarcinoma transcript 1, MALAT1, is a long non-coding RNA (lncRNA) that has been discovered as a marker for lung cancer metastasis. It is highly abundant, its expression is strongly regulated in many tumor entities including lung adenocarcinoma and hepatocellular carcinoma as well as physiological processes, and it is associated with many RNA binding proteins and highly conserved throughout evolution. The nuclear transcript MALAT-1 has been functionally associated with gene regulation and alternative splicing and its regulation has been shown to impact proliferation, apoptosis, migration and invasion.
Here, we have developed a human and a mouse knockout system to study the loss-of-function phenotypes of this important ncRNA. In human tumor cells, MALAT1 expression was abrogated using Zinc Finger Nucleases. Unexpectedly, the quantitative loss of MALAT1 did neither affect proliferation nor cell cycle progression nor nuclear architecture in human lung or liver cancer cells. Moreover, genetic loss of Malat1 in a knockout mouse model did not give rise to any obvious phenotype or histological abnormalities in Malat1-null compared with wild-type animals. Thus, loss of the abundant nuclear long ncRNA MALAT1 is compatible with cell viability and normal development.
PMCID: PMC3551862  PMID: 22858678
MALAT1; human knockout model; knockout mouse; long non-coding RNA
15.  E–N-cadherin heterodimers define novel adherens junctions connecting endoderm-derived cells 
The Journal of Cell Biology  2011;195(5):873-887.
Contradicting the “cadherin switch” model, mixed E-cadherin–N-cadherin heterodimeric adherens junctions are prevalent in a variety of endodermal cells and endoderm-derived tumors.
Intercellular junctions play a pivotal role in tissue development and function and also in tumorigenesis. In epithelial cells, decrease or loss of E-cadherin, the hallmark molecule of adherens junctions (AJs), and increase of N-cadherin are widely thought to promote carcinoma progression and metastasis. In this paper, we show that this “cadherin switch” hypothesis does not hold for diverse endoderm-derived cells and cells of tumors derived from them. We show that the cadherins in a major portion of AJs in these cells can be chemically cross-linked in E–N heterodimers. We also show that cells possessing E–N heterodimer AJs can form semistable hemihomotypic AJs with purely N-cadherin–based AJs of mesenchymally derived cells, including stroma cells. We conclude that these heterodimers are the major AJ constituents of several endoderm-derived tissues and tumors and that the prevailing concept of antagonistic roles of these two cadherins in developmental and tumor biology has to be reconsidered.
PMCID: PMC3257573  PMID: 22105347
16.  Transient telomere dysfunction induces chromosomal instability and promotes carcinogenesis 
The Journal of Clinical Investigation  2012;122(6):2283-2288.
Telomere shortening limits the proliferative capacity of a cell, but perhaps surprisingly, shortening is also known to be associated with increased rates of tumor initiation. A current hypothesis suggests that telomere dysfunction increases tumor initiation by induction of chromosomal instability, but that initiated tumors need to reactivate telomerase for genome stabilization and tumor progression. This concept has not been tested in vivo, since appropriate mouse models were lacking. Here, we analyzed hepatocarcinogenesis in a mouse model of inducible telomere dysfunction on a telomerase-proficient background, in telomerase knockout mice with chronic telomere dysfunction (G3 mTerc–/–), and in WT mice with functional telomeres and telomerase. Transient or chronic telomere dysfunction enhanced the rates of chromosomal aberrations during hepatocarcinogenesis, but only telomerase-proficient mice exhibited significantly increased rates of macroscopic tumor formation in response to telomere dysfunction. In contrast, telomere dysfunction resulted in pronounced accumulation of DNA damage, cell-cycle arrest, and apoptosis in telomerase-deficient liver tumors. Together, these data provide in vivo evidence that transient telomere dysfunction during early or late stages of tumorigenesis promotes chromosomal instability and carcinogenesis in telomerase-proficient mice.
PMCID: PMC3366409  PMID: 22622037
17.  Unique Cell Type-Specific Junctional Complexes in Vascular Endothelium of Human and Rat Liver Sinusoids 
PLoS ONE  2012;7(4):e34206.
Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs) using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ), i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ) transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.
PMCID: PMC3317944  PMID: 22509281
18.  Neoadjuvant chemoradiation with Gemcitabine for locally advanced pancreatic cancer 
To evaluate efficacy and secondary resectability in patients with locally advanced pancreatic cancer (LAPC) treated with neoadjuvant chemoradiotherapy (CRT).
Patients and methods
A total of 215 patients with locally advanced pancreatic cancer were treated with chemoradiation at a single institution. Radiotherapy was delivered with a median dose of 52.2 Gy in single fractions of 1.8 Gy. Chemotherapy was applied concomitantly as gemcitabine (GEM) at a dose of 300 mg/m2 weekly, followed by adjuvant cycles of full-dose GEM (1000 mg/m2). After neoadjuvant CRT restaging was done to evaluate secondary resectability. Overall and disease-free survival were calculated and prognostic factors were estimated.
After CRT a total of 26% of all patients with primary unresectable LAPC were chosen to undergo secondary resection. Tumour free resection margins could be achieved in 39.2% (R0-resection), R1-resections were seen in 41.2%, residual macroscopic tumour in 11.8% (R2) and in 7.8% resection were classified as Rx. Patients with complete resection after CRT showed a significantly increased median overall survival (OS) with 22.1 compared to 11.9 months in non-resected patients. Median OS and disease-free survival (DFS) of all patients were 12.3 and 8.1 months respectively. In most cases the first site of disease progression was systemic with hepatic (52%) and peritoneal (36%) metastases.
A high percentage of patients with locally advanced pancreatic cancer can undergo secondary resection after gemcitabine-based chemoradiation and has a relative long-term prognosis after complete resection.
PMCID: PMC3338091  PMID: 22385572
19.  Decentral gene expression analysis for ER+/Her2− breast cancer: results of a proficiency testing program for the EndoPredict assay 
Virchows Archiv  2012;460(3):251-259.
Gene expression profiles provide important information about the biology of breast tumors and can be used to develop prognostic tests. However, the implementation of quantitative RNA-based testing in routine molecular pathology has not been accomplished, so far. The EndoPredict assay has recently been described as a quantitative RT-PCR-based multigene expression test to identify a subgroup of hormone–receptor-positive tumors that have an excellent prognosis with endocrine therapy only. To transfer this test from bench to bedside, it is essential to evaluate the test–performance in a multicenter setting in different molecular pathology laboratories. In this study, we have evaluated the EndoPredict (EP) assay in seven different molecular pathology laboratories in Germany, Austria, and Switzerland. A set of ten formalin-fixed paraffin-embedded tumors was tested in the different labs, and the variance and accuracy of the EndoPredict assays were determined using predefined reference values. Extraction of a sufficient amount of RNA and generation of a valid EP score was possible for all 70 study samples (100%). The EP scores measured by the individual participants showed an excellent correlation with the reference values, respectively, as reflected by Pearson correlation coefficients ranging from 0.987 to 0.999. The Pearson correlation coefficient of all values compared to the reference value was 0.994. All laboratories determined EP scores for all samples differing not more than 1.0 score units from the pre-defined references. All samples were assigned to the correct EP risk group, resulting in a sensitivity and specificity of 100%, a concordance of 100%, and a kappa of 1.0. Taken together, the EndoPredict test could be successfully implemented in all seven participating laboratories and is feasible for reliable decentralized assessment of gene expression in luminal breast cancer.
PMCID: PMC3306560  PMID: 22371223
Breast cancer; Prognosis; mRNA; Quality control
20.  S100A9 is a Biliary Protein Marker of Disease Activity in Primary Sclerosing Cholangitis 
PLoS ONE  2012;7(1):e29821.
Background and Aims
Bile analysis has the potential to serve as a surrogate marker for inflammatory and neoplastic disorders of the biliary epithelium and may provide insight into biliary pathophysiology and possible diagnostic markers. We aimed to identify biliary protein markers of patients with primary sclerosing cholangitis (PSC) by a proteomic approach.
Bile duct-derived bile samples were collected from PSC patients (n = 45) or patients with choledocholithiasis (n = 24, the control group). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to analyse the proteins, 2-D-gel patterns were compared by densitometry, and brush cytology specimens were analysed by RT-PCR.
A reference bile-duct bile proteome was established in the control group without signs of inflammation or maligancy comprising a total of 379 non-redundant biliary proteins; 21% were of unknown function and 24% had been previously described in serum. In PSC patients, the biliary S100A9 expression was elevated 95-fold (p<0.005), serum protein expression was decreased, and pancreatic enzyme expression was unchanged compared to controls. The S100A9 expression was 2-fold higher in PSC patients with high disease activity than in those with low activity (p<0.05). The brush cytology specimens from the PSC patients with high disease activity showed marked inflammatory activity and leukocyte infiltration compared to the patients with low activity, which correlated with S100A9 mRNA expression (p<0.05).
The bile-duct bile proteome is complex and its analysis might enhance the understanding of cholestatic liver disease. Biliary S100A9 levels may be a useful marker for PSC activity, and its implication in inflammation and carcinogenesis warrants further investigation.
PMCID: PMC3256182  PMID: 22253789
21.  Opposite effects of tissue inhibitor of metalloproteinases-1 (TIMP-1) over-expression and knockdown on colorectal liver metastases 
BMC Research Notes  2012;5:14.
Tissue inhibitors of metalloproteinases (TIMPs) and the corresponding metalloproteinases are integral parts of the protease network and have been shown to be involved in cancer development and metastasis. Paradoxically, for TIMP-1, tumor promoting as well as tumor inhibitory effects have been observed.
To address this paradox, we utilized the BALB/c/CT26 mouse model that reliably leads to liver metastasis after splenic tumor cell injection and variegated the type of target cells for therapeutic intervention and the modalities of gene transfer. Since we have observed before that over-expression of TIMP-1 in liver host cells leads to efficient tumor growth inhibition in this model, we now examined whether targeting the tumor cells themselves will have a similar effect.
In concordance with the earlier results, TIMP-1 over-expression in tumor cells led to a dramatic reduction of tumor growth as well. To evaluate any influence of treatment modality, we further examined whether TIMP-1 knockdown in the same animal model would have the opposite effect on tumor growth than TIMP-1 over-expression. Indeed, TIMP-1 knockdown led to a marked increase in tumor burden.
These data indicate that in the BALB/c/CT26 model, the modification of TIMP-1 has concordant effects irrespective of the type of target cell or the technique of modulation of TIMP-1 activity, and that TIMP-1 is unequivocally tumor inhibitory in this model.
PMCID: PMC3284431  PMID: 22230683
22.  CASTLE tumour of the neck: a rare location of a malignant tumour of the thymus 
BMJ Case Reports  2009;2009:bcr06.2009.1937.
We present the case of a 62-year-old woman who consulted her physician in December 2005, suffering from a mass at the left lower anterior neck with rapid enlargement. Intraoperative frozen section was highly suspicious of a CASTLE tumour (carcinomas showing thymus-like differentiation). Finally, immunohistochemical investigation revealing positivity for CK5/6, c-kit (CD117) and CD5 as well as negativity for thyroglobulin, calcitonin, vimentin and TTF-1 confirmed the diagnosis. Due to lymph node metastases, radiochemotherapy was performed. Fifteen months after the initial diagnosis disseminated pulmonary metastases were found and treated with cisplatin based chemotherapy, which led to a stabilisation of the disease. In June 2008, computed tomography showed progress of the pulmonary metastases, making further chemotherapeutical treatment necessary. Although treatment was changed in October 2008, the staging evaluation in January 2009 revealed further progress of the metastatic disease. Currently, the patient is still alive, but receives no medical treatment at the moment.
PMCID: PMC3027917  PMID: 22171232
23.  Automatic Tumor-Stroma Separation in Fluorescence TMAs Enables the Quantitative High-Throughput Analysis of Multiple Cancer Biomarkers 
PLoS ONE  2011;6(12):e28048.
The upcoming quantification and automation in biomarker based histological tumor evaluation will require computational methods capable of automatically identifying tumor areas and differentiating them from the stroma. As no single generally applicable tumor biomarker is available, pathology routinely uses morphological criteria as a spatial reference system. We here present and evaluate a method capable of performing the classification in immunofluorescence histological slides solely using a DAPI background stain. Due to the restriction to a single color channel this is inherently challenging. We formed cell graphs based on the topological distribution of the tissue cell nuclei and extracted the corresponding graph features. By using topological, morphological and intensity based features we could systematically quantify and compare the discrimination capability individual features contribute to the overall algorithm. We here show that when classifying fluorescence tissue slides in the DAPI channel, morphological and intensity based features clearly outpace topological ones which have been used exclusively in related previous approaches. We assembled the 15 best features to train a support vector machine based on Keratin stained tumor areas. On a test set of TMAs with 210 cores of triple negative breast cancers our classifier was able to distinguish between tumor and stroma tissue with a total overall accuracy of 88%. Our method yields first results on the discrimination capability of features groups which is essential for an automated tumor diagnostics. Also, it provides an objective spatial reference system for the multiplex analysis of biomarkers in fluorescence immunohistochemistry.
PMCID: PMC3229509  PMID: 22164226
24.  Loss of aquaporin-4 expression and putative function in non-small cell lung cancer 
BMC Cancer  2011;11:161.
Aquaporins (AQPs) have been recognized to promote tumor progression, invasion, and metastasis and are therefore recognized as promising targets for novel anti-cancer therapies. Potentially relevant AQPs in distinct cancer entities can be determined by a comprehensive expression analysis of the 13 human AQPs.
We analyzed the presence of all AQP transcripts in 576 different normal lung and non-small cell lung cancer (NSCLC) samples using microarray data and validated our findings by qRT-PCR and immunohistochemistry.
Variable expression of several AQPs (AQP1, -3, -4, and -5) was found in NSCLC and normal lung tissues. Furthermore, we identified remarkable differences between NSCLC subtypes in regard to AQP1, -3 and -4 expression. Higher transcript and protein levels of AQP4 in well-differentiated lung adenocarcinomas suggested an association with a more favourable prognosis. Beyond water transport, data mining of co-expressed genes indicated an involvement of AQP4 in cell-cell signalling, cellular movement and lipid metabolism, and underlined the association of AQP4 to important physiological functions in benign lung tissue.
Our findings accentuate the need to identify functional differences and redundancies of active AQPs in normal and tumor cells in order to assess their value as promising drug targets.
PMCID: PMC3098822  PMID: 21548930
25.  Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice 
The Journal of Experimental Medicine  2010;207(8):1617-1624.
The protease a disintegrin and metalloprotease (ADAM) 17 cleaves tumor necrosis factor (TNF), L-selectin, and epidermal growth factor receptor (EGF-R) ligands from the plasma membrane. ADAM17 is expressed in most tissues and is up-regulated during inflammation and cancer. ADAM17-deficient mice are not viable. Conditional ADAM17 knockout models demonstrated proinflammatory activities of ADAM17 in septic shock via shedding of TNF. We used a novel gene targeting strategy to generate mice with dramatically reduced ADAM17 levels in all tissues. The resulting mice called ADAM17ex/ex were viable, showed compromised shedding of ADAM17 substrates from the cell surface, and developed eye, heart, and skin defects as a consequence of impaired EGF-R signaling caused by failure of shedding of EGF-R ligands. Unexpectedly, although the intestine of unchallenged homozygous ADAM17ex/ex mice was normal, ADAM17ex/ex mice showed substantially increased susceptibility to inflammation in dextran sulfate sodium colitis. This was a result of impaired shedding of EGF-R ligands resulting in failure to phosphorylate STAT3 via the EGF-R and, consequently, in defective regeneration of epithelial cells and breakdown of the intestinal barrier. Besides regulating the systemic availability of the proinflammatory cytokine TNF, our results demonstrate that ADAM17 is needed for vital regenerative activities during the immune response. Thus, our mouse model will help investigate ADAM17 as a potential drug target.
PMCID: PMC2916135  PMID: 20603312

Results 1-25 (47)